Responsive image
博碩士論文 etd-0502112-201546 詳細資訊
Title page for etd-0502112-201546
論文名稱
Title
25 Gb/s 低成本光發射次模組構裝之研究
The Study of Cost-Effective 25 Gb/s Transmitter Optical Sub-Assembly (TOSA) Packages
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
133
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-04-07
繳交日期
Date of Submission
2012-05-02
關鍵字
Keywords
100 兆位元、25 兆位元、雷射二極體構裝、同軸式雷射模組、光發射次模組
100 Gb/s, 25 Gb/s, Laser diode package, TO-Can laser module, Transmitter optical sub-assembly (TOSA)
統計
Statistics
本論文已被瀏覽 5859 次,被下載 1489
The thesis/dissertation has been browsed 5859 times, has been downloaded 1489 times.
中文摘要
本論文為高性能及低成本25 Gb/s光發射次模組(TOSA)同軸式構裝之研究,研究方法採用低成本的罐型(TO-Can)材料與構裝製程,及符合成本效益的25 Gb/s直接調變式光發射次模組構裝。本論文研究包括研發高頻寬TO-Can構裝基座與驗證方法、提出三個版本的25 Gb/s TO-Can雷射模組封裝之解決方案、及雷射模組於頻域與時域的電氣特性分析。
傳統TO-Can雷射模組的傳輸頻寬被限制在10 GHz以下,為了克服此限制與找出其解決方法,首先以傳輸線理論分析研討傳統同軸式罐型基座(header)的幾何結構,再藉由三維的電磁模擬軟體模擬基座的電氣特性。針對TO-Can基座開發更準確的驗證方法,其模擬與測量獲得一致性結果及驗證了三維電磁模型的適用性,並確定傳統TO-Can基座頻寬限制在16.7 GHz。本研究第一版本TO-Can基座克服模組結構中阻抗不連續的問題,再採用此TO-Can基座,提出第一版本TO-Can雷射模組構裝方案。接著將模擬特性參數萃取出來,藉由電路模擬工具,整合雷射二極體的小訊號等效電路模型,進而模擬分析整體雷射模組的電氣特性。
由於第一版本TO-Can基座的彎曲針腳與雙層介質的同軸孔徑困難獲得,所以提出第二版本TO-Can基座並以實驗驗證。接著,採用第二版本TO-Can基座及搭配匹配電阻,提出一個25 Gb/s TO-Can雷射模組具有一個內部匹配電阻的構裝方式。此構裝解決方案在考慮打線構裝後的模擬結果,顯示出傳輸頻寬與眼圖皆可達到25 Gb/s的傳輸要求。本研究第三版本25 Gb/s TO-Can雷射模組的構裝方案,是採用第二版本TO-Can基座與一個L型微帶線的氮化鋁基板以打線方式連接基座的訊號針腳,再將3-dB頻寬為21.2 GHz的DFB雷射二極體,建立其小訊號等效電路模型,及使用於此雷射模組的模擬與實作組裝。
本論文所提出的雷射模組係藉由現行的TO-Can與光發射次模組的組裝設備與製程技術完成研製實作,並量測此光發射次模組3-dB頻寬為18.7 GHz。本模組經十公里光纖傳輸後可清楚量測25 Gb/s眼圖與誤碼率,因此本研究成果可應用於新興的25 Gb/s光纖通道、100 Gb/s乙太網路,及下一世代光接取網路的應用需求,進一步透過所提出模擬與驗證技術來協助未來開發各種高速光電元件封裝的設計模擬與性能之評估。
Abstract
A cost-effective 25 Gb/s directly-modulated transmitter optical sub-assembly (TOSA) packaging solutions by transistor outline (TO)-Can materials and processes were proposed and demonstrated. The purpose of this dissertation is to develop a high bandwidth TO-Can header for high-speed laser module, to verify a method, to propose a three-version of 25 Gb/s TO-Can laser module packaging, and to analyze in the frequency-domain and time-domain, and to experimentally demonstrate a 25 Gb/s TOSA.
Usually, the transmission bandwidth of a conventional TO-Can laser module is limited below 10 GHz. To overcome this limitation and figure out the solution, firstly, the geometric structure of a conventional TO-56 header was analyzed by using transmission line models and electrical characteristics of the TO-56 header through a three-dimensional electromagnetism full-wave simulation software. The simulated results were in good agreement with the measured results and verify the applicability. Furthermore, we found that the 3-dB bandwidth of a conventional TO-56 header was limited at 16.7GHz. In this study, the first version of TO-Can header V1 was proposed to overcome the problem of the discontinuous impedance. By applying the TO-Can header V1, a TO-Can laser module package was proposed. The electrical characteristics parameters of the TO-Can header V1 were extracted and combined with small-signal equivalent circuit models of laser diode to simulate the electrical characteristics of the entire TO-Can laser module by the circuit simulation tool.
Since bent inside feed-leads and two-step coaxial feed-through holes of the TO-Can header V1 were difficult to achieve in our laboratory equipments, the second version of TO-Can header V2 was proposed and verified experimentally. A 25 Gb/s TO-Can laser module with a matching resistor by adopting the TO-Can header V2 was proposed. The simulated results of this solution by considering with bonding-wires showed that the transmission bandwidth and eye diagram could achieve requirements of 25 Gb/s transmissions.
Finally, the third version of 25 Gb/s TO-Can laser module adopted the TO-Can header V2 and an AlN submount of L-shaped microstrip line was proposed, fabricated, and measured. A DFB LD chip with a 3-dB bandwidth of 21.2 GHz was modeled and used in the simulation and the fabrication. Due to the parasitic effect induced by bonding-wires and die-bonding structure, the variation of high frequency performance of the laser module was simulated comprehensively. By referring to the proposed structure, a TOSA was fabricated by a conventional TO-Can and TOSA fabrication equipments and processes. The measured 3-dB bandwidth of the TOSA was 18.7 GHz. A clear eye diagrams of 25 Gb/s and BER testing for BTB and SMF transmission were obtained. This cost-effective solution of the TOSA is compatible with existing automatic TO-Can process lines and can be fabricated massively. Therefore, the results of this study of proposed TOSA can be applied in the next generation networks of 100GBASE-LR4, OTU4, and 32GFC. The presented simulation and verified technique may provide sufficient estimation and step-by-step analysis to assist the high-speed and high-density optical communication applications and various product developments in the future.
目次 Table of Contents
Abstract
Acknowledgement
Contents I
List of Figures III
List of Tables VII

Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 4
1.2.1 Modified TO-Can Headers for High-Speed Laser Module Package 7
1.2.2 Keys for a High-Speed TOSA of TO-Can Type Package 9
1.3 Overview of Dissertation 10

Chapter 2 Proposal and Analyzed Characteristics of a Large Bandwidth TO-Can Header and First Version TO-Can Laser Module 19
2.1 Analysis and Characterization of a Conventional TO-56 Header 20
2.1.1 The Limitation of the 3-dB Bandwidth of a TO-56 Header 20
2.1.2 The Analysis of the Structure of a TO-Can Header 25
2.2 Proposal of the TO-Can Header V1 30
2.2.1 The Design Structure of the TO-Can Header V1 30
2.2.2 The Frequency Characteristics of the TO-Can Header V1 32
2.2.3 The Equivalent Circuit Model of the TO-Can Header V1 35
2.3 Demonstration of the Characteristics of the TO-Can Laser Modules 36
2.3.1 The Frequency Characteristics of the TO-Can Laser Modules 36
2.3.2 The Frequency Characteristics of the First Version Laser Module under Different Wire Bonding Conditions 40
2.3.3 The Characteristic Analysis of the TO-Can Laser Modules with DFB LD Equivalent Circuit Models 42
2.4 Discussion of Laser Module Driven by Different Source Impedances 47
2.5 Summary 55

Chapter 3 Second Version Proposal of a Low-Cost 25 Gb/s TO-Can Laser Module Packaging 58
3.1 The Second Version TO-Can Header 58
3.1.1 Proposal of the TO-Can Header V2 58
3.1.2 Experiment Result and Verification of the TO-Can Header V2 63
3.2 The Second Version Proposal of a Low-Cost 25 Gb/s TO-Can Laser Module Packaging Built-in a Matching Resistor 69
3.2.1 The Structure of the Second Version TO-Can Laser Module 69
3.2.2 The Demonstration of the Second Version TO-Can Laser Module 71
3.3 Summary 75

Chapter 4 Third Version Proposal of a Low-Cost 25 Gb/s TO-Can Laser Module 77
4.1 The Performance of DFB LD Chip 77
4.1.1 The High Frequency Probing Measurement of DFB LD Chip 77
4.1.2 The Establishment of a DFB LD Equivalent Circuit Model 79
4.2 The Third Version Proposal of a Low-Cost 25 Gb/s TO-Can Laser Module Packaging with an AlN Submounted Microstrip 80
4.2.1 The Structure of Third Version TO-Can Laser Module with an AlN Submounted Microstrip 80
4.2.2 The Different Bonding-Wire Conditions Discussion of the Third Version TO-Can Laser Module 82
4.2.3 Electrical Performance Simulations of the Third Version TO-Can Laser Module under Different Air-gap Conditions 85
4.2.4 Optimal High Frequency Performance and the Eye Diagram Simulations of the Third Version TO-Can Laser Module 87
4.3 Fabrication of the Low-Cost 25 Gb/s TOSA 89
4.4 Measurement Results of the Low-Cost 25 Gb/s TOSA 90
4.4.1 The DC Characteristics of the 25 Gb/s TOSA 90
4.4.2 The High Frequency Characteristics of the 25 Gb/s TOSA 92
4.4.3 The Eye Diagrams of the 25 Gb/s TOSA and Transmission Testing 93
4.4.4 The BER of the 25 Gb/s TOSA and Transmission Testing 95
4.4.5 The Transmission Calculation and Discussion of Power Penalty 96
4.5 Summary 98

Chapter 5 Conclusions 100
5.1 Conclusion 100
5.2 Future Prospect and Development 102

Appendix 106
Curriculum Vitae of Author 115
List of Publications 116
參考文獻 References
[1.1] M. Abrams, P. C. Becker, Y. Fujimoto, V. O’Byrne, and D. Piehler, “FTTP Deployments in the United States and Japan—Equipment Choices and Service Provider Imperatives,” J. Lightwave Technology, Vol. 23, no. 1, pp. 236-246, Jan. 2005.
[1.2] M. Nakamura, H. Ueda, S. Makino, T. Yokotani, and K. Oshima, “Proposal of networking by PON technologies for full and Ethernet services in FTTx,” J. Lightwave Technol., vol.22, no. 11, pp. 2631-2640, Nov. 2004.
[1.3] H. Shinohara, “Broadband access in Japan: rapidly growing FTTH market,” IEEE Communication Magazine, Vol.43, pp. 72-78, Sept. 2005.
[1.4] S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-Home Services Based on Wavelength-Division-Multiplexing Passive Optical Network,” J. Lightwave Technology, Vol. 22, no. 11, pp. 2582-2591, Nov. 2004.
[1.5] C.-H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the Home Using a PON Infrastructure,” J. Lightwave Technology, Vol. 24, no. 12, pp. 4568-4583, Dec. 2006.
[1.6] W. Yue and J. V. Mocerino, “Broadband Access Technologies for FTTx Deployment,” in Proc. of Optical Fiber Communication (OFC), JThA86, pp. 1-6, Mar. 2007.
[1.7] X.-Z. Qiu, P. Ossieur, J. Bauwelinck, Y. Yi, D. Verhulst, J. Vandewege, B. D. Vos, and P. Solina, “Development of GPON Upstream Physical-Media-Dependent Prototypes,” J. Lightwave Technology, Vol. 22, no. 11, pp. 2498-2507, Nov. 2004.
[1.8] O. Akanbi, J. Yu, and G.-K. Chang, “R.P. Davey, P. Healey, I. Hope, P. Watkinson, D.B. Payne, O. Marmur, J. Ruhmann, Y. Zuiderveld, “DWDM reach extension of a GPON to 135 km,” J. Lightwave Technol., vol. 24 , no. 1, pp. 29-31, 2006.
[1.9] O. Akanbi, J. Yu, and G.-K. Chang, “A New Scheme for Bidirectional WDM-PON Using Upstream and Downstream Channels Generated by Optical Carrier Suppression and Separation Technique,” IEEE Photonics Technology Letters, Vol. 18, no. 2, pp. 340-342, Jan. 2006.
[1.10] N. Suzuki and J. Nakagawa, “A 10G-PON Physical Medium Layer link with new 10.3-Gb/s LAN-PHY based Optical Interfaces for Future PON Networks,” in Proc. of ECOC, pp. 1-2, Sept. 2006.
[1.11] J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G.-K. Chang, “Demonstration of a Novel WDM Passive Optical Network Architecture With Source-Free Optical Network Units,” IEEE Photonics Technology Letters, Vol. 19, no. 8, pp. 571-573, April 2007.
[1.12] M. Hajduczenia, P. R. M. Inacio, H. J. A. da Silva, M. M. Freire, and P. P. Monteiro, “10G EPON Standardization in IEEE 802.3av Project,” in Proc. of Optical Fiber Communication (OFC), NMD4, pp. 1-9, Mar. 2008.
[1.13] M. Hajduczenia, H. J. A. da Silva, and N. Borges, “Discovery Process for Emerging 10 Gb/s EPONs,” IEEE Communication Magazine, Vol. 46, no. 11, pp. 82-90, Nov. 2008.
[1.14] M. S. Kiaei, C. Assi, L. Meng, and M. Maier, “On the Co-Existence of 10G-EPONs and WDM-PONs: A Scheduling and Bandwidth Allocation Approach,” J. Lightwave Technology, Vol. 29, no. 10, pp. 1417-1426, May 2011.
[1.15] F. Ishitsuka, N. Iwasaki, M. Hirose, M. Yanagibashi, H. Ichino, and Y. Ando, “A compact MU-interface, 2.5-Gb/s optical transmitter module with LD-driver IC embedded in L-shaped wiring substrate,” IEEE Trans. Advanced Packaging, Vol. 22, no. 3, pp. 451-459, Aug. 1999.
[1.16] Y. Sunaga, R. Takahashi, T. Tokoro, and M. Kobayashi, “2 Gb/s small form factor fiber-optic transceiver for single mode optical fiber,” IEEE Trans. Advanced Packaging, Vol. 23, no. 2, pp. 176-181, May 2000.
[1.17] O. Stier, O. Reznik, F. Meyer-Guldner, R. Scholz, G. Wenger, N. Iwanowski, and M. Weigert, “Transmitter component for 10.5 Gbps at 1310 nm with receptacle and 50 ohm flexboard,” in Proc. of ECTC’2004, vol. 1, pp. 1036–1041, 2004.
[1.18] A. Ebberg, F. Auracher, and B. Borchert, “10 Gb/s transmission using directly modulated uncooled MQW ridge waveguide DFB lasers in TO package,” Electronics Letters, Vol. 36, no. 17, pp. 1476–1477, Aug. 2000.
[1.19] K. Sakai, H. Aruga, S.-I. Takagi, M. Kawano, M. Negishi, Y. Kondoh, and S.-I. Kaneko, “1.3-μm uncooled DFB laser-diode module with a coupled differential feed for 10-Gb/s Ethernet applications,” J. Lightwave Technology, Vol. 22, no. 2, pp. 574–581, Feb. 2004.
[1.20] W. K Hogan, R. K. Wolf, A. Shukla, and P. Deane, “Low-Cost Optical Sub-Assemblies for Metro Access Applications,” in Proc. of ECTC’2004, vol. 1, pp. 203–207, 2004.
[1.21] M. Winter, R. Hauffe, and A. Kilian, “Simplified optical coupling and alignment scheme for cost effective 10Gb/s TOSA modules based on edge emitters hermetically packaged in micro-machined silicon structures,” in Proc. of OFC’2005, OThU8, pp. 1–3, Mar. 2005.
[1.22] L. B. Aronson, G. Giaretta, S. Schiaffino, and B. Mason, “Transmitter optical subassembly for XFP applications,” in Proc. of ECTC’2005, vol. 1, pp. 1058–1062, 2005.
[1.23] H.Yamamoto, M.Hirai, M.Sasada, H.Singh, O.Kagaya, H.Kuwano, M.Okayasu and K.Uomi, “Wide Temperature Range Operation of 10.7 Gb/s Uncooled DFB-LD TOSA with Extremely High Eye-Mask Margin,” in Proc. of ECTC’2006, vol. 1, pp. 1548–1553, 2006.
[1.24] D. Kim, J. Shim, Y.-C. Keh, and M. Park, “Design and Fabrication of a Transmitter Optical Subassembly (TOSA) in 10-Gb/s Small-Form-Factor Pluggable (XFP) Transceiver,” IEEE J. Select. Top. Quant. Electron., Vol. 12, no. 4, pp. 776–782, July/Aug. 2006.
[1.25] T.-T. Shih, M.-C. Lin, and W.-H. Cheng, “High-Performance Low-Cost 10-Gb/s Coaxial DFB Laser Module Packaging by Conventional TO-Can Materials and Processes,” IEEE J. Select. Top. Quant. Electron., Vol. 12, no. 5, pp. 1009–1015, Sep/Oct. 2006.
[1.26] E. Yoon, M. Lee, S. Lee, C. Jeong, J. Lee, and J. Jeong, “Frequency Characteristics of New Ceramic Stem-Based TO Package Using a Coplanar Waveguide Feed-Line for 10-Gb/s Data Transmissions,” IEEE Trans. Components and Packaging Technologies, Vol. 31, no. 4, pp. 824–830, Dec. 2008.
[1.27] M. Tsumori, S. H. Pyo, D. S. Shin, Y. K. Yoon, J. H. Lee, and T. Kim, “Unique 1TO structure low-cost optical sub assembly,” in Proc. of ECTC 2004, Vol. 1, pp. 208-211, 2004.
[1.28] H.-J. Yoon and K.-N. Jun, “Compact bidirectional optical module using ceramic blocks,” IEEE Photonics Technology Letters, Vol. 16, no. 8, pp. 1954-1958, Aug. 2004.
[1.29] K. Masuko, T. Ori, T. Tanaka, and M. Inoue, “A Low Cost PON Transceiver using Single TO-CAN Type micro-BOSA,” in Proc. of ECTC 2006, Vol. 1, pp. 1082-1086, 2006.
[1.30] A. Ohki, S. Fukushima, M. Sugo, K. Kato, and Y. Akatsu, “Development of TO-BOSA for FTTH using new optical path alignment technique,” Electronics Letters, Vol. 43, no. 6, pp. 57–58, Mar. 2007.
[1.31] A. Ohki, S. Fukushima, M. Sugo, K. Kato, and Y. Akatsu, “Novel TO-BOSA for FTTH using New Optical Path Alignment Technology,” in Proc. of OFC’2007, OMK6, pp. 1-3, Mar. 2007.
[1.32] T.-T. Shih, M.-C. Lin, P.-H. Tseng, C.-Y. Li, T.-Y. Hung, Y.-J. Chiu, and W.-H. Cheng, “High-Performance and Low-Cost 10-Gb/s Bidirectional Optical Subassembly Modules,” J. Lightwave Technology, Vol. 25, no. 11, pp. 3488–3494, Nov. 2007.
[1.33] K.-S. Lim, J. J. Lee, S. Lee and H. S. Kang, “Low-cost coaxial-type single TO-can bidirectional optical subassembly,” Electronics Letters, Vol. 46, no. 23, pp. 1556–1557, Nov. 2010.
[1.34] M.-C. Lin, T.-T. Shih, P.-H. Tseng, K.-M. Chu, C. Hu, and W.-H. Cheng, “High-Performance and Low-Cost 40-Gb/s CWDM Optical Modules,” IEEE Trans. Advanced Packaging, Vol. 32, no. 3, pp. 644-649, Aug. 2009.
[1.35] T. Sakamoto, S. Nobuo, S. Koike, K. Hadama, and K. Naoya, “4 channel × 10 Gb/s optical module for CWDM links,” in Proc. of ECTC’2004, pp. 1024-1028, 2004.
[1.36] Y. Li, C. L. Lee, D. Wang, L. Ji, J. Li, F. Wu, and W.-S. Tsay, “Performance of an ultra-low loss, ultra compact, free-space packaging platform for CWDM applications,” in Proc. of Digest of the LEOS summer topical meetings, pp. 73-74, June 2004.
[1.37] K. Tsuruoka, R. Kobayashi, Y. Ohsawa, T. Tsukuda, T. Kato, T. Sasaki, and T. Nakamura, “Four-channel 10-Gb/s operation of AlGaInAs-MQW-BH-DFB-LD array for 1.3-μm CWDM systems,” IEEE J. Select. Top. Quant. Electron., Vol. 11, no. 5, pp. 1169–1173, Sep/Oct. 2005.
[1.38] ITU-T Recommendation G.959.1 OTL4.4 [Online]. Available: http:/ http://www.itu.int/en/ITU-T/publications/Pages/recs.aspx
[1.39] J. Roese, R.-P. Braun, D. Telekom, M. Tomizawa, and O. Ishida, “Optical Transport Network Evolving with 100 Gigabit Ethernet,” IEEE Communications Magazine, vol. 48, no. 3, pp. S28–S34, Mar. 2010.
[1.40] Fibre Channel Industry Association (FCIA) [Online]. Available: http://www.fibrechannel.org/.
[1.41] Optical Internetworking Forum CEI-25G project [Online]. Available: http://www.oiforum.com/.
[1.42] IEEE 802.3 Higher Speed Study Group (HSSG) Tutorial [Online]. Available: http://www.ieee802.org/3/hssg/public/index.htm.
[1.43] C. Cole, D. Allouche, and F. Flens, B. Huebner, and T. Nguyen, “100GbE-optical LAN technologies,” IEEE Communications Magazine, vol. 45, no. 12, pp. 12–19, Dec. 2007.
[1.44] S. Matsuo, T. Kakitsuka, T. Segawa, R. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4 x 25 Gb/s Frequency-Modulated DBR Laser Array for 100-GbE 40-km Reach Application,” IEEE Photonics Technology Letters, vol. 20, no. 17, pp. 1494–1496, Sep. 2008.
[1.45] J. D’Ambrosia, “100 gigabit Ethernet and beyond,” IEEE Communications Magazine, vol. 48, no. 3, pp. S6–S13, Mar. 2010.
[1.46] H. Toyoda, G. Ono, and S. Nishimura, “100GbE PHY and MAC layer implementations,” IEEE Communications Magazine, vol. 48, no. 3, pp. S41–S47, Mar. 2010.
[1.47] P. Drolet and L. Duplessis, “100G Ethernet and OTU4 testing challenges: From the lab to the field,” IEEE Communications Magazine, vol. 48, no. 7, pp. 78–82, July 2010.
[1.48] R. Arima, T. Hatano, K. Hiramoto, H. Irie, “Demonstration of World-First 112 Gb/s 1310 nm LAN-WDM Optical Transceiver for 100GbE and 100GbE over OTN Applications,” in Proc. OFC, PDPD3, pp. 1–3, Mar. 2010.
[1.49] P. A. Morton, T. Tanbun-Ek, R. A. Logan, N. Chand, K.W. Wecht, A.M. Sergent, and P.F. Sciortino, “Packaged 1.55 μm DFB laser with 25 GHz modulation bandwidth,” Electronics Letters, Vol. 30, no. 24, pp. 2044–2046, 1994.
[1.50] F. Steinhagen, H. Hillmer, R. Losch, W. Schlapp, H. Walter, R. Gobel, E. Kuphal, H.L. Hartnagel, and H. Burkhard, “AIGalnAs/lnP 1.5μm MOW DFB laser diodes exceeding 20GHz bandwidth,” Electronics Letters, Vol. 31, no. 4, pp. 274–275, Feb. 1995.
[1.51] S. Lindgren, H. Ahlfeldt, L. Backlin, L. Forssen, C. Vieider, H. Elderstig, M. Svensson, L. Granlund, L. Andersson, B. Kerzar, B. Broberg, O. Kjebon, R. Schatz, E. Forzelius, and S. Nilsson, “24-GHz modulation bandwidth and passive alignment of flip-chip mounted DFB laser diodes,” IEEE Photonics Technology Letters, Vol. 9, no. 3, pp. 306–308, Mar. 1997.
[1.52] Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photonics Technology Letters, Vol. 9, no. 1, pp. 25–27, Jan. 1997.
[1.53] K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s Direct Modulation With High Extinction Ratio Operation of 1.3-μm InGaAlAs Multiquantum Well Ridge Waveguide Distributed Feedback Lasers,” IEEE Photonics Technology Letters, Vol. 19, no. 19, pp. 1436–1438, Oct. 2007.
[1.54] K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori and T. Yamamoto, “Uncooled 25 Gb/s direct modulation of semi-insulating buried-heterostructure 1.3 μm AlGaInAs quantum-well DFB lasers,” Electronics Letters, Vol. 44, no. 10, pp. 631–632, May, 2008.
[1.55] R. Paoletti, M. Agresti, D. Bertone, C. Bruschi, S. Codato, C. Coriasso, R. Defranceschi, P. Dellacasa, M. Diloreto, R. Y. Fang, P. Gotta, G. Meneghini, C. Rigo, E. Riva, G.Roggero, A. Stano, M. Meliga, “Uncooled 20 Gb/s direct modulation of high yield, highly reliable 1300 nm InGaAlAs ridge DFB lasers,” in Proc. of OFC’2009, OThT1, pp. 1–3, Mar. 2009.
[1.56] A. K. Verma, M. Steib, Y. L. Ha, T. Sudo, “25Gbps 1.3μm DFB laser for 10–25km transmission in 100GBE systems,” in Proc. of OFC’2009, OThT2, pp. 1–3, Mar. 2009.
[1.57] T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gbps direct modulation ridge waveguide MQW-DFB Laser up to 85 °C,” in Proc. of OFC’2009, OThT3, pp. 1–3, Mar. 2009.
[1.58] K. Otsubo, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto, “Low-driving-current high-speed direct modulation up to 40 Gb/s using 1.3-μm semi-insulating buried-heterostructure AlGaInAs-MQW distributed reflector (DR) lasers,” in Proc. of OFC’2009, OThT6, pp. 1–3, Mar. 2009.
[1.59] K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “1.3-μm AlGaInAs Multiple-Quantum-Well Semi-insulating Buried-Heterostructure Distributed-Feedback Lasers for High-Speed Direct Modulation,” IEEE J. Selected Topics in Quantum Electronics, Vol. 15, no. 3, pp. 687–692, May/July 2009.
[1.60] H. Fukano, Y. Akage, Y. Kawaguchi, Y. Suzaki, K. Kishi, T. Yamanaka, Y. Kondo, and H. Yasaka “Low Chirp Operation of 40 Gb/s Electroabsorption Modulator Integrated DFB Laser Module With Low Driving Voltage,” IEEE J. Selected Topics in Quantum Electronics, Vol. 13, no. 5, pp. 1129–1134, Sep/Oct. 2007.
[1.61] Y. Cheng, J. Pan, Y. Wang, F. Zhou, B. Wang, Lingjuan Zhao, Hongliang Zhu, and Wei Wang, “40-Gb/s Low Chirp Electroabsorption Modulator Integrated With DFB Laser,” IEEE Photonics Technology Letters, Vol. 21, no. 6, pp. 356–358, Mar. 2009.
[1.62] W. Kobayashi, T. Yamanaka, M. Arai, N. Fujiwara, T. Fujisawa, K. Tsuzuki, T. Ito, T. Tadokoro, and F. Kano, “Wide Temperature Range Operation of a 1.55-μm 40-Gb/s Electroabsorption Modulator Integrated DFB Laser for Very Short-Reach Applications,” IEEE Photonics Technology Letters, Vol. 21, no. 18, pp. 1317–1319, Sept. 2009.
[1.63] W. Kobayashi, M. Arai, T. Yamanaka, N. Fujiwara, T. Fujisawa, T. Tadokoro, K. Tsuzuki, Y. Kondo, and F. Kano, “Design and Fabrication of 10-/40-Gb/s, Uncooled Electroabsorption Modulator Integrated DFB Laser With Butt-Joint Structure,” J. Lightwave Technology, Vol. 28, no. 1, pp. 164–171, Jan. 2010.
[1.64] M. Moehrle, G. Przyrembel, C. Bornholdt, A. Sigmund, W.-D. Molzow, and H. Klein, “Low-cost 25Gb/s 1300nm electroabsorption-modulated InGaAlAs RW-DFB-laser,” in Proc. of Indium Phosphide and Related Materials (IPRM’2011), pp. 1–4, May 2011.
[1.65] J. Kreissl, C. Bornholdt, T. Gaertner, L. Moerl, G. Przyrembel, and W. Rehbein, “Flip-Chip Compatible Electroabsorption Modulator for up to 40 Gb/s, Integrated With 1.55μm DFB Laser and Spot-Size Expander,” IEEE J. Quantum Electronics, Vol. 47, no. 7, pp. 1036–1042, July. 2011.
[1.66] N. Okada, T. Miyahara, T. Shinada, T. Saito, A. Sugitatsu, and T. Hatta, “43 Gb/s EAM-LD Module with Built-in Driver IC Employing Novel Cathode-Floating Bias Circuit,” in Proc. of ECOC’2008, vol. We.1.C.3, pp. 29–30, Sept. 2008.
[1.67] T. Uesugi, N. Okada, T. Saito, T. Yamatoya, Y. Morita, and A. Sugitatsu, “1.3 μm EML TOSA for Serial 40 Gbps Ethernet Solution,” in Proc. of OFC’2010, OThC2, pp. 1–3, Mar. 2010.
[1.68] S. Kanazawa, T. Fujisawa, A. Ohki, H. Ishii, N. Nunoya, Y. Kawaguchi, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, “A Compact EADFB Laser Array Module for a Future 100-Gb/s Ethernet Transceiver,” IEEE J. Selected Topics in Quantum Electronics, Vol. 17, no. 5, pp. 1191–1197, Sep/Oct. 2011.
[1.69] [Online] Available: http://www.schott.com/epackaging/.
[1.70] [Online] Available: http://global.kyocera.com/prdct/semicon/semi/fo/pkg.html.
[1.71] W. Kobayashi, K. Tsuzuki, T. Tadokoro, T. Fujisawa, N. Fujiwara, T. Yamanaka, and F. Kano, “Large bandwidth TO-CAN module with LCP based transmission line as serial 40 Gb/s 1.3/1.55-μm light source,” in Proc. of International Semiconductor Laser Conference (ISLC’2010), pp.195–196, ThB4, Sept. 2010.
[1.72] J. R. Kropp, J. A. Lott, N. N. Ledentsov, P. Otruba, K. Drogemiiller, G. Fiol, D. Bimberg, I. Ndip, R. Erxleben, U. Maass, M. Klein, G. Lang, H. Oppermann, H. Schroder, and H. Reichl, “A small form-factor and low-cost opto-electronic package for short-reach 40 Gb/s serial speed optical data links,” in Proc. of Electronic System-Integration Technology Conference (ESTC’2010), 3rd, pp.1–4, Sept. 2010.
[1.73] W. Kobayashi, T. Tadokoro, T. Fujisawa, N. Fujiwara, T. Yamanaka, and F. Kano, “40-Gbps Direct Modulation of 1.3-μm InGaAlAs DFB Laser in Compact TO-CAN Package,” in Proc. of OFC’2011, OWD2, pp. 1-3, Mar. 2011.

[2.1] S. H. Hall, W. L. Walters, L. F. Mattson, G. J. Fokken, and B. K. Gilbert, “VCSEL Electrical Packaging Analysis and Design Guidelines for Multi-GHz Applications” IEEE Trans. Comp., Package., and Manufact. Technol. B, vol. 20, no. 3, pp. 191-200, Aug. 1997.
[2.2] T.-T. Shih, M.-C. Lin, and W.-H. Cheng, “High-Performance Low-Cost 10-Gb/s Coaxial DFB Laser Module Packaging by Conventional TO-Can Materials and Processes,” IEEE J. Select. Top. Quant. Electron., vol. 12, no. 5, pp. 1009–1015, Sep/Oct. 2006.
[2.3] D. K. Cheng, Field and wave electromagnetics 2nd, Addison Wesley Longman, 1989.
[2.4] H. Nakano, S. Sasaki, M. Maeda, and K. Aiki, “Dual-In-Line Laser Diode Module for Fiber-Optic Transmission Up to 4 Gb/s,” IEEE J. Lightwave Technology, vol. LT-5, no. 10, pp. 1403-1411, Oct. 1987.
[2.5] F. W. Grover, Inductance Calculations, Dover Phoenix Editions, 2004.
[2.6] T. Ban, Y. Lee, S. Makino, H. Hayashi, H. Toyoda, M. Shishikura, T.Sugawara, S. Tanaka, S. Tsuji, M. Aoki, M. Sasada, H. Takamatsu, H. Yamamoto, and M. Okayasu, “25-Gbps Receiver for 100-Gbps Ethernet employing Cost-effective Small Coaxial Package,” in Proc. of ECOC’2008, We1C6, Sept. 2008.
[2.7] T. Yagisawa and T. Ikeuchi, “Compact 40-Gb/s EML Module Using Broadband FPC Connection Technique,” in Proc. of OFC’2010, OthC3, Mar. 2010.
[2.8] D. M. Pozar, Microwave Engineering 3rd, John Wiley & Sons, 2004.
[2.9] S. H. Hall, G. W. Hall, J. A. McCall, High-Speed Digital System Design: a handbook of interconnect theory and design practices, John Wiley & Sons, 2000.
[2.10] J. Lee, S. Nam, S. H. Lee, and J. Jeong, “A complete small-signal equivalent circuit model of cooled butterfly-type 2.5 Gbps DFB laser modules and its application to improve high frequency characteristics,” IEEE Trans. Advanced Packaging, vol. 25, no. 4, pp. 543–548, Nov. 2002.
[2.11] C. Chen, N. H. Zhu, S. Jian Zhang, and Y. Liu, “Characterization of Parasitics in TO-Packaged High-Speed Laser Modules,” IEEE Trans. Advanced Packaging, vol. 30, no. 1, pp. 97-103, Feb. 2007.
[2.12] R. S. Tucker and D. J. Pope, “Microwave circuit models of semiconductor injection lasers,” IEEE Trans. Microwave Theory Technology, vol. MTT-83, no. 3, pp. 289–294, Mar. 1983.
[2.13] K. Mouthaan, R. Tinti, M. de Kok, H.C. de Graaff, J.L. Tauritz, and J. Slotboom, “Microwave modelling and measurement of the self- and mutual inductance of coupled bondwires,” in Proc. Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), pp. 166–169,1997.
[2.14] S. Lindgren, H. Ahlfeldt, L. Backlin, L. Forssen, C. Vieider, H. Elderstig, M. Svensson, L. Granlund, L. Andersson, B. Kerzar, B. Broberg, O. Kjebon, R. Schatz, E. Forzelius, and S. Nilsson, “24-GHz modulation bandwidth and passive alignment of flip-chip mounted DFB laser diodes,” IEEE Photonics Technology Letters, Vol. 9, no. 3, pp. 306–308, Mar. 1997.

[3.1] T.-T. Shih, M.-C. Lin, and W.-H. Cheng, “High-Performance Low-Cost 10-Gb/s Coaxial DFB Laser Module Packaging by Conventional TO-Can Materials and Processes,” IEEE J. Select. Top. Quant. Electron., vol. 12, no. 5, pp. 1009–1015, Sep/Oct. 2006.
[3.2] US MICROWAVES, [Online] Available: http://www.usmicrowaves.com/.

[4.1] J. M. Pedersen, T. P. Knudsen, O. B. Madsen, “Reliability demands in FTTH access networks,” in Proc. Advanced Communication Technology Conf., 2005, pp. 1202-1207.
[4.2] H. Shinohara, “Broadband access in Japan: rapidly growing FTTH market,” IEEE Communication Magazine, Vol.43, pp. 72-78, Sept. 2005.
[4.3] W. K. Park, S. I. Nam, C. S. Choi, Y. K. Jeong, and K. R. Park, “An implementation of FTTH based home gateway supporting various services,” in Proc. Consumer Electronics Conf., Jan. 2006, pp. 63-64.
[4.4] S. Yamamoto, M. Kuwazuru, H. Wakabayashi, and Y. Iwamoto, “Analysis of Chirp Power Penalty in 1.55-μm DFB-LD High-speed Optical Fiber Transmission System,” J. Lightwave Technol., vol. 5, 1987, pp. 1518-1523.
[4.5] F. Koyama and Y. Suematsu, “Analysis of dynamic spectral width of dynamic-single-mode (DSM) lasers and related transmission bandwidth of single-mode fibers,” IEEE J. Quantum Electron., vol. QE-21, pp. 292-297, Apr. 1985.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code