Responsive image
博碩士論文 etd-0503105-140434 詳細資訊
Title page for etd-0503105-140434
論文名稱
Title
採用雙點差異積分調制方式之寬頻GFSK調制頻率合成器
Wideband GFSK-Modulated Frequency Synthesizer Using Two-Point Delta-Sigma Modulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-04-22
繳交日期
Date of Submission
2005-05-03
關鍵字
Keywords
分數式頻率合成器、雙點差異積分調制、調制式頻率合成器
Fractional-N Frequency Synthesizer, Two-Point Delta-Sigma Modulation, Modulated Frequency Synthesizer
統計
Statistics
本論文已被瀏覽 5752 次,被下載 8137
The thesis/dissertation has been browsed 5752 times, has been downloaded 8137 times.
中文摘要
本論文提出了一個採用雙點差異積分調制技術之寬頻GFSK調制頻率合成器,具有低成本、低功率消耗以及高資料傳輸率等特性。此調制頻率合成器技術主要存在有兩個設計瓶頸,包括雙點調制不匹配以及鎖相迴路之非線性特性都會導致調制訊號嚴重失真。透過徹底的系統分析,我們能夠相當精確地預測出雙點調制不匹配以及鎖相迴路之非線性特性對於調制訊號品質影響的程度。最後我們完成了一個高性能之雙點差異積分調制頻率合成器,GFSK資料傳輸率可達2.5 Mbps,頻道切換時間少於15 μs,FSK error低於2.2 %。
Abstract
This dissertation presents a 2.4 GHz wideband GFSK-modulated frequency synthesizer using two-point delta-sigma modulation (TPDSM). The two bottlenecks in this design have been rigorously investigated. One bottleneck is the nonlinear performance of the phase-locked loop (PLL). The other one is the inherent gain and delay mismatch between the two modulation points. Both nonlinear and mismatch factors dominate the modulation accuracy in the closed PLL. The proposed formulation can successfully predict the dependencies of the modulation accuracy on both factors. The comparison of the averaged frequency deviation and frequency-shift -keying (FSK) error between theory and measurement shows excellent agreement. The modulated frequency synthesizer implemented in this study can achieve a 2.5 Mbps data rate as well as a 15 μs PLL stable time with only 2.2 % FSK error under good design and operating conditions.
目次 Table of Contents
1 Introduction 1
1.1 Evolution of Wireless RF Transmitter Architectures 1
1.1.1 Quadrature and Polar Modulation 1
1.1.2 Integer-N and Fractional-N Frequency Synthesis 3
1.2 Modulated Frequency Synthesizers 6
1.2.1 Open-Loop Modulation 6
1.2.2 Closed-Loop Modulation 7
1.2.3 Offset-PLL Modulation 8
1.2.4 Pre-Distortion Modulation 9
1.3 Two-Point Delta-Sigma Modulation 9
1.4 Overview of Dissertation 11
2 System Modeling and Analysis 13
2.1 Fractional-N Frequency Synthesizer 13
2.1.1 Delta-Sigma Modulation Mechanism 13
2.1.2 DSM-Based Fractional-N Frequency Synthesizer Modeling 20
2.1.3 PLL Nonlinearity Analysis 23
2.2 TPDSM-Based Modulated Frequency Synthesizer 26
2.2.1 System Architecture Modeling and Analysis 26
2.2.2 Two-point Mismatch Analysis 29
3 System Design and Simulation 34
3.1 Two-Point VCO 35
3.1.1 Hybrid Two-Point VCO 35
3.1.2 Integrated Two-Point VCO 37
3.2 Delta-Sigma Modulator 41
3.3 Digital Gaussian Filter 45
3.4 Two-Point Mismatch Compensator 50
3.4.1 Gain Mismatch Compensator 50
3.4.2 Delay Mismatch Compensator 51
3.5 System Integration 52
4 Measured Results for Comparisons and Discussions 56
4.1 Two-Point VCO performance 56
4.2 PLL Phase Noise and Channel Switching Time 62
4.3 Modulation Quality 65
5 Conclusions 76
Bibliography 77
Appendix
A Quality Factor for an LC-Tank Using CMOS Spiral Inductor 87
Vita 94
參考文獻 References
[1] A. A. Abidi, “Direct-conversion radio transceivers for digital communications,” IEEE J. Solid-State Circuits, vol. 30, pp. 1399-1410, Dec. 1995.
[2] B. Razavi, RF Microelectronics, NJ: Prentice Hall Inc., 1998.
[3] L. E. Larson, RF and Microwave Circuit Design for Wireless Communications, Norwood, MA: Artech House Inc., 1997.
[4] M. H. Perrott, T. L. Tewksbury III, and C. G. Sodini, “A 27-mW CMOS fractional-N synthesizer using digital compensation for 2.5-Mb/s GFSK modulation,” IEEE J. Solid-State Circuits, vol. 32, pp.2048-2060, Dec. 1997.
[5] L. R. Kahn, “Single sideband transmission by envelope elimination and restoration,” in Proc. IRE, vol. 40, pp. 803-806, July 1952.
[6] K. C. Peng, J. K. Jau, and T. S. Horng, “A novel EER transmitter using two-point delta-sigma modulation scheme for WLAN and 3G applications,” in IEEE MTT-S Int. Microwave Symp. Dig., 2002 , pp. 1651-1654.
[7] J. K. Jau, F. Y. Han, M. C. Du, and T. S. Horng, "Polar modulation-based RF power amplifiers with enhanced envelope processing technique," in Proc. European Microwave Conf., 2004, pp. 1317-1320.
[8] W. Liu, J. Lau, and R. S. Cheng, “Considerations on applying OFDM in a highly efficient power amplifier,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 46, pp. 1329-1336, Nov. 1999.
[9] C. Muschallik, “Influence of RF oscillators on an OFDM signal,” IEEE Trans. Consumer Electronics, vol. 41, pp. 592-603, Aug. 1995.
[10] H. -G. Ryu, Y. -S. Li, and J. -S. Park, “Nonlinear analysis of the phase noise in the OFDM communication system,” IEEE Trans. Consumer Electronics, vol. 50, pp. 54-63, Feb. 2004.
[11] B. Zhang, P. E. Allen, and J. M. Huard, “A fast switching PLL frequency synthesizer with an on-chip passive discrete-time loop filter in 0.25um CMOS,” IEEE J. Solid-State Circuits, vol. 38 , pp. 855-865, June 2003.
[12] N. Christoffers, R. Kokozinski, S. Kolnsberg, and B. J. Hosticka, “High loop-filter-order sigma-delta fractional-n frequency synthesizers for use in frequency-hopping-spread-spectrum communication-systems,” in Proc. Int. Symp. Circuits and Systems, 2003, pp. 216-219.
[13] Specification of the Bluetooth System, v1.1, Bluetooth SIG, [Online]. Available: http://www.bluetooth.com
[14] D. M. Pozar, Microwave and RF Design of Wireless Systems, Hoboken, NJ: John Wiley & Sons Inc., 2001.
[15] B. Razavi, Phase-Locking in High Performance Systems, Hoboken, NJ: John Wiley & Sons Inc., 2003.
[16] J. A. Crawford, Frequency Synthesizer Design Handbook, Norwood, MA: Artech House Inc., 1994.
[17] R. E. Best, Phase-Locked Loops, 3rd ed., New York, NY: McGraw-Hill Inc., 1997.
[18] W. F. Egan, Phase-Lock Basics, Hoboken, NJ: John Wiley & Sons Inc., 1998.
[19] V. F. Kroupa, Phase Lock Loops and Frequency Synthesis, NJ: John Wiley & Sons Inc., 2003.
[20] SA8025A Low Voltage 1.8 GHz Fractional-N Synthesizer Data Sheet, Philips Semiconductors, Netherlands, 1996.
[21] PE3293 - 1.8 GHz / 550 MHz Dual Fractional-N Ultra-Low Spurious PLL for Frequency Synthesis Data Sheet, Peregrine Semiconductor, San Diego, CA, 2003.
[22] SA8028 2.5 GHz Sigma Delta Fractional-N / 760 MHz IF Integer Frequency Synthesizers Data Sheet, Philips Semiconductors, Netherlands, 2002.
[23] CX72300 Spur-Free 2.1 GHz Dual Fractional-N Frequency Synthesizer Data Sheet, Skyworks Solutions Inc., Woburn, MA, 2004.
[24] B. Razavi, “Challenges in the design of frequency synthesizers for wireless applications,” in IEEE Custom Integrated Circuits Conf. Dig., 1997, pp. 395-396.
[25] B. Miller and B. Conley, “A multiple modulator factional divider,” in Proc. 44th Annu. IEEE Symp. Frequency Control, 1990, pp.559-568.
[26] B. Miller and B. Conley, “A multiple modulator factional divider,” IEEE Trans. Instrum. Meas., vol. 40, pp. 578-583, June 1991.
[27] D. Butterfield and B. Sun, “Prediction of fractional-N spurs for UHF PLL frequency synthesizers,” in IEEE MTT-S Symp. Technologies for Wireless Applications Dig., 1999, pp. 29-34.
[28] B. G. Goldberg, “Analog and digital fractional-N PLL frequency synthesis: a survey and update,” Applied Microwave & Wireless, vol. 11, pp. 32-42, June 1999.
[29] T. A. D. Riley, M. A. Copeland, and T. A. Kwasniewski, “Delta-sigma modulation in fractional-N frequency synthesis,” IEEE J. Solid-State Circuits, vol. 28, pp. 553-559, May 1993.
[30] C. E. Hill, “All digital fractional-N synthesizer for high resolution phase locked loops,” Applied Microwave & Wireless, vol. 9, pp. 62-69, Nov./Dec. 1997.
[31] C. E. Hill, “All digital fractional-N synthesizer for high resolution phase locked loops, part 2: performance results for a third order loop,” Applied Microwave & Wireless, vol.10, pp. 38-42, Jan./Feb. 1998.
[32] T. P. Kenny, T. A. D. Riley, N. M. Filiol, and M. A. Copeland, “Design and realization of a digital ΔΣ modulator for fractional-N frequency synthesis,” IEEE Trans. Vehicular Technology, pp.510-521, 1999.
[33] W. Rhee, A. Ali, and B. -S. Song, “A 1.1 GHz CMOS fractional-N frequency synthesizer with a 3b 3rd-order ΔΣ modulator,” in IEEE Int. Solid-State Circuits Conference Dig., 2000, pp. 198-199.
[34] W. Rhee, B. -S. Song, and A. Ali, “A 1.1 GHz CMOS fractional-N frequency synthesizer with a 3b 3rd-order ΔΣ modulator,” IEEE J. Solid-State Circuits, vol. 35, pp. 1453-1460, Oct. 2000.
[35] M. Kozak, I. Kale, A. Borjak, and T. Bourdi, “A pipelined all-digital delta-sigma modulator for fractional-N frequency synthesis,” in Proc. 7th IEEE Int. Conf. Electronics, Circuits and Systems, 2000, pp. 239-242.
[36] T. Bourdi, A. Borjak, and I. Kale, “A delta-sigma frequency synthesizer with enhanced phase noise performance,” in Proc. 19th IEEE Instrum. and Meas. Technology Conf., 2002, pp. 247-251.
[37] K. Shu, E. Sanchez-Sinencio, F. Maloberti, and U. Eduri, “A comparative study of digital ΣΔ modulators for fractional-N synthesis,” in 8th IEEE Electronics, Circuits and Systems Conf. Dig., 2001, pp. 1391-1394.
[38] S. Heinen, S. Beyer, and J. Fenk, “A 3.0 V 2 GHz transmitter IC for digital radio communication with integrated VCO’s,” in IEEE Int. Solid-State Circuits Conf. Dig., 1995, pp. 150-151.
[39] UAA3545 Fully Integrated DECT Transceiver Data Sheet, Philips Semiconductors, Netherlands, 2001.
[40] PBA313 Bluetooth Radio Data Sheet, Ericsson Components AB, Sweden, 1999.
[41] UAA3558 Bluetooth RF Transceiver Data Sheet, Philips Semiconductors, Netherlands, 2000.
[42] T. A. D. Riley and M. A. Copeland, “A simplified continuous phase modulator technique,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 41, pp. 321 –328, May 1994.
[43] W. T. Bax and M. A. Copeland, “A GSM modulator using a Delta Sigma frequency discriminator based synthesizer,” in Proc. IEEE Int. Symp. Circuits and Systems, 1998, pp.498-501.
[44] N. M. Filiol, T. A. D. Riley, C. Plett, and M.A. Copeland, “An agile ISM band frequency synthesizer with build-in GMSK data modulation,” IEEE J. Solid-State Circuits, vol. 33, pp.998-1008, July 1998.
[45] L. Camino, S. Ramet, J. B. Begueret, Y. Deval, and P. Fouillat, “Phase error determination in GMSK modulated fractional-N PLL,” in 8th IEEE Int. Conf. Electronics, Circuits and Systems Dig., 2001, pp. 47-50.
[46] E. Hegazi and A. A. Abidi, “A 17-mW transmitter and frequency synthesizer for 900-MHz GSM fully integrated in 0.35 um CMOS,” IEEE J. Solid-State Circuits, vol. 38 , pp. 782-792, May 2003.
[47] B. Wilkins, “Polaris Total RadioTM, a highly integrated RF solution for GSM /GPRS and EDGE,” in IEEE RFIC Symp. Dig., 2003, pp. 383-386.
[48] S. Pamarti, L. Jansson, and I. Galton, “A wideband 2.4-GHz delta-sigma fractional-N PLL with 1-Mb/s in-loop modulation,” IEEE J. Solid-State Circuits, vol. 39, pp. 49-62, Jan. 2004.
[49] T. Yamawaki, M. Kokubo, K. Irie, H. Matsui, K. Hori, T. Endou, H. Hagisawa, T. Furuya, Y. Shimizu, M. Katagishi, and J. R. Hildersley, “A 2.7-V GSM RF transceiver IC,” IEEE J. Solid-State Circuits, vol. 32 , pp. 2089-2096, Dec. 1997.
[50] J. M. Hsu, “A 0.18 um CMOS offset-PLL up conversion modulation loop IC for DCS1800 transmitter,” IEEE J. Solid-State Circuits, vol. 38 , pp. 603-613, April 2003.
[51] P. U. Su and C. M. Hsu, “A 0.25 um CMOS OPLL transmitter IC for GSM and DCS,” in IEEE RFIC Symp. Dig., 2004, pp.435-438.
[52] SI4210 Aero II GSM/GPRS Transceiver Data Sheet, Silicon Laboratories Inc., Austin, TX, 2004.
[53] M. H. Perrott, “Techniques for high data rate modulation and low power operation of fractional-N frequency synthesizers,” Ph.D. dissertation, Dept. Electrical Eng. Comp. Science. MIT, Cambridge, MA, 1997.
[54] S. Willingham, M. Perrott, B. Setterberg, A. Grzegorek, and B. McFarland, “An integrated 2.5 GHz Sigma Delta frequency synthesizer with 5 us settling and 2 Mbps closed loop modulation,” in IEEE Int. Solid-State Circuits Conf. Dig., 2000, pp. 200-201.
[55] D. R. McMahill, “Automatic calibration of modulated fractional-N frequency synthesizers,” Ph.D. dissertation, Dept. Electrical Eng. Comp. Science. MIT, Cambridge, MA, 2001.
[56] D. R. McMahill and C. G. Sodini, “A 2.5-Mb/s GFSK 5.0-Mb/s 4-FSK automatically calibrated Σ-Δ frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 37, pp.18-26, Jan 2002.
[57] D. R. McMahill and C. G. Sodini, “Automatic calibration of modulated frequency synthesizers,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 49, pp. 301 –311, May 2002.
[58] H. Zarei, O. Shoaei, and M. Fakhraie, “A low-power fully integrated Gaussian -MSK modulator based on the sigma-delta fractional-N frequency synthesis,” in Proc. IEEE Int. Symp. Circuits and Systems, 2001, pp. 100-103.
[59] R. A. Meyers and P.H. Waters, “Synthesizer review for pan-European digital cellular radio,” in IEE Colloquium on VLSI Implementations for 2nd Generation Digital Cordless and Mobile Telecommunication Systems Dig., 1990, pp. 8/1-8/8.
[60] P. L. Field, A. E. Jones, and J. G. Gardiner, “Optimum loop bandwidth of phase-locked modulators,” in IEE Colloquium on Advanced Modulation and Channel Coding Techniques for Mobile and Personal Communications Dig., 1992, pp.7/1-7/5.
[61] G. Marzinger, A. Springer, R. Weigel, S. Herzinger, and J. Fenk, “FN-modulation loop architecture for fully integrated 1 Mb/s GFSK transmitter,” in IEEE MTT-S Int. Microwave Symp. Dig., 1999, pp.13-19.
[62] C. O’Keeffe and M. Fitzgibbon, “A direct digital modulation technique for GSM/PCS/DCS applications using a 24 bit multi-accumulator fractional-N synthesizer,” in IEE Workshop on Systems on a Chip Dig., 2000, pp. 6/1-6/11.
[63] R. Hunter and F. Kostedt, “Enhance GMSK performance with two-point modulation,” Microwave & RF, pp. 59-69, April 2000.
[64] N. Filiol, N. Birkett, J. Cherry, F. Balteanu, C. Gojocaru, A. Namdar, T. Pamir, K. Sheikh, G. Glandon, D. Payer, A. Swaminathan, R. Forbes, T. Riley, S. M. Alinoor, E. Macrobbie, M. Cloutier, S. Pipilos, and T. Varelas, “A 22 mW Bluetooth RF transceiver with direct RF modulation and on-chip IF filtering,” in IEEE Int. Solid-State Circuits Conf. Dig., 2001, pp.5-7.
[65] C. Durdodt, M. Friedrich, C. Grewing, M. Hammes, A. Hanke, S. Heinen, J. Oehm, D. Pham-Stabner, D. Seippel, D. Theil, S. V. Waasen, and E. Wagner,” The first very low-IF RX, 2-point modulation TX CMOS system on chip Bluetooth solution,” in IEEE RFIC Symp. Dig., 2001, pp.99-102.
[66] C. Durdodt, M. Friedrich, C. Grewing, M. Hammes, A. Hanke, S. Heinen, J. Oehm, D. Pham-Stabner, D. Seippel, D. Theil, S. V. Waasen, and E. Wagner, “A low-IF RX two-point ΣΔ-modulation TX CMOS single-chip Bluetooth solution,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1531-1537, Sept. 2001.
[67] B. Neurauter, G. Marzinger, A. Schwarz, and R. Vuketich, “GSM 900/DCS 1800 fractional-N modulator with two-point-modulation,” in IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 425-428.
[68] C. Cojocaru, T. Pamir, F. Balteanu, A. Namdar, D. Payer, I. Gheorghe, T. Lipan, K. Sheikh, J. Pingot, H. Paananen, M. Littow, M. Cloutier, and E. MacRobbie, “A 43mW Bluetooth transceiver with -91dBm sensitivity,” in IEEE Int. Solid-State Circuits Conf. Dig., 2003, pp. 90.
[69] SKY 72313 1.8 V Ultra Low Power Bluetooth RF Transceiver Product Summary, Skyworks Solutions Inc., Woburn, MA, 2004.
[70] K. C. Peng, C. H. Huang, C. N. Pan, and T. S. Horng, "High-performance Bluetooth transmitters using two-point delta-sigma modulation," Electron. Lett., vol. 40, pp.544-545, April 2004.
[71] K. C. Peng, C.H. Huang, C. N. Pan, and T.S. Horng, “High performance frequency hopping transmitters using two-point delta-sigma modulation,” in IEEE MTT-S Int. Microwave Symp. Dig., 2004, pp.2011-2014.
[72] K. C. Peng, C.H. Huang, C. N. Pan, and T.S. Horng, “High performance frequency hopping transmitters using two-point delta-sigma modulation,” IEEE Trans. Microwave Theory Tech., vol. 52, pp.2529-2535, Nov. 2004.
[73] K. C. Peng and T.S. Horng, “The effects of path-delay mismatch on GFSK transmitters with a dual-port architecture,” in Proc. IEEE Asia-Pacific Microwave Conf., 2001, pp.1080-1083.
[74] PH2401 Bluetooth Radio Family Data Sheet, Philsar Semiconductor Inc., Canada, 1999.
[75] S. A. Tunheim. (2002, February). Implementation of COMS low cost and low power RF-ICs [Online]. Available: http://www.chipcon.com
[76] J. Notor and G. Levy. (2002, August 24). Exploration of the design space for integrated Bluetooth CMOS RFICs [Online]. Available: http://www.cadence.com
[77] J. Notor, A. Caviglia, and G. Levy. (2003, November). CMOS RFIC architectures for IEEE 802.15.4 networks [Online]. Available: http://www.cadence.com
[78] S. Haykin, Communication Systems, 3rd ed., Hoboken, NJ: John Wiley & Sons Inc., 1994.
[79] P. M. Aziz, H. V. Sorensen, and J. V. D. Spiegel, “An overview of sigma-delta converters,” IEEE Signal Processing Magazine, vol. 13 , pp. 61-84, Jan. 1996.
[80] S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters, Piscataway, NJ: IEEE Press, 1997.
[81] Y. Freerts, M. Steyaert, and W. Sansen, Design of Multi-Bit Delta-Sigma A/D Converters, Dordrecht, Netherlands: Kluwer Academic Publishers, 2002.
[82] J. C. Candy, “A use of limit cycle oscillations to obtain robust analog to digital converters,” IEEE Trans. Comm., vol. 22, pp. 298-305, Mar. 1974.
[83] J. C. Candy, “A use of double integration in sigma delta modulation,” IEEE Trans. Comm., vol. 33, pp. 249-258, Mar. 1985.
[84] J. C. Candy and A. Huynh, “Double interpolation for digital to analog conversion,” IEEE Trans. Comm., vol. 34, pp. 77-81, Jan. 1986.
[85] J. C. Candy and O. J. Benjamin, “The structure of quantization noise from sigma-delta modulation,” IEEE Trans. Comm., vol. 29, pp. 1316-1323, Sept. 1981.
[86] K. Uchimura, T. Hayashi, T. Kimura, and A. Iwata, “VLSI- A to D and D to A converters with multi-stage noise shaping modulators,” in IEEE Int. Conf. Acoustics, Speech, and Signal Processing Dig., 1986, pp. 1545-1548.
[87] K. Uchimura, T. Hayashi, T. Kimura, and A. Iwata, “Oversampling A to D and D to A converters with multistage noise shaping modulators,” IEEE Trans. Acoustics, Speech, and Signal Proceeding, vol. 36, pp. 1899-1905, Dec. 1988.
[88] Y. Matsuya and Y.Akazawa, “Multi-stage noise shaping technology and its application to precision measurement,” in 9th IEEE Instrum. and Meas. Technology Conf. Dig., 1992, pp. 540-544.
[89] Y. Matsuya, K. Uchimura, A. Iwata, T. Kobayashi, M. Ishikawa, and T. Yoshitome, “A 16-bit oversampling A-to-D conversion technology using triple-integration noise shaping,” IEEE J. Solid-State Circuits, vol. 22, pp. 921-928, Dec. 1987.
[90] Y. Matsuya, K. Uchimura, A. Iwata, and T. Kaneko, “A 17-bit oversampling D-A conversion technology using multistage noise shaping,” IEEE J. Solid-State Circuits, vol. 24, pp. 969-975, Aug. 1989.
[91] I. Galton, “Delta-sigma data conversion in wireless transceivers,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 302-315, Jan. 2002.
[92] D. Allan, H. Hellwig, P. Kartaschoff, J. Vanier, J. Vig, G. M. R. Winkler, and N. F. Yannoni, “Standard terminology for fundamental frequency and time metrology,” in Proc. 42nd Annu. Frequency Control Symp., 1988, pp. 419-425.
[93] V. F. Kroupa, “Noise properties of PLL systems,” IEEE Trans. Comm., vol. 30, pp. 2244-2252, Oct. 1982.
[94] V. Fan, “Model, analyze, and simulate ΣΔ fractional-N frequency synthesizers - part 1,” Microwave & RF, pp. 183-194, Dec. 2000.
[95] V. Fan, “Model, analyze, and simulate ΣΔ fractional-N frequency synthesizers - part 2,” Microwave & RF, pp. 150-154, Jan. 2001.
[96] B. D. Muer and M. S. J. Steyaert, “A CMOS monolithic ΔΣ-controlled fractional-N frequency synthesizer for DCS-1800,” IEEE J. Solid-State Circuits, vol. 37, pp. 835-844, July 2002.
[97] B. D. Muer and M. S. J. Steyaert, “On the analysis of ΔΣ fractional-N frequency synthesizers for high-spectral purity,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, pp.784-793, Nov. 2003.
[98] P. Hugues, Low Power Single/Dual Frequency Synthesizers: UMA1017M /1018M/1019M(AM)/1020M(AM) Application Note, Philips Semiconductors, Netherlands, 1995.
[99] HP 89440A / HP 89441A Operator’s Guide, Hewlett-Packard Co., Palo Alto, CA, 1996.
[100] Fundamentals of Spectrum Analysis, 1st ed., , Munich, Germany: Rohde & Schwarz Co., 2001, pp.119-125.
[101] AD9754 14-Bit, 125 MSPS High Performance TxDAC D/A Converter Data Sheet, Analog Devices Inc., Norwood, MA, 1999.
[102] C. M. Hung and K. K. O, “A packaged 1.1-GHz CMOS VCO with phase noise of –126 dBc/Hz at a 600kHz offset,” IEEE J. Solid-State Circuits, vol. 35, pp. 100-103, Jan. 2000.
[103] B. D. Muer, M. Borremans, M. Steyaert, and G. L. Puma, “A 2-GHz low-phase -noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35 , pp. 1034-1038, July 2000.
[104] A. Hajimiri and T. H. Lee, ”Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717-724, May 1999.
[105] G. D. Vendelin, A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, Hoboken, NJ: John Wiley & Sons Inc., 1990.
[106] T. S Horng, K. C. Peng, J. K. Jau, and Y. S. Tsai, “S-parameter formulation of quality factor for a spiral inductor in generalized two-port configuration,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 2197-2202, Nov. 2003.
[107] T. S Horng, K. C. Peng, J. K. Jau, and Y. S. Tsai, “S-parameter formulation of quality factor for a spiral inductor in generalized two-port configuration,” in IEEE RFIC Conf. Dig., 2003, pp. 255-258.
[108] A. Bodas and K. Feher, “Low complexity GSM modulator for integrated circuit implementations,” in Proc. 9th Annu. IEEE Int. ASIC Conf. Exhibit, 1996, pp. 103-106.
[109] C. Hatamoto and K. Feher, “Efficient filter design for the global standardized GSM wireless system,” in Proc. 29th Asilomar Conf. Signals, Systems and Computers, 1995, pp. 300-304.
[110] Integer-N PD PLL Loop Filter Calculator, Peregrine Semiconductor Co. [Online]. Available: http://www.peregrine-semi.com
[111] A New Class of Instrument Improves Your Wireless RF Design Process, Agilent Technologies Inc. [Online]. Available: http://www.agilent.com
[112] D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Boston, MA: Addison-Wesley Professional, 1989.
[113] C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, pp. 743-752, May 1998.
[114] K. O, “Estimation methods for quality factors of inductors fabricated in silicon integrated circuit process technologies,” IEEE J. Solid-State Circuits, vol. 33, pp. 1249-1252, Aug. 1998.
[115] H. Jiang, Y. Wang, J. A. Yeh, and N. C. Tien, “On-chip spiral inductors suspended over deep copper-lined cavities,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2415-2423, Dec. 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code