Responsive image
博碩士論文 etd-0504118-094049 詳細資訊
Title page for etd-0504118-094049
論文名稱
Title
軟珊瑚化合物之修飾物在神經保護上的作用
The neuroprotective effects of modifying soft coral-derived compound
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-03-30
繳交日期
Date of Submission
2018-06-04
關鍵字
Keywords
斑馬魚、神經保護、6-OHDA誘導的凋亡、海洋化合物、1-tosylpentan-3-酮、SH-SY5Y細胞
1-tosylpentan-3-one, SH-SY5Y cells, zebrafish, 6-OHDA-induced apoptosis, marine compounds, neuroprotection
統計
Statistics
本論文已被瀏覽 5735 次,被下載 0
The thesis/dissertation has been browsed 5735 times, has been downloaded 0 times.
中文摘要
先前的研究已經證實,從軟珊瑚(Cladiella australis)分離的海洋化合物austrasulfone有顯著神經保護作用。而在合成austrasulfone時之中間產物dihydroaustrasulfone alcohol會降低發炎性反應。本研究採用離體和活體方法研究dihydroaustrasulfone alcohol的修飾物1-甲苯磺酰基戊烷-3-酮(1-Tosylpentan-3-One, 1T3O)之神經保護作用。實驗結果顯示1T3O能有效抑制6-羥基多巴胺誘導的激活SH-SY5Y細胞中的p38絲裂原活化蛋白激酶(MAPK)和半胱天冬酶-3,並通過磷酸肌醇3-激酶(PI3K) /蛋白激酶B (Akt)信號增強核因子E2相關因子(Nrf2)和血紅素加氧酶-1 (HO-1)的表達。Hoechst染色和末端脫氧核苷酸轉移酶dUTP缺口末端標記(TUNEL)染色結果顯示1T3O顯著抑制6-OHDA誘導的細胞凋亡。另外,加入Akt或HO-1抑制劑降低了1T3O的保護作用。因此,我們推測1T3O在神經元細胞中的抗凋亡活性是通過調節Akt和HO-1信號途徑傳導。活體實驗則證實,1T3O可以逆轉6-OHDA誘導的斑馬魚運動行為能力下降,同時抑制6-OHDA誘導的腫瘤壞死因子-α (TNF-α)增加。根據我們的實驗結果,我們認為1T3O在6-OHDA攻擊之後在SH-SY5Y細胞中發揮抗凋亡活性,可能通過調節抗氧化信號傳導途徑。因此,該化合物可能是神經退化變性疾病的有希望治療劑。
Abstract
Previous studies have demonstrated that the marine compound austrasulfone, isolated from the soft coral Cladiella australis, exerts a neuroprotective effect. The intermediate product in the synthesis of austrasulfone, dihydroaustrasulfone alcohol, attenuates inflammatory responses. The present study uses in vitro and in vivo methods to investigate the neuroprotective effects of dihydroaustrasulfone alcohol-modified 1-tosylpentan-3-one (1T3O). Results from in vitro experiments show that 1T3O effectively inhibits 6-hydroxydopamine (6-OHDA)-induced activation of both p38 mitogen-activated protein kinase (MAPK) and caspase-3 in SH-SY5Y cells; and enhances nuclear factor erythroid 2–related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression via phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling. Hoechst staining and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining results reveal that 1T3O significantly inhibits 6-OHDA-induced apoptosis. Moverover, the addition of an Akt or HO-1inhibitor decreases the protective effect of 1T3O. Thus, we hypothesize that the anti-apoptotic activity of 1T3O in neuronal cells is mediated through the regulation of the Akt and HO-1 signaling pathways. In vivo experiments show that 1T3O can reverse 6-OHDA-induced reduction in locomotor behavior ability in zebrafish larvae, and inhibit 6-OHDA-induced tumor necrosis factor-alpha (TNF-α) increase at the same time. According to our in vitro and in vivo results, we consider that 1T3O exerts its anti-apoptotic activities at SH-SY5Y cells after 6-OHDA challenges, probably via the regulation of anti-oxidative signaling pathways. Therefore, this compound may be a promising therapeutic agent for neurodegenerations.
目次 Table of Contents
論文審定書 I
致謝 II
中文摘要 III
ABSTRACT IV
目錄 V
圖目錄 VIII
表目錄 IX
中英文對照及縮寫表 X
第壹章、前言 1
神經退化性疾病之病徵及臨床症狀 1
PD病徵 2
PD之臨床徵狀 2
PD診斷及治療 3
臨床PD市場藥物 4
神經發炎於PD之重要性 6
氧化壓力於PD中扮演之角色 8
多巴胺胜合成與分解與氧化壓力之關係 8
Nrf2路徑在抗PD之角色 10
SOD與HO-1在抗氧化路徑達到神經保護之角色 11
絲氨酸/蘇氨酸激酶(serine/threonine kinase)訊息傳遞路徑在PD之角色 13
細胞外訊息因子相關激酶在PD之角色 14
硫胱氨酸蛋白酶(caspase)在PD之角色 15
海洋天然物具備高度開發潛力 16
PD離體模式 18
PD活體模式 19
斑馬魚實驗模式介紹 20
目前斑馬魚PD模式種類 21
本研究動機與目的 22
第貳章、實驗材料與方法 23
細胞培養 24
Alamar blue assay 25
細胞型態觀察 25
細胞氧化壓力分析 25
細胞凋亡分析 27
西方墨點法 28
抗體接合 30
種魚飼養 30
胚胎取得 31
實驗仔魚飼養 31
藥物濃度篩選 31
6-OHDA 誘發斑馬魚仔魚神經退化 31
斑馬魚行動能力測試(locomotor activity) 31
斑馬魚蛋白質分析 32
實驗數據分析 34
第參章、實驗結果 35
第肆章、討論 61
發炎與神經死亡之關聯 61
經由Nrf2/HO-1路徑達到神經保護作用的化合物 62
透過抑制P38及活化ERK路徑保護神經之相關化合物 64
化合物透過PI3K路徑抑制6-OHDA引起SH-SY5Y凋亡之現象 65
利用斑馬魚PD模式分析化合物之神經保護活性 66
化合物在斑馬魚PD模式上之神經保護機轉 67
1T3O神經保護之機轉 69
第伍章、結論 70
第陸章、參考文獻 72
第柒章、附錄 86
參考文獻 References
1. Freed, C.R., et al., Transplantation of embryonic dopamine neurons for severe Parkinson's disease. The New England journal of medicine, 2001. 344(10): p. 710-9.
2. Dexter, D.T. and P. Jenner, Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med, 2013. 62: p. 132-44.
3. Kem, W.R., The brain alpha7 nicotinic receptor may be an important therapeutic target for the treatment of Alzheimer's disease: studies with DMXBA (GTS-21). Behav Brain Res, 2000. 113(1-2): p. 169-81.
4. Fearnley, J.M. and A.J. Lees, Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain, 1991. 114 ( Pt 5): p. 2283-301.
5. Uttara, B., et al., Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol, 2009. 7(1): p. 65-74.
6. Disease, G.B.D., I. Injury, and C. Prevalence, Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016. 388(10053): p. 1545-1602.
7. Mortality, G.B.D. and C. Causes of Death, Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016. 388(10053): p. 1459-1544.
8. Liu, W.M., et al., Time trends in the prevalence and incidence of Parkinson's disease in Taiwan: A nationwide, population-based study. J Formos Med Assoc, 2016. 115(7): p. 531-8.
9. Parkinson, J., An Essay on the Shaking. neuropsychiatry and clinical neurosciences, 1817. 14: p. 223-36.
10. Shulman, J.M., P.L. De Jager, and M.B. Feany, Parkinson's disease: genetics and pathogenesis. Annu Rev Pathol, 2011. 6: p. 193-222.
11. Dauer, W. and S. Przedborski, Parkinson's disease: mechanisms and models. Neuron, 2003. 39(6): p. 889-909.
12. Hoehn, M.M. and M.D. Yahr, Parkinsonism: onset, progression and mortality. Neurology, 1967. 17(5): p. 427-42.
13. Hornykiewicz, O., Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev, 1966. 18(2): p. 925-64.
14. Greco, D., et al., Comparison of gene expression profile in embryonic mesencephalon and neuronal primary cultures. PLoS One, 2009. 4(3): p. e4977.
15. Gerlach, M., et al., A post mortem study on neurochemical markers of dopaminergic, GABA-ergic and glutamatergic neurons in basal ganglia-thalamocortical circuits in Parkinson syndrome. Brain Res, 1996. 741(1-2): p. 142-52.
16. Perry, V.H., Innate inflammation in Parkinson's disease. Cold Spring Harb Perspect Med, 2012. 2(9): p. a009373.
17. Hughes, A.J., et al., Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry, 1992. 55(3): p. 181-4.
18. Zijlmans, J.C., et al., The L-dopa response in vascular parkinsonism. J Neurol Neurosurg Psychiatry, 2004. 75(4): p. 545-7.
19. Connolly, B.S. and A.E. Lang, Pharmacological treatment of Parkinson disease: a review. JAMA, 2014. 311(16): p. 1670-83.
20. Williams, A., et al., Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson's disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol, 2010. 9(6): p. 581-91.
21. Tetrud, J.W. and J.W. Langston, The effect of deprenyl (selegiline) on the natural history of Parkinson's disease. Science, 1989. 245(4917): p. 519-522.
22. Schade, R., et al., Dopamine agonists and the risk of cardiac-valve regurgitation. New England Journal of Medicine, 2007. 356(1): p. 29-38.
23. Melamed, E., Early-morning dystonia. A late side effect of long-term levodopa therapy in Parkinson's disease. Archives of neurology, 1979. 36(5): p. 308-10.
24. Lamberti, P., et al., Effects of levodopa and COMT inhibitors on plasma homocysteine in Parkinson's disease patients. Movement disorders, 2005. 20(1): p. 69-72.
25. Merchant, R.A., et al., Use of drugs with anticholinegic effects and cognitive impairment in community-living older persons. Age and ageing, 2009. 38(1): p. 105-108.
26. Ho, S.C., et al., Effects of ceftriaxone on the behavioral and neuronal changes in an MPTP-induced Parkinson's disease rat model. Behav Brain Res, 2014. 268: p. 177-84.
27. Perlmutter, J.S. and J.W. Mink, Deep brain stimulation. Annu Rev Neurosci, 2006. 29: p. 229-57.
28. Vergnolle, N., et al., Protease-activated receptors in inflammation, neuronal signaling and pain. Trends Pharmacol Sci, 2001. 22(3): p. 146-52.
29. Nadal, A., et al., Plasma-Albumin Is a Potent Trigger of Calcium Signals and DNA-Synthesis in Astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 1995. 92(5): p. 1426-1430.
30. Paterson, P.Y., C.S. Koh, and H.C. Kwaan, Role of the clotting system in the pathogenesis of neuroimmunologic disease. Fed Proc, 1987. 46(1): p. 91-6.
31. Yenari, M.A., et al., Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke, 2006. 37(4): p. 1087-93.
32. Abbott, N.J., L. Ronnback, and E. Hansson, Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 2006. 7(1): p. 41-53.
33. McGeer, P.L. and E.G. McGeer, Inflammation and neurodegeneration in Parkinson's disease. Parkinsonism & related disorders, 2004. 10 Suppl 1: p. S3-7.
34. Hirsch, E.C., et al., Glial cells and inflammation in Parkinson's disease: a role in neurodegeneration? Annals of neurology, 1998. 44(3 Suppl 1): p. S115-20.
35. Orr, C.F., D.B. Rowe, and G.M. Halliday, An inflammatory review of Parkinson's disease. Progress in neurobiology, 2002. 68(5): p. 325-40.
36. Hirsch, E.C. and S. Hunot, Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet neurology, 2009. 8(4): p. 382-97.
37. Okada, S., et al., Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nature medicine, 2006. 12(7): p. 829-34.
38. Napoli, I. and H. Neumann, Microglial clearance function in health and disease. Neuroscience, 2009. 158(3): p. 1030-8.
39. Brochard, V., et al., Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. The Journal of clinical investigation, 2009. 119(1): p. 182-92.
40. Desagher, S. and J.C. Martinou, Mitochondria as the central control point of apoptosis. Trends Cell Biol, 2000. 10(9): p. 369-77.
41. Przedborski, S., Neuroinflammation and Parkinson's disease. Handbook of clinical neurology, 2007. 83: p. 535-51.
42. Ros-Bernal, F., et al., Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(16): p. 6632-7.
43. Long-Smith, C.M., A.M. Sullivan, and Y.M. Nolan, The influence of microglia on the pathogenesis of Parkinson's disease. Progress in neurobiology, 2009. 89(3): p. 277-87.
44. Teismann, P., et al., COX-2 and neurodegeneration in Parkinson's disease. Annals of the New York Academy of Sciences, 2003. 991: p. 272-7.
45. Reynolds, A.D., et al., Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson's disease. Journal of leukocyte biology, 2007. 82(5): p. 1083-94.
46. Morale, M.C., et al., Estrogen, neuroinflammation and neuroprotection in Parkinson's disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience, 2006. 138(3): p. 869-78.
47. Emerit, J., M. Edeas, and F. Bricaire, Neurodegenerative diseases and oxidative stress. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2004. 58(1): p. 39-46.
48. Barnham, K.J., C.L. Masters, and A.I. Bush, Neurodegenerative diseases and oxidative stress. Nature reviews. Drug discovery, 2004. 3(3): p. 205-14.
49. Simonian, N.A. and J.T. Coyle, Oxidative stress in neurodegenerative diseases. Annual review of pharmacology and toxicology, 1996. 36: p. 83-106.
50. Halliwell, B. and O.I. Aruoma, DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett, 1991. 281(1-2): p. 9-19.
51. Nilsson, G., Brain and body oxygen requirements of Gnathonemus petersii, a fish with an exceptionally large brain. The Journal of experimental biology, 1996. 199(Pt 3): p. 603-7.
52. Dexter, D., et al., Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease. Journal of neurochemistry, 1989. 52(6): p. 1830-1836.
53. Hirsch, E., et al., Iron and Aluminum Increase in the Substantia Nigra of Patients with Parkinson's Disease: An X‐Ray Microanalysis. Journal of neurochemistry, 1991. 56(2): p. 446-451.
54. Riederer, P., et al., Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. Journal of neurochemistry, 1989. 52(2): p. 515-520.
55. Hunot, S., et al., Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience, 1996. 72(2): p. 355-363.
56. Boka, G., et al., Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease. Neuroscience letters, 1994. 172(1): p. 151-154.
57. Amalric, M. and G.F. Koob, Depletion of dopamine in the caudate nucleus but not in nucleus accumbens impairs reaction-time performance in rats. J Neurosci, 1987. 7(7): p. 2129-34.
58. Zecca, L., et al., Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends in neurosciences, 2003. 26(11): p. 578-80.
59. Eisenhofer, G., I.J. Kopin, and D.S. Goldstein, Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacological reviews, 2004. 56(3): p. 331-349.
60. Rushmore, T.H. and C. Pickett, Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants. Journal of Biological Chemistry, 1990. 265(24): p. 14648-14653.
61. Friling, R.S., et al., Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element. Proceedings of the National Academy of Sciences, 1990. 87(16): p. 6258-6262.
62. Li, Y. and A. Jaiswal, Regulation of human NAD (P) H: quinone oxidoreductase gene. Role of AP1 binding site contained within human antioxidant response element. Journal of Biological Chemistry, 1992. 267(21): p. 15097-15104.
63. Nguyen, T., H. Huang, and C.B. Pickett, Transcriptional regulation of the antioxidant response element Activation by Nrf2 and repression by MafK. Journal of Biological Chemistry, 2000. 275(20): p. 15466-15473.
64. Davinelli, S., D.C. Willcox, and G. Scapagnini, Extending healthy ageing: nutrient sensitive pathway and centenarian population. Immun Ageing, 2012. 9: p. 9.
65. Jakel, R.J., et al., Induction of the protective antioxidant response element pathway by 6-hydroxydopamine in vivo and in vitro. Toxicological Sciences, 2005. 87(1): p. 176-186.
66. Moi, P., et al., Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A, 1994. 91(21): p. 9926-30.
67. Taguchi, K., H. Motohashi, and M. Yamamoto, Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells, 2011. 16(2): p. 123-40.
68. Barone, M.C., G.P. Sykiotis, and D. Bohmann, Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson's disease. Disease models & mechanisms, 2011. 4(5): p. 701-7.
69. Jagatha, B., et al., Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson's disease explained via in silico studies. Free radical biology & medicine, 2008. 44(5): p. 907-17.
70. Linker, R.A., et al., Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain : a journal of neurology, 2011. 134(Pt 3): p. 678-92.
71. Wruck, C.J., et al., Luteolin protects rat PC12 and C6 cells against MPP+ induced toxicity via an ERK dependent Keap1-Nrf2-ARE pathway. Journal of neural transmission. Supplementum, 2007(72): p. 57-67.
72. Hara, H., M. Ohta, and T. Adachi, Apomorphine protects against 6-hydroxydopamine-induced neuronal cell death through activation of the Nrf2-ARE pathway. Journal of neuroscience research, 2006. 84(4): p. 860-6.
73. 廖 霞 1,郑少杰 1,卢可可 1,肖星凝 1,吴素蕊 2,明 建 1, *, 植物多酚通过Nrf2/ARE信号通路抗氧化作用研究进展. 食品科學, 2016. 37(7): p. 227-232.
74. Bostantjopoulou, S., et al., Superoxide dismutase activity in early and advanced Parkinson's disease. Functional neurology, 1997. 12(2): p. 63-8.
75. Ihara, Y., et al., Hydroxyl radical and superoxide dismutase in blood of patients with Parkinson's disease: relationship to clinical data. Journal of the neurological sciences, 1999. 170(2): p. 90-5.
76. Tenhunen, R., H.S. Marver, and R. Schmid, The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A, 1968. 61(2): p. 748-55.
77. Turkseven, S., et al., Antioxidant mechanism of heme oxygenase-1 involves an increase in superoxide dismutase and catalase in experimental diabetes. American journal of physiology. Heart and circulatory physiology, 2005. 289(2): p. H701-7.
78. Babusikova, E., et al., Exhaled carbon monoxide as a new marker of respiratory diseases in children. J Physiol Pharmacol, 2008. 59 Suppl 6: p. 9-17.
79. Schipper, H.M., et al., Heme oxygenase‐1 and neurodegeneration: expanding frontiers of engagement. Journal of neurochemistry, 2009. 110(2): p. 469-485.
80. Matés, J., Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology, 2000. 153(1-3): p. 83-104.
81. Yamaguchi, T., et al., Role of bilirubin as an antioxidant in an ischemia-reperfusion of rat liver and induction of heme oxygenase. Biochemical and biophysical research communications, 1996. 223(1): p. 129-35.
82. Ueda, K., et al., Polaprezinc (Zinc L-carnosine) is a potent inducer of anti-oxidative stress enzyme, heme oxygenase (HO)-1 - a new mechanism of gastric mucosal protection. Journal of pharmacological sciences, 2009. 110(3): p. 285-94.
83. Granato, A., et al., Bilirubin inhibits bile acid induced apoptosis in rat hepatocytes. Gut, 2003. 52(12): p. 1774-8.
84. Foy, C.J., et al., Plasma chain-breaking antioxidants in Alzheimer's disease, vascular dementia and Parkinson's disease. QJM : monthly journal of the Association of Physicians, 1999. 92(1): p. 39-45.
85. Abraham, N.G. and G. Drummond, CD163-Mediated hemoglobin-heme uptake activates macrophage HO-1, providing an antiinflammatory function. Circulation research, 2006. 99(9): p. 911-4.
86. Abraham, N.G. and G. Drummond, CD163-Mediated hemoglobin-heme uptake activates macrophage HO-1, providing an antiinflammatory function. Circ Res, 2006. 99(9): p. 911-4.
87. Fry, M.J., Structure, regulation and function of phosphoinositide 3-kinases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1994. 1226(3): p. 237-268.
88. Maehama, T. and J.E. Dixon, The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. Journal of Biological Chemistry, 1998. 273(22): p. 13375-13378.
89. Chang, F., et al., Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 2003. 17(3): p. 590-603.
90. Blum, D., et al., Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol, 2001. 65(2): p. 135-72.
91. Xiao, H., et al., Deprenyl prevents MPP(+)-induced oxidative damage in PC12 cells by the upregulation of Nrf2-mediated NQO1 expression through the activation of PI3K/Akt and Erk. Toxicology, 2011. 290(2-3): p. 286-94.
92. Nakaso, K., S. Ito, and K. Nakashima, Caffeine activates the PI3K/Akt pathway and prevents apoptotic cell death in a Parkinson's disease model of SH-SY5Y cells. Neuroscience letters, 2008. 432(2): p. 146-50.
93. Quesada, A., B.Y. Lee, and P.E. Micevych, PI3 kinase/Akt activation mediates estrogen and IGF-1 nigral DA neuronal neuroprotection against a unilateral rat model of Parkinson's disease. Developmental neurobiology, 2008. 68(5): p. 632-44.
94. Matsuda, S., et al., Roles of PI3K/AKT/PTEN Pathway as a Target for Pharmaceutical Therapy. Open Med Chem J, 2013. 7: p. 23-9.
95. Roux, P.P. and J. Blenis, ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiology and molecular biology reviews, 2004. 68(2): p. 320-344.
96. Shaul, Y.D. and R. Seger, The MEK/ERK cascade: from signaling specificity to diverse functions. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2007. 1773(8): p. 1213-1226.
97. Tian, L.-L., et al., Protective effect of (±) isoborneol against 6-OHDA-induced apoptosis in SH-SY5Y cells. Cellular Physiology and Biochemistry, 2007. 20(6): p. 1019-1032.
98. Colucci-D'Amato, L., C. Perrone-Capano, and U. di Porzio, Chronic activation of ERK and neurodegenerative diseases. BioEssays : news and reviews in molecular, cellular and developmental biology, 2003. 25(11): p. 1085-95.
99. Ridley, S.H., et al., Actions of IL-1 are selectively controlled by p38 mitogen-activated protein kinase: regulation of prostaglandin H synthase-2, metalloproteinases, and IL-6 at different levels. Journal of immunology, 1997. 158(7): p. 3165-73.
100. Ono, K. and J. Han, The p38 signal transduction pathway: activation and function. Cellular signalling, 2000. 12(1): p. 1-13.
101. Zarubin, T. and J. Han, Activation and signaling of the p38 MAP kinase pathway. Cell research, 2005. 15(1): p. 11-8.
102. Ikeda, Y., et al., Protective effects of astaxanthin on 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells. J Neurochem, 2008. 107(6): p. 1730-40.
103. Gomez-Lazaro, M., et al., 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. Journal of neurochemistry, 2008. 104(6): p. 1599-612.
104. Porter, A.G. and R.U. Jänicke, Emerging roles of caspase-3 in apoptosis. Cell death and differentiation, 1999. 6(2): p. 99-104.
105. Li, J. and J. Yuan, Caspases in apoptosis and beyond. Oncogene, 2008. 27(48): p. 6194-6206.
106. Junn, E. and M.M. Mouradian, Apoptotic signaling in dopamine-induced cell death: the role of oxidative stress, p38 mitogen-activated protein kinase, cytochrome c and caspases. J Neurochem, 2001. 78(2): p. 374-83.
107. McIlwain, D.R., T. Berger, and T.W. Mak, Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol, 2013. 5(4): p. a008656.
108. Martinez, A., Marine-derived drugs in neurology. Curr Opin Investig Drugs, 2007. 8(7): p. 525-30.
109. Blunt, J.W., et al., Marine natural products. Nat Prod Rep, 2009. 26(2): p. 170-244.
110. Huang, S.T., et al., Development and biological evaluation of C(60) fulleropyrrolidine-thalidomide dyad as a new anti-inflammation agent. Bioorganic & medicinal chemistry, 2008. 16(18): p. 8619-26.
111. Martins, A., et al., Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs, 2014. 12(2): p. 1066-101.
112. Garcia-Rocha, M., M.D. Garcia-Gravalos, and J. Avila, Characterisation of antimitotic products from marine organisms that disorganise the microtubule network: ecteinascidin 743, isohomohalichondrin-B and LL-15. Br J Cancer, 1996. 73(8): p. 875-83.
113. D'Incalci, M. and C.M. Galmarini, A review of trabectedin (ET-743): a unique mechanism of action. Mol Cancer Ther, 2010. 9(8): p. 2157-63.
114. Zheng, L., et al., Targeting cellular apoptotic pathway with peptides from marine organisms. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2013. 1836(1): p. 42-48.
115. Maki, K.C., et al., Effects of Adding Prescription Omega-3 Acid Ethyl Esters to< i> Simvastatin</i>(20 mg/day) on Lipids and Lipoprotein Particles in Men and Women With Mixed Dyslipidemia. The American journal of cardiology, 2008. 102(4): p. 429-433.
116. Mudit, M. and K.A. El Sayed, Cancer control potential of marine natural product scaffolds through inhibition of tumor cell migration and invasion. Drug Discov Today, 2016. 21(11): p. 1745-1760.
117. Hu, G.P., et al., Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar Drugs, 2011. 9(4): p. 514-25.
118. Jean, Y.H., et al., Capnellene, a natural marine compound derived from soft coral, attenuates chronic constriction injury-induced neuropathic pain in rats. Br J Pharmacol, 2009. 158(3): p. 713-25.
119. Huang, S.Y., et al., Sinularin from indigenous soft coral attenuates nociceptive responses and spinal neuroinflammation in carrageenan-induced inflammatory rat model. Mar Drugs, 2012. 10(9): p. 1899-919.
120. Chen, N.F., et al., Flexibilide obtained from cultured soft coral has anti-neuroinflammatory and analgesic effects through the upregulation of spinal transforming growth factor-beta1 in neuropathic rats. Mar Drugs, 2014. 12(7): p. 3792-817.
121. Jean, Y.H., et al., Inducible nitric oxide synthase and cyclooxygenase-2 participate in anti-inflammatory and analgesic effects of the natural marine compound lemnalol from Formosan soft coral Lemnalia cervicorni. Eur J Pharmacol, 2008. 578(2-3): p. 323-31.
122. Lin, Y.C., et al., Intrathecal lemnalol, a natural marine compound obtained from Formosan soft coral, attenuates nociceptive responses and the activity of spinal glial cells in neuropathic rats. Behav Pharmacol, 2011. 22(8): p. 739-50.
123. Deutsch, S.I., J.A. Burket, and A.D. Benson, Targeting the alpha7 nicotinic acetylcholine receptor to prevent progressive dementia and improve cognition in adults with Down's syndrome. Prog Neuropsychopharmacol Biol Psychiatry, 2014. 54: p. 131-9.
124. Greene, L.A. and A.S. Tischler, Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A, 1976. 73(7): p. 2424-8.
125. Ouyang, M. and X. Shen, Critical role of ASK1 in the 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells. J Neurochem, 2006. 97(1): p. 234-44.
126. Guo, S., E. Bezard, and B. Zhao, Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radic Biol Med, 2005. 39(5): p. 682-95.
127. Hwang, Y.P. and H.G. Jeong, The coffee diterpene kahweol induces heme oxygenase-1 via the PI3K and p38/Nrf2 pathway to protect human dopaminergic neurons from 6-hydroxydopamine-derived oxidative stress. FEBS Lett, 2008. 582(17): p. 2655-62.
128. Biedler, J.L., L. Helson, and B.A. Spengler, Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res, 1973. 33(11): p. 2643-52.
129. Xie, H.R., L.S. Hu, and G.Y. Li, SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease. Chin Med J (Engl), 2010. 123(8): p. 1086-92.
130. Elyasi, L., S.H. Eftekhar-Vaghefi, and S. Esmaeili-Mahani, Morphine Protects SH-SY5Y Human Neuroblastoma Cells Against 6-Hydroxydopamine-Induced Cell Damage: Involvement of Anti-Oxidant, Calcium Blocking, and Anti-Apoptotic Properties. Rejuvenation Res, 2014. 17(3): p. 255-63.
131. Esmaeili-Mahani, S., et al., Protective effect of orexin-A on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells. Neurochem Int, 2013. 63(8): p. 719-25.
132. Alvarez-Fischer, D., et al., Characterization of the striatal 6-OHDA model of Parkinson's disease in wild type and alpha-synuclein-deleted mice. Exp Neurol, 2008. 210(1): p. 182-93.
133. Senoh, S., et al., Chemical, Enzymatic and Metabolic Studies on the Mechanism of Oxidation of Dopamine1. Journal of the American Chemical Society, 1959. 81(23): p. 6236-6240.
134. Senoh, S., et al., 2, 4, 5-Trihydroxyphenethylamine, a new metabolite of 3, 4-dihydroxyphenethylamine. Journal of the American Chemical Society, 1959. 81(7): p. 1768-1769.
135. Curtius, H.C., et al., Mass fragmentography of dopamine and 6-hydroxydopamine: Application to the determination of dopamine in human brain biopsies from the caudate nucleus. Journal of Chromatography A, 1974. 99: p. 529-540.
136. Andrew, R., et al., The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochemical research, 1993. 18(11): p. 1175-1177.
137. Driscoll, M. and B. Gerstbrein, Dying for a cause: invertebrate genetics takes on human neurodegeneration. Nat Rev Genet, 2003. 4(3): p. 181-94.
138. Auluck, P.K., et al., Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science, 2002. 295(5556): p. 865-8.
139. Hefti, F., et al., Circling behavior in rats with partial, unilateral nigro-striatal lesions: effect of amphetamine, apomorphine, and DOPA. Pharmacol Biochem Behav, 1980. 12(2): p. 185-8.
140. Bretaud, S., S. Lee, and S. Guo, Sensitivity of zebrafish to environmental toxins implicated in Parkinson's disease. Neurotoxicology and teratology, 2004. 26(6): p. 857-64.
141. Bretaud, S., et al., p53-dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson's disease. Journal of neurochemistry, 2007. 100(6): p. 1626-35.
142. Rubinstein, A.L., Zebrafish: from disease modeling to drug discovery. Current opinion in drug discovery & development, 2003. 6(2): p. 218-23.
143. Dooley, K. and L.I. Zon, Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev, 2000. 10(3): p. 252-6.
144. Lieschke, G.J. and P.D. Currie, Animal models of human disease: zebrafish swim into view. Nat Rev Genet, 2007. 8(5): p. 353-67.
145. Chen, A.Y., et al., Olfactory deficits in an alpha-synuclein fly model of Parkinson's disease. PLoS One, 2014. 9(5): p. e97758.
146. Sheng, D., et al., Deletion of the WD40 domain of LRRK2 in Zebrafish causes Parkinsonism-like loss of neurons and locomotive defect. PLoS Genet, 2010. 6(4): p. e1000914.
147. Rihel, J., et al., Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science, 2010. 327(5963): p. 348-51.
148. Fouquet, B., et al., Vessel patterning in the embryo of the zebrafish: guidance by notochord. Developmental biology, 1997. 183(1): p. 37-48.
149. Herbomel, P., B. Thisse, and C. Thisse, Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development, 1999. 126(17): p. 3735-45.
150. Makhija, D.T. and A.G. Jagtap, Studies on sensitivity of zebrafish as a model organism for Parkinson's disease: Comparison with rat model. J Pharmacol Pharmacother, 2014. 5(1): p. 39-46.
151. Norton, W. and L. Bally-Cuif, Adult zebrafish as a model organism for behavioural genetics. BMC Neurosci, 2010. 11: p. 90.
152. Qian, Y., et al., Formation of brainstem (nor)adrenergic centers and first-order relay visceral sensory neurons is dependent on homeodomain protein Rnx/Tlx3. Genes Dev, 2001. 15(19): p. 2533-45.
153. Rink, E. and M.F. Wullimann, The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain research, 2001. 889(1-2): p. 316-30.
154. Lopes da Fonseca, T., et al., The zebrafish homologue of Parkinson's disease ATP13A2 is essential for embryonic survival. Brain Res Bull, 2013. 90: p. 118-26.
155. Feitsma, H. and E. Cuppen, Zebrafish as a cancer model. Mol Cancer Res, 2008. 6(5): p. 685-94.
156. Chico, T.J., P.W. Ingham, and D.C. Crossman, Modeling cardiovascular disease in the zebrafish. Trends Cardiovasc Med, 2008. 18(4): p. 150-5.
157. Bai, Q., et al., Zebrafish DJ-1 is evolutionarily conserved and expressed in dopaminergic neurons. Brain Res, 2006. 1113(1): p. 33-44.
158. Flinn, L., et al., Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio). Brain, 2009. 132(Pt 6): p. 1613-23.
159. Anichtchik, O., et al., Loss of PINK1 function affects development and results in neurodegeneration in zebrafish. J Neurosci, 2008. 28(33): p. 8199-207.
160. Son, O.L., et al., Cloning and expression analysis of a Parkinson's disease gene, uch-L1, and its promoter in zebrafish. Biochem Biophys Res Commun, 2003. 312(3): p. 601-7.
161. Chakraborty, C., et al., Zebrafish: a complete animal model for in vivo drug discovery and development. Curr Drug Metab, 2009. 10(2): p. 116-24.
162. Darland, T. and J.E. Dowling, Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci U S A, 2001. 98(20): p. 11691-6.
163. Sheng, D., et al., Deletion of the WD40 domain of LRRK2 in Zebrafish causes Parkinsonism-like loss of neurons and locomotive defect. PLoS genetics, 2010. 6(4): p. e1000914.
164. Anichtchik, O., et al., Loss of PINK1 function affects development and results in neurodegeneration in zebrafish. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2008. 28(33): p. 8199-207.
165. Ren, G., et al., Disruption of LRRK2 does not cause specific loss of dopaminergic neurons in zebrafish. PloS one, 2011. 6(6): p. e20630.
166. Maraganore, D.M., A.E. Harding, and C.D. Marsden, A clinical and genetic study of familial Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society, 1991. 6(3): p. 205-11.
167. Flinn, L., et al., Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio). Brain : a journal of neurology, 2009. 132(Pt 6): p. 1613-23.
168. McKinley, E.T., et al., Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Brain research. Molecular brain research, 2005. 141(2): p. 128-37.
169. Zhang, Z.J., et al., Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro-inflammation gene expression in PC12 cells and in zebrafish. International journal of molecular medicine, 2011. 27(2): p. 195-203.
170. Langheinrich, U., G. Vacun, and T. Wagner, Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia. Toxicology and applied pharmacology, 2003. 193(3): p. 370-82.
171. Anichtchik, O.V., et al., Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Journal of neurochemistry, 2004. 88(2): p. 443-53.
172. Feng, C.W., et al., Effects of 6-hydroxydopamine exposure on motor activity and biochemical expression in zebrafish (Danio rerio) larvae. Zebrafish, 2014. 11(3): p. 227-39.
173. Wen, Z.H., et al., A neuroprotective sulfone of marine origin and the in vivo anti-inflammatory activity of an analogue. Eur J Med Chem, 2010. 45(12): p. 5998-6004.
174. Chen, Y.C., et al., Dihydroaustrasulfone alcohol inhibits PDGF-induced proliferation and migration of human aortic smooth muscle cells through inhibition of the cell cycle. Mar Drugs, 2015. 13(4): p. 2390-406.
175. Wang, Y.C., et al., Dihydroaustrasulfone Alcohol (WA-25) Impedes Macrophage Foam Cell Formation by Regulating the Transforming Growth Factor-beta1 Pathway. Int J Mol Sci, 2015. 16(5): p. 10507-25.
176. Lee, H.J., et al., Baicalein attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Eur J Cell Biol, 2005. 84(11): p. 897-905.
177. Levites, Y., et al., Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol, 2002. 63(1): p. 21-9.
178. Zhao, D.L., et al., Anti-apoptotic effect of esculin on dopamine-induced cytotoxicity in the human neuroblastoma SH-SY5Y cell line. Neuropharmacology, 2007. 53(6): p. 724-32.
179. Kazimi, N. and G.M. Cahill, Development of a circadian melatonin rhythm in embryonic zebrafish. Brain research. Developmental brain research, 1999. 117(1): p. 47-52.
180. Akimenko, M.A., et al., Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development, 1995. 121(2): p. 347-57.
181. Ben-Shachar, D. and M.B. Youdim, Intranigral iron injection induces behavioral and biochemical "parkinsonism" in rats. Journal of neurochemistry, 1991. 57(6): p. 2133-5.
182. Parng, C., et al., Neurotoxicity assessment using zebrafish. J Pharmacol Toxicol Methods, 2007. 55(1): p. 103-12.
183. Jin, Y., et al., Effect of endocrine disrupting chemicals on the transcription of genes related to the innate immune system in the early developmental stage of zebrafish (Danio rerio). Fish Shellfish Immunol, 2010. 28(5-6): p. 854-61.
184. Schwab, R.S., et al., Amantadine in the treatment of Parkinson's disease. JAMA : the journal of the American Medical Association, 1969. 208(7): p. 1168-70.
185. Schwab, M.L. and A.E. Lewis, An improved stain for Heinz bodies. Technical bulletin of the Registry of Medical Technologists, 1969. 39(4): p. 93-5.
186. Moussaoui, S., et al., The antioxidant ebselen prevents neurotoxicity and clinical symptoms in a primate model of Parkinson's disease. Experimental neurology, 2000. 166(2): p. 235-45.
187. Cai, X., et al., Polyhydroxylated fullerene derivative C(60)(OH)(24) prevents mitochondrial dysfunction and oxidative damage in an MPP(+) -induced cellular model of Parkinson's disease. Journal of neuroscience research, 2008. 86(16): p. 3622-34.
188. Laddha, S.S. and S.P. Bhatnagar, A new therapeutic approach in Parkinson's disease: some novel quinazoline derivatives as dual selective phosphodiesterase 1 inhibitors and anti-inflammatory agents. Bioorganic & medicinal chemistry, 2009. 17(19): p. 6796-802.
189. McGeer, E.G., A. Klegeris, and P.L. McGeer, Inflammation, the complement system and the diseases of aging. Neurobiology of aging, 2005. 26 Suppl 1: p. 94-7.
190. Polazzi, E. and A. Contestabile, Reciprocal interactions between microglia and neurons: from survival to neuropathology. Reviews in the neurosciences, 2002. 13(3): p. 221-42.
191. Langston, J.W., et al., Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Annals of neurology, 1999. 46(4): p. 598-605.
192. McGeer, P.L., et al., Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Annals of neurology, 2003. 54(5): p. 599-604.
193. Ossola, B., et al., Amantadine protects dopamine neurons by a dual action: reducing activation of microglia and inducing expression of GDNF in astroglia [corrected]. Neuropharmacology, 2011. 61(4): p. 574-82.
194. Geng, X., et al., Neuroprotective effects of echinacoside in the mouse MPTP model of Parkinson's disease. European journal of pharmacology, 2007. 564(1-3): p. 66-74.
195. Kong, A.-N.T., et al., Induction of xenobiotic enzymes by the map kinase pathway and the antioxidant or electrophile response element (ARE/EpRE) 1* 2, 3. Drug metabolism reviews, 2001. 33(3-4): p. 255-271.
196. Mateo, I., et al., Serum heme oxygenase‐1 levels are increased in Parkinson’s disease but not in Alzheimer’s disease. Acta Neurologica Scandinavica, 2010. 121(2): p. 136-138.
197. Schipper, H.M., Heme oxygenase expression in human central nervous system disorders. Free Radical Biology and Medicine, 2004. 37(12): p. 1995-2011.
198. Nakaso, K., et al., Novel cytoprotective mechanism of anti-parkinsonian drug deprenyl: PI3K and Nrf2-derived induction of antioxidative proteins. Biochemical and biophysical research communications, 2006. 339(3): p. 915-22.
199. Youdim, M. and K. Tipton, Rat striatal monoamine oxidase-B inhibition by-deprenyl and rasagiline: its relationship to 2-phenylethylamine-induced stereotypy and Parkinson's disease. Parkinsonism & related disorders, 2002. 8(4): p. 247-253.
200. WU, R.M., et al., Antioxidant mechanism and protection of nigral neurons against MPP+ toxicity by deprenyl (selegiline). Annals of the New York Academy of Sciences, 1994. 738(1): p. 214-221.
201. Sapkota, K., et al., Detoxified extract of Rhus verniciflua stokes inhibits rotenone-induced apoptosis in human dopaminergic cells, SH-SY5Y. Cellular and molecular neurobiology, 2011. 31(2): p. 213-23.
202. Sapkota, K., et al., A detoxified extract of Rhus verniciflua Stokes upregulated the expression of BDNF and GDNF in the rat brain and the human dopaminergic cell line SH-SY5Y. Bioscience, biotechnology, and biochemistry, 2010. 74(10): p. 1997-2004.
203. Kim, S., et al., Leaf extract of Rhus verniciflua Stokes protects dopaminergic neuronal cells in a rotenone model of Parkinson's disease. The Journal of pharmacy and pharmacology, 2011. 63(10): p. 1358-67.
204. Yang, Y.-C., et al., Induction of glutathione synthesis and heme oxygenase 1 by the flavonoids butein and phloretin is mediated through the ERK/Nrf2 pathway and protects against oxidative stress. Free Radical Biology and Medicine, 2011. 51(11): p. 2073-2081.
205. Zhang, Z., et al., Baicalein protects against 6-OHDA-induced neurotoxicity through activation of Keap1/Nrf2/HO-1 and involving PKCα and PI3K/AKT signaling pathways. Journal of agricultural and food chemistry, 2012. 60(33): p. 8171-8182.
206. Ye, Q., et al., Astaxanthin protects against MPP+-induced oxidative stress in PC12 cells via the HO-1/NOX2 axis. BMC neuroscience, 2012. 13(1): p. 156.
207. Liang, Z., et al., Neuroprotective effects of tenuigenin in a SH-SY5Y cell model with 6-OHDA-induced injury. Neurosci Lett, 2011. 497(2): p. 104-9.
208. Chao, J., et al., A pro-drug of the green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG) prevents differentiated SH-SY5Y cells from toxicity induced by 6-hydroxydopamine. Neuroscience letters, 2010. 469(3): p. 360-364.
209. Park, H.J., et al., Protective effect of histamine H2 receptor antagonist ranitidine against rotenone-induced apoptosis. Neurotoxicology, 2009. 30(6): p. 1114-9.
210. Kwon, S.H., et al., Loganin protects against hydrogen peroxide-induced apoptosis by inhibiting phosphorylation of JNK, p38, and ERK 1/2 MAPKs in SH-SY5Y cells. Neurochemistry international, 2011. 58(4): p. 533-41.
211. Bradshaw, J., et al., Ranitidine (AH 19065): a new potent, selective histamine H2-receptor antagonist [proceedings]. British journal of pharmacology, 1979. 66(3): p. 464P.
212. Panula, P., H.Y. Yang, and E. Costa, Comparative distribution of bombesin/GRP- and substance-P-like immunoreactivities in rat hypothalamus. The Journal of comparative neurology, 1984. 224(4): p. 606-17.
213. Anichtchik, O.V., et al., Modulation of histamine H3 receptors in the brain of 6-hydroxydopamine-lesioned rats. The European journal of neuroscience, 2000. 12(11): p. 3823-32.
214. Rinne, J.O., et al., Positron emission tomography shows reduced striatal dopamine D1 but not D2 receptors in juvenile neuronal ceroid lipofuscinosis. Neuropediatrics, 2002. 33(3): p. 138-41.
215. Anichtchik, O.V., et al., An altered histaminergic innervation of the substantia nigra in Parkinson's disease. Experimental neurology, 2000. 163(1): p. 20-30.
216. Coelho, M.H., et al., Decrease in blood histamine in drug-treated parkinsonian patients. Molecular and chemical neuropathology / sponsored by the International Society for Neurochemistry and the World Federation of Neurology and research groups on neurochemistry and cerebrospinal fluid, 1991. 14(2): p. 77-85.
217. Liedhegner, E.A., K.M. Steller, and J.J. Mieyal, Levodopa activates apoptosis signaling kinase 1 (ASK1) and promotes apoptosis in a neuronal model: implications for the treatment of Parkinson's disease. Chemical research in toxicology, 2011. 24(10): p. 1644-52.
218. Chao, J., et al., Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radical Biology and Medicine, 2008. 45(7): p. 1019-1026.
219. Huo, C., et al., The challenge of developing green tea polyphenols as therapeutic agents. Inflammopharmacology, 2008. 16(5): p. 248-252.
220. Guo, S., et al., Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biological psychiatry, 2007. 62(12): p. 1353-1362.
221. Frémont, L., Biological effects of resveratrol. Life sciences, 2000. 66(8): p. 663-673.
222. Burns, J., et al., Plant foods and herbal sources of resveratrol. Journal of Agricultural and Food Chemistry, 2002. 50(11): p. 3337-3340.
223. Lin, T.-K., et al., Resveratrol Partially Prevents Rotenone-Induced Neurotoxicity in Dopaminergic SH-SY5Y Cells through Induction of Heme Oxygenase-1 Dependent Autophagy. International journal of molecular sciences, 2014. 15(1): p. 1625-1646.
224. Jin, F., et al., Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson's disease in rats. European journal of pharmacology, 2008. 600(1): p. 78-82.
225. Zhang, Z.J., et al., Ethanolic extract of fructus Alpinia oxyphylla protects against 6-hydroxydopamine-induced damage of PC12 cells in vitro and dopaminergic neurons in zebrafish. Cellular and molecular neurobiology, 2012. 32(1): p. 27-40.
226. German, D.C., et al., Midbrain dopaminergic cell loss in Parkinson's disease: computer visualization. Annals of neurology, 1989. 26(4): p. 507-514.
227. Carlsson, A., et al., Suppression by dopamine-agonists of the ethanol-induced stimulation of locomotor activity and brain dopamine synthesis. Naunyn-Schmiedeberg's archives of pharmacology, 1974. 283(2): p. 117-128.
228. Haavik, J. and K. Toska, Tyrosine hydroxylase and Parkinson's disease. Molecular neurobiology, 1998. 16(3): p. 285-309.
229. Schüle, B., R.A.R. Pera, and J.W. Langston, Can cellular models revolutionize drug discovery in Parkinson's disease? Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2009. 1792(11): p. 1043-1051.
230. Lindner, M.D., et al., Validation of a rodent model of Parkinson's disease: evidence of a therapeutic window for oral Sinemet. Brain research bulletin, 1996. 39(6): p. 367-372.
231. Andrews, Z.B., et al., Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease. The Journal of neuroscience, 2005. 25(1): p. 184-191.
232. Bechmann, I., et al., Brain mitochondrial uncoupling protein 2 (UCP2): a protective stress signal in neuronal injury. Biochemical pharmacology, 2002. 64(3): p. 363-367.
233. Mattiasson, G., et al., Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nature medicine, 2003. 9(8): p. 1062-1068.
234. Ugarte, S.D., et al., Effects of GDNF on 6‐OHDA‐induced death in a dopaminergic cell line: Modulation by inhibitors of PI3 kinase and MEK. Journal of neuroscience research, 2003. 73(1): p. 105-112.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.226.177.223
論文開放下載的時間是 校外不公開

Your IP address is 18.226.177.223
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code