Responsive image
博碩士論文 etd-0506116-080220 詳細資訊
Title page for etd-0506116-080220
論文名稱
Title
具有轉動與拍動功能之飛行器翅膀機構設計
Mechanism Design of Air Vehicle Wings with Rotation and Flapping
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-05-12
繳交日期
Date of Submission
2016-06-06
關鍵字
Keywords
機械誤差、力學分析、向量迴路法、創造性設計、具轉動之拍動
mechanical analysis, mechanical errors, vector loop method, creative design of mechanism devices, rotary and flapping motion
統計
Statistics
本論文已被瀏覽 5713 次,被下載 152
The thesis/dissertation has been browsed 5713 times, has been downloaded 152 times.
中文摘要
在現代化的技術中,飛行器的研究已經從已有的固定翼和旋轉翼進入到模仿自然界生物動作的拍動翼,過去30年來,愈來愈多的研究團隊與大學機構紛紛投入此領域的研究。
本研究基於鳥類和昆蟲的飛行機制和空氣動力特性做一探討,並在特殊飛行機制中選定具轉動之拍動功能,使用工程設計方法訂定設計目標,提出了五連桿機構達成具轉動之拍動動作。利用向量迴路法進行尺度合成與運動分析,並將尺寸進行最佳化後,得到與目標轉動角度平均誤差為10.3°的結果。再分析連桿的旋轉接頭間隙所造成的機械誤差對本研究之機構的影響,得到位移輸出的最大誤差值為55(μm),角位移輸出的最大誤差值為0.89°。為求其穩定性,機構所具有的兩滑動面分別採用半圓和凹槽與鳩尾滑槽和鳩尾滑塊的方式,並在各旋轉軸上裝配軸承,完成最終機構的設計,並經由力學分析評估馬達的選用及探討摩擦力對輸入力矩的影響,得到在拍動頻率15Hz以內,摩擦力的影響不會超過20%,但若拍動頻率愈高,則影響愈大。最後將機構進行動力平衡之改良,在x與y方向的搖撼力分別改善約44%與30%,提出新型的具轉動之拍動機構。
Abstract
In the modernized technology, the research of aircraft has developed from a fixed wing to a rotary wing, which imitates the flapping wings of natural creatures. In the past 30 years, more and more research teams and university organizations have involved in this research area.
This thesis is to investigate the flight mechanism and aerodynamic performance of the bird and insect by selecting the mechanism that is able to rotate and flap from the special flight mechanism; objectives are set by adapting engineering design, and five-bar linkage mechanism is proposed to achieve rotary and flapping motion. Dimensional synthesis and kinematics analysis are analyzed by the adaptation of vector loop method; after the optimization of the measurement, the average error of the angle of rotation 10.3° will be obtained. Furthermore the mechanical errors caused by the linkage of revolute joints between the mechanisms are analyzed while the largest error of 55(μm) of the displacement output and the largest error of 0.89° of the angular displacement output will be obtained. To ensure the stability, the semi-circle, notch, dovetail slot, and dovetail slider are respectively adapted between two sliding surfaces of the mechanical, and bearings are attached on rotary shafts as the final mechanism design. Through the mechanical analysis to evaluate the selections of the motors and to investigate the effect that caused by the friction towards the input torque to achieve the results of the flapping frequency that is within 15Hz, and the frictional effect that is not more than 20%. As the higher the flapping frequency gets, the larger the frictional effect will become. In the end, the improvement of the dynamic equilibrium will be made, as the shaking forces in the direction of x and y are improved 44% and 30% respectively, the new model of the rotary flapping mechanism will be proposed.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖次 viii
表次 xii
符號說明 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 文獻回顧 4
1.3.1 拍動飛行原理 5
1.3.2 拍動運動之空氣動力特性 7
1.3.3 具轉動之拍動運動 9
1.3.4 拍動翼機構設計 10
1.3.5 具轉動之拍動機構設計 14
1.4 研究目的 17
1.5 論文架構 18
第二章 設計與分析方法 19
2.1 創造性設計方法 19
2.2 最佳化方法 21
2.2.1 差分演算法 21
2.2.2 差分演算法之改良 22
2.3 機械誤差分析方法 23
第三章 具轉動之拍動機構設計與分析 24
3.1 基本需求與設計限制 24
3.2 具轉動之拍動機構設計 24
3.3 尺度合成 32
3.4 尺寸最佳化 40
3.5 機械誤差分析 45
3.6 最終機構設計 54
3.7 力學分析 62
3.7.1 材料選擇 63
3.7.2 輸入力矩及摩擦力影響探討 65
3.7.3 動力平衡探討 75
第四章 結論與未來展望 82
4.1 結論 82
4.2 未來展望 83
參考文獻 84
參考文獻 References
[1] 蔡承志(譯),2006,飛行的奧秘(原作者:Dalton, S.),貓頭鷹出版,33-35頁,48-73頁,97-103頁。
[2] Dickinson, M. H., Lehmann, F. O. and Sane, S. P., 1999, “Wing Rotation and the Aerodynamic Basis of Insect Flight,” Science, vol. 284, pp. 1954-1960.
[3] Ennos, A. R., 1989, “The Kinematics and Aerodynamics of The Free Flight of Some Diptera,” The Journal of Experimental Biology, vol. 142, pp. 49-85.
[4] Dickinson, M. H. and Gotz, K, G., 1996, “The Wake Dynamics and Flight Forces of The Fruit Fly Drosophila Melanogaster,” The Journal of Experimental Biology, vol. 199, pp. 2085-2104.
[5] 路非遙,2001,振動翼微型飛行載具之空氣動力特性測試與分析,碩士論文,國立成功大學航空太空工程學系。
[6] Weis-Fogh, T., 1973, “Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for Lift Production,” The Journal of Experimental Biology, vol. 59, pp. 169-230.
[7] Maxworthy, T., 1979, “Experiments on The Weis-Fogh Mechanism of Lift Generation by Insect in Hovering Flight. Part 1. Dynamics of the ‘Fling’,” Journal of Fluid Mechanics, vol. 93, part 1, pp. 47-63.
[8] Klowden, M. J., 2008, “Physiological Systems in Insects,” Academic Press, pp. 493-497.
[9] McIntosh, S. H., Agrawal, S. K. and Khan, Z., 2006, “Design of A Mechanism for Biaxial Rotation of A Wing for A Hovering Vehicle,” IEEE/ASME Transactions on Mechatronics, vol. 11, No. 2, pp. 145-153.
[10] Tai, Y. C. and Ho, C. M., 2000, “MEMS Wing Technology for A Battery-Powered Ornithopter,” The 13th IEEE Annual International Conference on MEMS, vol. 06, pp. 799-804.
[11] Żbikowski, R., Galiński, C. and Pedersen, C. B., 2005, “Four-Bar Linkage Mechanism for Insectlike Flapping Wings in Hover: Concept and An Outline of Its Realization,” ASME Journal of Mechanical Design, vol. 127, pp. 817-824.
[12] Madangopal, R., Khan, Z. A. and Agrawal, S. K., 2006, “Energetics-Based Design of Small Flapping-Wing Micro Air Vehicles,” IEEE/ASME Transactions on Mechatronics, vol. 11(4), pp. 433-438.
[13] Khan, Z. A. and Agrawal, S. K., 2007, “Design and Optimization of A Biologically Inspired Flapping Mechanism for Flapping Wing Micro Air Vehicles,” IEEE International Conference on Robotics and Automation, pp. 373-378.
[14] Nguyen, Q. V., Truong, Q. T., Park, H. C., Goo, N. S. and Byun, D., 2009, “A Motor-driven Flapping-wing System Mimicking Beetle Flight,” Proceedings of the 2009 IEEE, International Conference on Robotics and Biomimetics, pp. 1087-1092.
[15] McDonald, M. and Agrawal, S. K., 2010, “Design of a Bio-Inspired Spherical Four-Bar Mechanism for Flapping-Wing Micro Air-Vehicle Applications,” Journal of Mechanisms and Robotics, vol. 2, pp. 1-6.
[16] Zhang, T., Zhou, C., Zhang X. and Wang, C., 2011, “Design, Analysis, Optimization and Fabrication of A Flapping Wing MAV,” 2011 International Conference on Mechatronic Science, Electric Engineering and Computer, pp. 2241-2244.
[17] Park, J. H., Vang, E. P., Zhang, C. and Agrawal, S. K., 2012, “Kinematic Design of an Asymmetric In-phase Flapping Mechanism for MAVs,” 2012 IEEE International Conference on Robotics and Automation, pp. 5099-5104.
[18] Phan, H. V. and Park, H. C., 2015, “Remotely Controlled flight of an Insect-like Tailless Flapping-wing Micro Air Vehicle,” The 12th International Conference on Ubiquitous Robots and Ambient Intelligence, pp. 315-317.
[19] Leys, F., Vandepitte, D. and Reynaerts, D., 2015, “Design of a Flapping Wing Micro Air Vehicle, based on the Rufous Hummingbird,” Proceedings of the 2015 IEEE Conference on Robotics and Biomimetics, pp. 1266-1271.
[20] Conn, A. T., Burgess, S. C. and Ling, C. S., 2007, “The Parallel Crank-Rocker Flapping Mechanism: An Insect-Inspired Design for Micro Air Vehicles,” International Journal of Humanoid Robotics, vol. 4(4), pp. 625–643.
[21] Michael, A. and Fenelon, A., 2009, “Biomimetic Flapping Wing Aerial Vehicle,” Proceedings of the 2008 IEEE, International Conference on Robotics and Biomimetics, pp. 1053-1058.
[22] French, M. J., 1985, “Conceptual Design for Engineers,” Springer Berlin Heidelberg, pp. 1-5.
[23] H. S. Yan. and Y. W. Hwang., 1988, “The Generalization of Mechanical Devices,” Journal of Chinese Society of Mechanical Engineers, vol. 9, no. 3, pp. 191-198.
[24] 許正和,2006,機構構造設計學,高立圖書,73-83頁。
[25] Price, K., 1996, “Differential evolution: a fast and simple numerical optimizer,” Fuzzy Information Processing Society, 1996. NAFIPS., 1996 Biennial Conference of the North American, IEEE, pp. 524-527.
[26] Storn, R. and Price, K., 1997, “Differential evolution- a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341-359.
[27] Thomsen, R., 2004, “Multimodal optimization using crowding-based differential evolution,” Evolutionary computation, 2004. CEC2004. congress on, IEEE, vol. 2, pp. 1382-1389.
[28] Dorronsoro, B. and Bouvry, P., 2010, “Differential evolution algorithms with cellular populations,” Springer Berlin Heidelberg, pp. 320-330.
[29] 姚泰呈,2013,應用混合策略之格狀差分演算法於多峰函數之最佳化,碩士論文,國立中山大學機械與機電工程研究所。
[30] Scheunemann, H. R. and Denavit, J., 1964, “Kinematic Synthesis of Linkages,” McGraw-Hill, pp. 295-306, pp. 315-320.
[31] 顏鴻森,吳隆庸,2013,機構學,肆版,東華書局,111-112頁,181-182頁,203-204頁。
[32] 黃振賢,2000,機械材料,文京圖書,387-395頁。
[33] 趙健祥,陳振山(譯),1991,機動學(原作者:Martin, G. H.),全華圖書,361-365頁,399-409頁,415-419頁。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code