Responsive image
博碩士論文 etd-0506116-162238 詳細資訊
Title page for etd-0506116-162238
論文名稱
Title
TiO2/MgO超晶格之熱擴散效應
Effects of thermo-diffusion in TiO2 /MgO superlattices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-20
繳交日期
Date of Submission
2017-09-13
關鍵字
Keywords
氧化鎂、超晶格、退火、擴散、二氧化鈦
MgO, annealing, interdiffusion, TiO2, superlattice
統計
Statistics
本論文已被瀏覽 5653 次,被下載 0
The thesis/dissertation has been browsed 5653 times, has been downloaded 0 times.
中文摘要
本實驗以氧化鎂(Magnesium Oxide, MgO)在473K左右時便會擴散(Interdiffusion)到氧化鋁(Alumina oxide, Al2O3)基板和別的材料為特性出發,成長二氧鈦(Titanium Oxide, TiO2)和氧化鎂的超晶格(Superlattice)結構。為了解成長MgO/TiO2異質磊晶超晶格結構之成長溫度和熱退火之後形成的MgTiO3層,選擇不同面向的氧化鋁基板上成長超晶格結構後,讓MgO和TiO2在不同溫度、時間下的熱退火的擴散效應。在室溫成長在C-, M-, R-, A-sapphire的基板後,並以X光反射率(X-ray reflectivity, XRR)為主要研究工具,研究薄膜的密度、厚度和粗糙度的變化。因為X光反射率和其他研究結構的工具相比,如穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)、掃描式電子顯微鏡(Scanning Electron Microscope, SEM)、原子力顯微鏡原理(Atomic Force Microscopy, AFM)相比,其掃描範圍、光源照射和接收時的訊號範圍較大,其訊號為大範圍樣品的平均值,且解析度與之相比也可以到埃(Angstrom, Å)的等級。且X光反射率在金屬超晶格和其熱退火處理的分析已經非常完備,故為可行之發展技術,並將其應用在氧化物的熱退火分析上。
在室溫成長超晶格結構時,XRD和GIXRD並沒有顯示出結晶的訊號。但在退火473從XRR訊號發現在673K下退火不同時間則可以改變結構,在中間形成MgTiO3的混合層;873K退火兩小時和六小時已經讓MgO和TiO2互相擴散合成一層。
Abstract
The MgO (Magnesium oxide) thin films start diffusing to the sapphire substrate at 473K. We investigate diffusion relation between the MgO and TiO2 superlattice structure and expect to find the best growing temperature and time for heteroepitaxy. By growing at different orientation Sapphire and sputtering power, we found the best growing condition for the single layer. We choose the XRR (X-ray reflectivity) signals as the mean tool to investigate the thickness, density, and roughness of the superlattice films. Comparing to other tools, such as TEM (Transmission electron microscopy), SEM(Scanning electron microscope) or AFM (Atomic force microscopy), that is much bigger scan region, better average signal receives and its resolution is coming to angstrom level. On the other hand, XRR technical was applied to metal superlattice and analysis science 1980, which had will define theory and fitting data. It is well-developed skill and suitable technic to apply to oxide superlattice. From the XRR data analysis, we found out annealing at 873K for 6hrs and 2hrs make MgO/TiO2 structure mixed all. Besides annealing at 673K for 6hrs and 2hrs changing the interface structure.
目次 Table of Contents
[論文審定書+i]
[致謝+ii]
[摘要+iii]
[Abstract+iv]
[目錄+v]
[圖目錄+vii]
[表目錄+x]
[第1章序論+1]
[1-1前言及研究動機+1]
[1-2材料特性與文獻回顧+2]
[1-2-1二氧化鈦特性(Titanium Oxide, TiO2)+2]
[1-2-2氧化鎂(Magnesium Oxide, MgO)+3]
[第2章實驗儀器及理論基礎+4]
[2-1磁控濺鍍系統+4]
[2-1-1濺鍍系統介紹+4]
[2-1-2濺鍍原理+5]
[2-2X ray繞射儀+6]
[2-2-1X-ray 系統介紹及X-ray 特性+6]
[2-2-2X-ray 掃描模式:XRD+7]
[2-2-3X-ray 掃描模式:GIXRD+8]
[2-3GenX XRR 分析+8]
[2-3-1厚度(Thickness)+9]
[2-3-2密度(Density)+11]
[2-3-3粗糙度(Roughness)+16]
[第3章實驗設計+18]
[第4章實驗結果與分析+20]
[4-1實驗參數+20]
[4-2A系列單層膜分析+22]
[4-3B系列多層膜分析+30]
[4-4C系列退火擴散分析+33]
[第5章結論+45]
[參考資料+46]
參考文獻 References
[1] A. Stella and L. Miglio, Semiconductor Superlattices and Interfaces. Proceedings of the International School of Physics. North-Holland, 1993.
[2] M. J. Christensen, Epitaxy, thin films and superlattices. Riso National Laboratory, Roskilde, Denmark, 1997.
[3] B. Freudenberg and A. Mocellin, “Aluminum Titanate Formation by Solid-state Reaction of Fine A1203 and Ti02 Powders,” J. Am. Ceram. Soc., vol. 70, no. 1, pp. 33–38, 1987.
[4] R. G. Duan, G. D. Zhan, J. D. Kuntz, B. H. Kear, and A. K. Mukherjee, “Spark plasma sintering (SPS) consolidated ceramic composites from plasma-sprayed metastable Al2TiO5 powder and nano-Al2O3, TiO2, and MgO powders,” Mater. Sci. Eng. A, vol. 373, no. 1–2, pp. 180–186, 2004.
[5] V. Buscaglia, M. Alvazzi Delfrate, M. Leoni, C. Bottino, and P. Nanni, “The effect of MgAl2O4 on the formation kinetics of Al2TiO5 from Al2O3 and TiO2 fine powders,” J. Mater. Sci., vol. 31, no. 7, pp. 1715–1724, 1996.
[6] I. M. Engineering, K. F. L. Ri, U. K. The, and E. Tio, “Sintering and microstructure development in the system MgO – TiO 2,” vol. 3, pp. 4321–4325, 1998.
[7] L. L. Chang and B. C. Giessen, Synthetic Modulated Structures. Academic Press, inc. (Harcourt Brace Jovanovich, Publishers), 1985.
[8] R. Gupta, M. Gupta, S. K. Kulkarni, S. Kharrazi, A. Gupta, and S. M. Chaudhari, “Thermal stability of nanometer range Ti/Ni multilayers,” Thin Solid Films, vol. 515, no. 4, pp. 2213–2219, 2006.
[9] S. Singh, S. Basu, P. Bhatt, and A. K. Poswal, “Kinetics of alloy formation at the interfaces in a Ni-Ti multilayer: X-ray and neutron reflectometry study,” Phys. Rev. B, vol. 79, no. 19, p. 195435, 2009.
[10] S. Singh, S. Basu, M. Gupta, C. F. Majkrzak, and P. A. Kienzle, “Growth kinetics of intermetallic alloy phase at the interfaces of a Ni/Al multilayer using polarized neutron and x-ray reflectometry,” Phys. Rev. B, vol. 81, no. 23, p. 235413, 2010.
[11] J. K. Bal and S. Hazra, “Interfacial role in room-temperature diffusion of Au into Si substrates,” Phys. Rev. B, vol. 75, no. 20, p. 205411, 2007.
[12] A. Stierle and H. Zabel, “Oxidation induced roughening during Cr2O3(0001) growth on Cr(110),” Surf. Sci., vol. 385, no. 1, pp. 167–177, 1997.
[13] U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep., vol. 48, no. 5–8, pp. 53–229, 2003.
[14] S. Gupta and M. Tripathi, “A review of TiO2 nanoparticles,” Chinese Sci. Bull., vol. 56, no. 16, pp. 1639–1657, 2011.
[15] K. Kaur and C. V. Singh, “Amorphous TiO2 as a photocatalyst for hydrogen production: A DFT study of structural and electronic properties,” Energy Procedia, vol. 29, pp. 291–299, 2012.
[16] F. Labat, P. Baranek, C. Domain, C. Minot, and C. Adamo, “Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: Performances of different exchange-correlation functionals,” J. Chem. Phys., vol. 126, no. 15, 2007.
[17] M. Landmann, T. Köhler, S. Köppen, E. Rauls, T. Frauenheim, and W. Schmidt, “Fingerprints of order and disorder in the electronic and optical properties of crystalline and amorphous TiO2,” Phys. Rev. B, vol. 86, no. 6, p. 064201, 2012.
[18] V. Petkov, G. Holzhüter, U. Tröge, T. Gerber, and B. Himmel, “Atomic-scale structure of amorphous TiO2 by electron, X-ray diffraction and reverse Monte Carlo simulations,” J. Non. Cryst. Solids, vol. 231, no. 1–2, pp. 17–30, 1998.
[19] G. Spoto, E. N. Gribov, G. Ricchiardi, A. Damin, D. Scarano, S. Bordiga, C. Lamberti, and A. Zecchina, “Carbon monoxide MgO from dispersed solids to single crystals: A review and new advances,” Prog. Surf. Sci., vol. 76, no. 3–5, pp. 71–146, 2004.
[20] P. A. Stampe, M. Bullock, W. P. Tucker, and J. K. Robin, “Growth of MgO thin films on M-, A-, C- and R -plane sapphire by laser ablation,” J. Phys. D. Appl. Phys., vol. 32, no. 15, p. 1778, 1999.
[21] C. Martínez-Boubeta, A. S. Botana, V. Pardo, D. Baldomir, A. Antony, J. Bertomeu, J. M. Rebled, L. López-Conesa, S. Estradé, and F. Peiró, “Heteroepitaxial growth of MgO(111) thin films on Al2O3(0001): Evidence of a wurtzite to rocksalt transformation,” Phys. Rev. B, vol. 86, no. 4, p. 41407, 2012.
[22] L. N. Kantorovich and M. J. Gillan, “Adsorption of atomic and molecular oxygen on the MgO (001) surface,” Surf. Sci., vol. 374, no. 1–3, pp. 373–386, 1997.
[23] R. Plass, K. Egan, C. Collazo-Davila, D. Grozea, E. Landree, L. Marks, and M. Gajdardziska-Josifovska, “Cyclic Ozone Identified in Magnesium Oxide (111) Surface Reconstructions,” Phys. Rev. Lett., vol. 81, no. 22, pp. 4891–4894, 1998.
[24] M. Yasaka, “X-ray thin-film measurement techniques,” Rigaku J., vol. 26, no. 2, pp. 1–9, 2010.
[25] V. Holy, J. Kubena, I. Ohlidal, K. Lischka, and W. Plotz, “X-ray reflection from rough layered systems,” Phys. Rev. B, vol. 47, no. 23, pp. 15896–15903, 1993.
[26] V. Holy and T. Baumbach, “Nonspecular x-ray reflection from rough multilayers,” Phys. Rev. B, vol. 49, no. 15, pp. 10668–10676, 1994.
[27] T. B. Ullrich Pietsch, Václav Holý, High-Resolution X-Ray Scattering: From Thin Films to Lateral Nanostructures. Springer-Verlag New York, 2004.
[28] H. Kiessig, “Interferenz von Röntgenstrahlen an dünnen Schichten,” Ann. Phys., vol. 402, pp. 769–788, 1931.
[29] T. Aoki, K. Maki, Q. Tang, Y. Kumagai, and S. Matsumoto, “Structural control of TiO2 film grown on MgO(001) substrate by Ar-ion beam sputtering,” J. Vac. Sci. & Technol. A, vol. 15, no. 5, pp. 2485–2488, 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.219.236.62
論文開放下載的時間是 校外不公開

Your IP address is 18.219.236.62
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code