Responsive image
博碩士論文 etd-0506117-163948 詳細資訊
Title page for etd-0506117-163948
論文名稱
Title
來自海洋光合菌活性物質對於腎臟之保護作用
The renal-protective effects of active substances from marine photosynthetic bacteria
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-01-20
繳交日期
Date of Submission
2017-06-06
關鍵字
Keywords
LCG、慢性腎臟疾病、糖尿病腎病、氧化壓力、抗氧化劑
diabetic nephropathy, oxidative stress, LCG, chronic kidney disease, antioxidants
統計
Statistics
本論文已被瀏覽 5697 次,被下載 0
The thesis/dissertation has been browsed 5697 times, has been downloaded 0 times.
中文摘要
慢性腎臟疾病及最終的末期腎臟病在全世界皆造成健康上的威脅。慢性腎臟疾病患者有明顯偏高的慢性發炎和氧化壓力,特別是糖尿病腎病的患者,慢性發炎和氧化壓力在糖尿病腎病的致病原因中扮演關鍵的角色。目前台灣需要血液透析的末期腎病患者人數節節攀升,而糖尿病腎病是末期腎病的最常見原因。糖尿病腎病的致病機轉包括:胰島素阻抗、胰島細胞破壞、腎臟組織纖維化及蛋白尿;這些機轉都與慢性發炎及氧化壓力有關。抗氧化劑被證明對糖尿病腎病有減緩的效果,但卻很少被用於臨床治療糖尿病腎病。原因可能是由於它需要極高的劑量來達到治療效果,且成本及可能的副作用阻礙了抗氧化劑的使用。由培養菌體來萃取抗氧化劑有速度快及價格低的優勢,比較不受限於天氣及場地的限制。從突變紅球菌提取的新精緻萃取物LCG顯示出比番茄紅素 (lycopene)更低的毒性和更有效的抗氧化活性,突變紅球菌提取LCG的量為 wild type紅球菌提取番茄紅素的3.5倍,LCG也已被證明具有抗發炎活性。
通過核磁共振光譜法 (nuclear magnetic resonance Spectroscopy, NMR) 研究,我們知道LCG的主要成分包含了spheroidenone、methoxyneurosporene、ξ-carotene和neurosporene。使用0.2% LCG處理30天後,對倉鼠皮膚並沒有明顯刺激反應,證明LCG具有良好的生物相容性。氧化壓力及腎臟纖維化是糖尿病腎病重要的致病機轉,而上皮間質細胞轉型 (epithelial to mesenchymal transition, EMT) 是腎臟纖維化重要的指標,LCG在H2O2處理的HK2細胞中減少活性氧化物 (reactive oxygen species, ROS) 和EMT標記。口服LCG (200mg /kg) 顯著降低糖尿病小鼠模型中的24小時蛋白尿,降低血糖,並降低胰島素阻抗。LCG在糖尿病小鼠的腎組織TUNEL檢測中顯示能降低細胞凋亡。減少凋亡可以減少腎單位損失和減少蛋白尿。LCG減少p38的磷酸化,可以解釋抗發炎作用和減少EMT的機轉。LCG比起Lycopene 有更強的活性及較低的毒性,對於需要高的劑量來達到治療效果的抗氧化劑是個值得研究的標的,但仍然需要進一步的研究確認LCG在糖尿病性腎病中的益處。
Abstract
Chronic kidney disease (CKD) is a major burden worldwide. Oxidative stress and chronic inflammation play pivotal roles in CKD, especially CKD caused by diabetic nephropathy (DN). End-stage renal disease that needs treatment through hemodialysis is most commonly caused via DN. Antioxidants have been shown to be beneficial against DN. However, antioxidants are rarely used in clinical practice, probably due to the extremely high doses needed to achieve therapeutic effects. Therefore, possible side effects and cost limit the use of antioxidants for therapeutic purposes. Recently, a novel compound LCG that displays anti-inflammatory activity was extracted from transformant Rhodobacter sphaeroides. LCG showed less toxicity and more potent anti-oxidative activity than lycopene, an antioxidant widely used as a nutritional supplement. Microbial carotenoids have many advantages over plant carotenoids. Carotenoid extraction from microorganisms is more effective and less expensive process. Fermentation is independent of the weather situation. The mutant strain displayed a 3.5-fold increase in carotenoid content, relative to the wild type.
The components of LCG were discovered via nuclear magnetic resonance (NMR) studies, these include spheroidenone, methoxyneurosporene, ξ-carotene, and neurosporene. Interestingly, no irritation response was seen on hamster skins after 30 days of treatment with 0.2% LCG, demonstrating that LCG has good biocompatibility. LCG reduced reactive oxygen species and epithelial–mesenchymal transition markers in H2O2-treated HK2 cells. Using a diabetic mouse model, orally administered LCG (200mg/kg) significantly reduced proteinuria, lowered blood sugar, and reduced insulin resistance after 24 hours. LycogenTM reduced apoptosis in diabetic mice measured via the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay from biopsies of renal tissue. A reduction in apoptosis can attenuate nephron loss and decrease proteinuria. LCG reduced phosphorylation of p38, which is probably how LCG presents an anti-inflammatory effect and reduces EMT. Due to less toxicity and more potent anti-oxidative activity than lycopene, LCG is a potential target for further investigation to confirm the benefits of high dose antioxidants treatment in DN.
目次 Table of Contents
論文審定書  i
誌謝  ii
中文摘要  iii
Abstract  iv
Table of Contents  v
List of Figures   vi
List of Tables  viii
List of abbreviations  ix

Chapter 1. Introduction  1
Chapter 2. Methods and materials  19
Chapter 3. Results  26
Chapter 4.Tables and figures  35
Chapter 5. Discussion   75
Chapter 6. Reference  83

Autobiography  95
Published papers  97
參考文獻 References
1. Chen, L., D.J. Magliano, and P.Z. Zimmet, The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives. Nat Rev Endocrinol, 2011. 8(4): p. 228-36.
2. Packham, D.K., et al., Relative incidence of ESRD versus cardiovascular mortality in proteinuric type 2 diabetes and nephropathy: results from the DIAMETRIC (Diabetes Mellitus Treatment for Renal Insufficiency Consortium) database. Am J Kidney Dis, 2012. 59(1): p. 75-83.
3. Badal, S.S. and F.R. Danesh, New insights into molecular mechanisms of diabetic kidney disease. Am J Kidney Dis, 2014. 63(2 Suppl 2): p. S63-83.
4. Prajapati, S.K. and P. Dubey, Type 2 diabetes mellitus and its Complication retinopathy, nephropathy in rural population. J Assoc Physicians India, 2016. 64(1): p. 101.
5. Pinhas-Hamiel, O. and P. Zeitler, Acute and chronic complications of type 2 diabetes mellitus in children and adolescents. Lancet, 2007. 369(9575): p. 1823-31.
6. Bhutani, J. and S. Bhutani, Worldwide burden of diabetes. Indian J Endocrinol Metab, 2014. 18(6): p. 868-70.
7. Guinhouya, B.C., et al., Evidence of the influence of physical activity on the metabolic syndrome and/or on insulin resistance in pediatric populations: a systematic review. Int J Pediatr Obes, 2011. 6(5-6): p. 361-88.
8. Starkova, N.T. and I.V. Dvoriashina, [Metabolic syndrome of insulin resistance: basic conception and consequences ( a review)]. Ter Arkh, 2004. 76(10): p. 54-8.
9. Oh, Y.S. and H.S. Jun, Role of bioactive food components in diabetes prevention: effects on Beta-cell function and preservation. Nutr Metab Insights, 2014. 7: p. 51-9.
10. Alghamdi, F., et al., A novel insulin receptor-signaling platform and its link to insulin resistance and type 2 diabetes. Cell Signal, 2014. 26(6): p. 1355-68.
11. Sydor, S., A. Canbay, and L.P. Bechmann, Identifying soluble mediators of nuclear receptor and insulin signaling may enhance noninvasive diagnosis of fibrosis in Fatty liver disease. Digestion, 2014. 90(1): p. 33-4.
12. Fuentes, L., T. Roszer, and M. Ricote, Inflammatory mediators and insulin resistance in obesity: role of nuclear receptor signaling in macrophages. Mediators Inflamm, 2010. 2010: p. 219583.
13. Lasram, M.M., et al., A review on the possible molecular mechanism of action of N-acetylcysteine against insulin resistance and type-2 diabetes development. Clin Biochem, 2015. 48(16-17): p. 1200-8.
14. Zeyda, M. and T.M. Stulnig, Obesity, inflammation, and insulin resistance--a mini-review. Gerontology, 2009. 55(4): p. 379-86.
15. Park, M.H., et al., Age-related inflammation and insulin resistance: a review of their intricate interdependency. Arch Pharm Res, 2014. 37(12): p. 1507-14.
16. Daniele, G., et al., The inflammatory status score including IL-6, TNF-alpha, osteopontin, fractalkine, MCP-1 and adiponectin underlies whole-body insulin resistance and hyperglycemia in type 2 diabetes mellitus. Acta Diabetol, 2014. 51(1): p. 123-31.
17. Massaro, M., et al., Therapeutic potential of the dual peroxisome proliferator activated receptor (PPAR)alpha/gamma agonist aleglitazar in attenuating TNF-alpha-mediated inflammation and insulin resistance in human adipocytes. Pharmacol Res, 2016. 107: p. 125-36.
18. Reaven, G., F. Abbasi, and T. McLaughlin, Obesity, insulin resistance, and cardiovascular disease. Recent Prog Horm Res, 2004. 59: p. 207-23.
19. Wang, Y., et al., Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin Chem, 2007. 53(1): p. 34-41.
20. Kondo, N., et al., Association of inflammatory marker and highly sensitive C-reactive protein with aerobic exercise capacity, maximum oxygen uptake and insulin resistance in healthy middle-aged volunteers. Circ J, 2005. 69(4): p. 452-7.
21. Rifai, N., High-sensitivity C-reactive protein: a useful marker for cardiovascular disease risk prediction and the metabolic syndrome. Clin Chem, 2005. 51(3): p. 504-5.
22. de Luca, C. and J.M. Olefsky, Inflammation and insulin resistance. FEBS Lett, 2008. 582(1): p. 97-105.
23. Maritim, A.C., R.A. Sanders, and J.B. Watkins, 3rd, Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol, 2003. 17(1): p. 24-38.
24. Kellow, N.J. and G.S. Savige, Dietary advanced glycation end-product restriction for the attenuation of insulin resistance, oxidative stress and endothelial dysfunction: a systematic review. Eur J Clin Nutr, 2013. 67(3): p. 239-48.
25. Pirgon, O., et al., Association between insulin resistance and oxidative stress parameters in obese adolescents with non-alcoholic fatty liver disease. J Clin Res Pediatr Endocrinol, 2013. 5(1): p. 33-9.
26. Asemi, Z., et al., Association between markers of systemic inflammation, oxidative stress, lipid profiles, and insulin resistance in pregnant women. ARYA Atheroscler, 2013. 9(3): p. 172-8.
27. Kumar, R., et al., Association of pro-inflammatory cytokines, adipokines & oxidative stress with insulin resistance & non-alcoholic fatty liver disease. Indian J Med Res, 2012. 136(2): p. 229-36.
28. Gerber, P.A. and G.A. Rutter, The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus. Antioxid Redox Signal, 2016.
29. Kaneto, H., et al., Oxidative stress and pancreatic beta-cell dysfunction. Am J Ther, 2005. 12(6): p. 529-33.
30. Kajimoto, Y. and H. Kaneto, Role of oxidative stress in pancreatic beta-cell dysfunction. Ann N Y Acad Sci, 2004. 1011: p. 168-76.
31. Lightfoot, Y.L., J. Chen, and C.E. Mathews, Oxidative stress and beta cell dysfunction. Methods Mol Biol, 2012. 900: p. 347-62.
32. Park, K., et al., Oxidative stress and insulin resistance: the coronary artery risk development in young adults study. Diabetes Care, 2009. 32(7): p. 1302-7.
33. Panigrahy, S.K., R. Bhatt, and A. Kumar, Reactive oxygen species: sources, consequences and targeted therapy in type 2 diabetes. J Drug Target, 2016: p. 1-9.
34. Padgett, L.E., et al., The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann N Y Acad Sci, 2013. 1281: p. 16-35.
35. Son, S.M., Reactive oxygen and nitrogen species in pathogenesis of vascular complications of diabetes. Diabetes Metab J, 2012. 36(3): p. 190-8.
36. Suen, J., et al., Effect of Flavonoids on Oxidative Stress and Inflammation in Adults at Risk of Cardiovascular Disease: A Systematic Review. Healthcare (Basel), 2016. 4(3).
37. Pohanka, M., Alzheimer s disease and oxidative stress: a review. Curr Med Chem, 2014. 21(3): p. 356-64.
38. Gupta, R.K., et al., Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac J Cancer Prev, 2014. 15(11): p. 4405-9.
39. Spector, A., Review: Oxidative stress and disease. J Ocul Pharmacol Ther, 2000. 16(2): p. 193-201.
40. Di Naso, F.C., et al., Exogenous superoxide dismutase: action on liver oxidative stress in animals with streptozotocin-induced diabetes. Exp Diabetes Res, 2011. 2011: p. 754132.
41. Madsen-Bouterse, S.A., et al., Oxidative damage of mitochondrial DNA in diabetes and its protection by manganese superoxide dismutase. Free Radic Res, 2010. 44(3): p. 313-21.
42. Suys, B., et al., Impact of oxidative stress on the endothelial dysfunction of children and adolescents with type 1 diabetes mellitus: protection by superoxide dismutase? Pediatr Res, 2007. 62(4): p. 456-61.
43. Pass, G.J., et al., Effect of hyperinsulinemia and type 2 diabetes-like hyperglycemia on expression of hepatic cytochrome p450 and glutathione s-transferase isoforms in a New Zealand obese-derived mouse backcross population. J Pharmacol Exp Ther, 2002. 302(2): p. 442-50.
44. Vantyghem, M.C., et al., Oxidative markers in diabetic ketoacidosis. J Endocrinol Invest, 2000. 23(11): p. 732-6.
45. Belviranli, M., N. Okudan, and F. Celik, Association of Circulating Irisin with Insulin Resistance and Oxidative Stress in Obese Women. Horm Metab Res, 2016. 48(10): p. 653-657.
46. Jeong, E.M., et al., Role of Mitochondrial Oxidative Stress in Glucose Tolerance, Insulin Resistance, and Cardiac Diastolic Dysfunction. J Am Heart Assoc, 2016. 5(5).
47. Koroglu, E., et al., Role of oxidative stress and insulin resistance in disease severity of non-alcoholic fatty liver disease. Turk J Gastroenterol, 2016. 27(4): p. 361-6.
48. Shen, Y.H., et al., Up-regulation of PTEN (phosphatase and tensin homolog deleted on chromosome ten) mediates p38 MAPK stress signal-induced inhibition of insulin signaling. A cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells. J Biol Chem, 2006. 281(12): p. 7727-36.
49. Mayer, C.M. and D.D. Belsham, Insulin directly regulates NPY and AgRP gene expression via the MAPK MEK/ERK signal transduction pathway in mHypoE-46 hypothalamic neurons. Mol Cell Endocrinol, 2009. 307(1-2): p. 99-108.
50. Vikram, A., et al., Oxidative stress and inflammation in diabetic complications. Int J Endocrinol, 2014. 2014: p. 679754.
51. Feng, B., M.A. Ruiz, and S. Chakrabarti, Oxidative-stress-induced epigenetic changes in chronic diabetic complications. Can J Physiol Pharmacol, 2013. 91(3): p. 213-20.
52. Sasaki, S. and T. Inoguchi, The role of oxidative stress in the pathogenesis of diabetic vascular complications. Diabetes Metab J, 2012. 36(4): p. 255-61.
53. Matough, F.A., et al., The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J, 2012. 12(1): p. 5-18.
54. Jastroch, M., Unraveling the molecular machinery that promotes pancreatic beta-cell dysfunction during oxidative stress: focus on "Phagocyte-like NADPH oxidase promotes cytokine-induced mitochondrial dysfunction in pancreatic beta-cells: evidence for regulation by Rac1". Am J Physiol Regul Integr Comp Physiol, 2011. 300(1): p. R9-11.
55. Jin, H.M., et al., Antioxidant N-acetylcysteine protects pancreatic beta-cells against aldosterone-induced oxidative stress and apoptosis in female db/db mice and insulin-producing MIN6 cells. Endocrinology, 2013. 154(11): p. 4068-77.
56. Song, D., S. Hutchings, and C.C. Pang, Chronic N-acetylcysteine prevents fructose-induced insulin resistance and hypertension in rats. Eur J Pharmacol, 2005. 508(1-3): p. 205-10.
57. Haber, C.A., et al., N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am J Physiol Endocrinol Metab, 2003. 285(4): p. E744-53.
58. Kim, J.W. and K.H. Yoon, Glucolipotoxicity in Pancreatic beta-Cells. Diabetes Metab J, 2011. 35(5): p. 444-50.
59. Menezes, M.M., C.T. Lopes, and S. Nogueira Lde, Impact of educational interventions in reducing diabetic complications: a systematic review. Rev Bras Enferm, 2016. 69(4): p. 773-84.
60. Mannucci, E., et al., Post-prandial glucose and diabetic complications: systematic review of observational studies. Acta Diabetol, 2012. 49(4): p. 307-14.
61. Futrakul, N., T. Deekajorndech, and P. Futrakul, Pericytes and renal microvascular disease induce renal fibrosis in CKD. Clin Nephrol, 2013. 80(4): p. 310.
62. Kirk, R., Renal fibrosis: KIM-1 expression links kidney injury with CKD in mice. Nat Rev Nephrol, 2013. 9(11): p. 627.
63. Zhao, J., et al., Assessment of renal fibrosis in chronic kidney disease using diffusion-weighted MRI. Clin Radiol, 2014. 69(11): p. 1117-22.
64. Boor, P. and J. Floege, Chronic kidney disease growth factors in renal fibrosis. Clin Exp Pharmacol Physiol, 2011. 38(7): p. 441-50.
65. Kanasaki, K., G. Taduri, and D. Koya, Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol (Lausanne), 2013. 4: p. 7.
66. Taddei, M.L., et al., Mitochondrial Oxidative Stress due to Complex I Dysfunction Promotes Fibroblast Activation and Melanoma Cell Invasiveness. J Signal Transduct, 2012. 2012: p. 684592.
67. Liu, Z., et al., Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Accelerates the Progression of Renal Fibrosis in Lupus Nephritis by Activating SMAD and p38 MAPK in TGF-beta1 Signaling Pathway. Mediators Inflamm, 2016. 2016: p. 8986451.
68. Tian, L., et al., Diabetes-induced upregulation of urotensin II and its receptor plays an important role in TGF-beta1-mediated renal fibrosis and dysfunction. Am J Physiol Endocrinol Metab, 2008. 295(5): p. E1234-42.
69. Sugiyama, N., M. Kohno, and T. Yokoyama, Inhibition of the p38 MAPK pathway ameliorates renal fibrosis in an NPHP2 mouse model. Nephrol Dial Transplant, 2012. 27(4): p. 1351-8.
70. Wang, D., et al., Inhibition of p38 MAPK attenuates renal atrophy and fibrosis in a murine renal artery stenosis model. Am J Physiol Renal Physiol, 2013. 304(7): p. F938-47.
71. Abbate, M., C. Zoja, and G. Remuzzi, How does proteinuria cause progressive renal damage? J Am Soc Nephrol, 2006. 17(11): p. 2974-84.
72. Sarnak, M.J. and B.C. Astor, Implications of proteinuria: CKD progression and cardiovascular outcomes. Adv Chronic Kidney Dis, 2011. 18(4): p. 258-66.
73. Ohashi, Y., et al., Reappraisal of proteinuria and estimated GFR to predict progression to ESRD or death for hospitalized chronic kidney disease patients. Ren Fail, 2011. 33(1): p. 31-9.
74. Iseki, K., et al., Relationship between predicted creatinine clearance and proteinuria and the risk of developing ESRD in Okinawa, Japan. Am J Kidney Dis, 2004. 44(5): p. 806-14.
75. Carew, R.M., B. Wang, and P. Kantharidis, The role of EMT in renal fibrosis. Cell Tissue Res, 2012. 347(1): p. 103-16.
76. Huang, S., et al., GLIPR-2 overexpression in HK-2 cells promotes cell EMT and migration through ERK1/2 activation. PLoS One, 2013. 8(3): p. e58574.
77. Tennakoon, A.H., et al., Pathogenesis of Type 2 Epithelial to Mesenchymal Transition (EMT) in Renal and Hepatic Fibrosis. J Clin Med, 2015. 5(1).
78. Iwano, M., EMT and TGF-beta in renal fibrosis. Front Biosci (Schol Ed), 2010. 2: p. 229-38.
79. He, J., et al., Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease. Clin Exp Nephrol, 2013. 17(4): p. 488-97.
80. Allison, S.J., Fibrosis: Targeting EMT to reverse renal fibrosis. Nat Rev Nephrol, 2015. 11(10): p. 565.
81. Ismail, A., et al., Profiles and Factors Associated with Poor Glycemic Control Among Inpatients with Diabetes Mellitus Type 2 as a Primary Diagnosis in a Teaching Hospital. Indian J Community Med, 2016. 41(3): p. 208-12.
82. Ashe, S., et al., Ameliorating effects of green synthesized silver nanoparticles on glycated end product induced ROS production and cellular toxicity in osteogenic Saos-2 cells. ACS Appl Mater Interfaces, 2016.
83. Sada, K., et al., Hyperglycemia Induces Cellular Hypoxia through Production of Mitochondrial ROS Followed by Suppression of Aquaporin-1. PLoS One, 2016. 11(7): p. e0158619.
84. Naruse, R., et al., Oxidative stress and antioxidative potency are closely associated with diabetic retinopathy and nephropathy in patients with type 2 diabetes. Saudi Med J, 2013. 34(2): p. 135-41.
85. Lopes de Faria, J.B., K.C. Silva, and J.M. Lopes de Faria, The contribution of hypertension to diabetic nephropathy and retinopathy: the role of inflammation and oxidative stress. Hypertens Res, 2011. 34(4): p. 413-22.
86. Deng, X., J. Cheng, and M. Shen, Vitamin D improves diabetic nephropathy in rats by inhibiting renin and relieving oxidative stress. J Endocrinol Invest, 2016. 39(6): p. 657-66.
87. Guo, Y., Y. Liu, and Y. Wang, Beneficial effect of lycopene on anti-diabetic nephropathy through diminishing inflammatory response and oxidative stress. Food Funct, 2015. 6(4): p. 1150-6.
88. Bayramoglu, A., G. Bayramoglu, and H. Senturk, Lycopene partially reverses symptoms of diabetes in rats with streptozotocin-induced diabetes. J Med Food, 2013. 16(2): p. 128-32.
89. Ali, M.M. and F.G. Agha, Amelioration of streptozotocin-induced diabetes mellitus, oxidative stress and dyslipidemia in rats by tomato extract lycopene. Scand J Clin Lab Invest, 2009. 69(3): p. 371-9.
90. Ozmen, O., et al., Effects of Caffeine and Lycopene in Experimentally Induced Diabetes Mellitus. Pancreas, 2016. 45(4): p. 579-83.
91. Li, W., et al., Lycopene ameliorates renal function in rats with streptozotocin-induced diabetes. Int J Clin Exp Pathol, 2014. 7(8): p. 5008-15.
92. Hozawa, A., et al., Associations of serum carotenoid concentrations with the development of diabetes and with insulin concentration: interaction with smoking: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Epidemiol, 2006. 163(10): p. 929-37.
93. Kar, D., et al., Relationship of cardiometabolic parameters in non-smokers, current smokers, and quitters in diabetes: a systematic review and meta-analysis. Cardiovasc Diabetol, 2016. 15(1): p. 158.
94. Neyestani, T.R., et al., Physiological dose of lycopene suppressed oxidative stress and enhanced serum levels of immunoglobulin M in patients with Type 2 diabetes mellitus: a possible role in the prevention of long-term complications. J Endocrinol Invest, 2007. 30(10): p. 833-8.
95. Wang, L., et al., Plasma lycopene, other carotenoids, and the risk of type 2 diabetes in women. Am J Epidemiol, 2006. 164(6): p. 576-85.
96. Wang, L., et al., The consumption of lycopene and tomato-based food products is not associated with the risk of type 2 diabetes in women. J Nutr, 2006. 136(3): p. 620-5.
97. Liu, W.S., et al., Amelioration of dextran sodium sulfate-induced colitis in mice by Rhodobacter sphaeroides extract. Molecules, 2012. 17(11): p. 13622-30.
98. Liu, W.S., et al., The extract of Rhodobacter sphaeroides inhibits melanogenesis through the MEK/ERK signaling pathway. Mar Drugs, 2013. 11(6): p. 1899-908.
99. Johnson, E.A. and W.A. Schroeder, Microbial carotenoids. Adv Biochem Eng Biotechnol, 1996. 53: p. 119-78.
100. Heider, S.A., et al., Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Appl Microbiol Biotechnol, 2014. 98(10): p. 4355-68.
101. Ye, V.M. and S.K. Bhatia, Pathway engineering strategies for production of beneficial carotenoids in microbial hosts. Biotechnol Lett, 2012. 34(8): p. 1405-14.
102. Sandmann, G., Carotenoid biosynthesis in microorganisms and plants. Eur J Biochem, 1994. 223(1): p. 7-24.
103. Takaichi, S., et al., Carotenoids in Rhodoplanes species: variation of compositions and substrate specificity of predicted carotenogenesis enzymes. Curr Microbiol, 2012. 65(2): p. 150-5.
104. Heising, S., et al., Complete assimilation of cysteine by a newly isolated non-sulfur purple bacterium resembling Rhodovulum sulfidophilum (Rhodobacter sulfidophilus). Arch Microbiol, 1996. 165(6): p. 397-401.
105. Yeliseev, A.A., J.M. Eraso, and S. Kaplan, Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability. J Bacteriol, 1996. 178(20): p. 5877-83.
106. Yeliseev, A.A. and S. Kaplan, Anaerobic carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1: H2O is a source of oxygen for the 1-methoxy group of spheroidene but not for the 2-oxo group of spheroidenone. FEBS Lett, 1997. 403(1): p. 10-4.
107. Liu, W.a.
108. Wu, W.T. and W.S. Liu, Anti-inflammatory property of biomaterial carotenoids production by Rhodobacter sphaeroides WL-APD911. Advanced Materials Research, 2011. 287: p. 2028-2031.
109. Yang, T.H., et al., Chronic exposure to Rhodobacter sphaeroides extract Lycogen prevents UVA-induced malondialdehyde accumulation and procollagen I down-regulation in human dermal fibroblasts. Int J Mol Sci, 2014. 15(2): p. 1686-99.
110. Wang, C., et al., Rhodobacter sphaeroides Extract Improves Glucose Homeostasis in Streptozotocin-Induced Diabetic Mice. J Microb Biochem Technol, 2014. 6: p. 038-042.
111. Liu, W.-S., et al., Amelioration of dextran sodium sulfate-induced colitis in mice by Rhodobacter sphaeroides extract. Molecules, 2012. 17(11): p. 13622-13630.
112. Chang, W.-W., et al., An extract of Rhodobacter sphaeroides reduces cisplatin-induced nephrotoxicity in mice. Toxins, 2013. 5(12): p. 2353-2365.
113. Braca, A., et al., Antioxidant principles from Bauhinia tarapotensis. J Nat Prod, 2001. 64(7): p. 892-5.
114. Ryan, M.J., et al., HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int, 1994. 45(1): p. 48-57.
115. Lian, Y.G., et al., VEGF ameliorates tubulointerstitial fibrosis in unilateral ureteral obstruction mice via inhibition of epithelial-mesenchymal transition. Acta Pharmacol Sin, 2011. 32(12): p. 1513-21.
116. Zurdo, J., et al., Dimeric carotenoid interaction in the light-harvesting antenna of purple phototrophic bacteria. Biochem J, 1991. 274 ( Pt 3): p. 881-4.
117. Slouf, V., et al., Photoprotection in a purple phototrophic bacterium mediated by oxygen-dependent alteration of carotenoid excited-state properties. Proc Natl Acad Sci U S A, 2012. 109(22): p. 8570-5.
118. Lang, H.P., et al., Early steps in carotenoid biosynthesis: sequences and transcriptional analysis of the crtI and crtB genes of Rhodobacter sphaeroides and overexpression and reactivation of crtI in Escherichia coli and R. sphaeroides. J Bacteriol, 1994. 176(13): p. 3859-69.
119. Garcia-Asua, G., R.J. Cogdell, and C.N. Hunter, Functional assembly of the foreign carotenoid lycopene into the photosynthetic apparatus of Rhodobacter sphaeroides, achieved by replacement of the native 3-step phytoene desaturase with its 4-step counterpart from Erwinia herbicola. Mol Microbiol, 2002. 44(1): p. 233-44.
120. Alvarez, R., et al., Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chem Rev, 2014. 114(1): p. 1-125.
121. Dilbeck, P.L., et al., Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway. J Phys Chem B, 2016. 120(24): p. 5429-43.
122. Vaz, B., et al., Synthesis of labile all-trans-7,8,7',8'-bis-acetylenic carotenoids by bi-directional Horner-Wadsworth-Emmons condensation. Org Biomol Chem, 2015. 13(10): p. 3024-31.
123. Albrecht, M., A. Ruther, and G. Sandmann, Purification and biochemical characterization of a hydroxyneurosporene desaturase involved in the biosynthetic pathway of the carotenoid spheroidene in Rhodobacter sphaeroides. J Bacteriol, 1997. 179(23): p. 7462-7.
124. Albrecht, M., et al., Molecular cloning and functional expression in E. coli of a novel plant enzyme mediating zeta-carotene desaturation. FEBS Lett, 1995. 372(2-3): p. 199-202.
125. Chang, W.W., et al., An extract of Rhodobacter sphaeroides reduces cisplatin-induced nephrotoxicity in mice. Toxins (Basel), 2013. 5(12): p. 2353-65.
126. Stahl, W. and H. Sies, Antioxidant activity of carotenoids. Mol Aspects Med, 2003. 24(6): p. 345-51.
127. Fragiadaki, M. and R.M. Mason, Epithelial-mesenchymal transition in renal fibrosis - evidence for and against. Int J Exp Pathol, 2011. 92(3): p. 143-50.
128. Ceriello, A. and E. Motz, Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol, 2004. 24(5): p. 816-23.
129. Paolisso, G. and D. Giugliano, Oxidative stress and insulin action: is there a relationship? Diabetologia, 1996. 39(3): p. 357-63.
130. Oberley, L.W., Free radicals and diabetes. Free Radic Biol Med, 1988. 5(2): p. 113-24.
131. Tanaka, Y., et al., Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc Natl Acad Sci U S A, 1999. 96(19): p. 10857-62.
132. Henriksen, E.J., M.K. Diamond-Stanic, and E.M. Marchionne, Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med, 2011. 51(5): p. 993-9.
133. Ylonen, K., et al., Dietary intakes and plasma concentrations of carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk of type 2 diabetes: the Botnia Dietary Study. Am J Clin Nutr, 2003. 77(6): p. 1434-41.
134. Bates, C.J., et al., Nutrient intakes; biochemical and risk indices associated with Type 2 diabetes and glycosylated haemoglobin, in the British National Diet and Nutrition Survey of people aged 65 years and over. Diabet Med, 2004. 21(7): p. 677-84.
135. Ford, E.S., et al., Diabetes mellitus and serum carotenoids: findings from the Third National Health and Nutrition Examination Survey. Am J Epidemiol, 1999. 149(2): p. 168-76.
136. Armstrong, A.M., et al., The effect of dietary treatment on lipid peroxidation and antioxidant status in newly diagnosed noninsulin dependent diabetes. Free Radic Biol Med, 1996. 21(5): p. 719-26.
137. Suzuki, K., et al., Relationship between serum carotenoids and hyperglycemia: a population-based cross-sectional study. J Epidemiol, 2002. 12(5): p. 357-66.
138. Polidori, M.C., et al., Plasma levels of lipophilic antioxidants in very old patients with type 2 diabetes. Diabetes Metab Res Rev, 2000. 16(1): p. 15-9.
139. Bose, K.S. and B.K. Agrawal, Effect of long term supplementation of tomatoes (cooked) on levels of antioxidant enzymes, lipid peroxidation rate, lipid profile and glycated haemoglobin in Type 2 diabetes mellitus. West Indian Med J, 2006. 55(4): p. 274-8.
140. van Doorn, M., et al., Evaluation of proinflammatory cytokines and inflammation markers as biomarkers for the action of thiazolidinediones in Type 2 diabetes mellitus patients and healthy volunteers. Br J Clin Pharmacol, 2006. 62(4): p. 391-402.
141. Correa, F.O., et al., Effect of periodontal treatment on metabolic control, systemic inflammation and cytokines in patients with type 2 diabetes. J Clin Periodontol, 2010. 37(1): p. 53-8.
142. McDaniel, M.L., et al., Cytokines and nitric oxide in islet inflammation and diabetes. Proc Soc Exp Biol Med, 1996. 211(1): p. 24-32.
143. Navarro-González, J.F. and C. Mora-Fernández, The role of inflammatory cytokines in diabetic nephropathy. Journal of the American Society of Nephrology, 2008. 19(3): p. 433-442.
144. de Zeeuw, D., et al., Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int, 2004. 65(6): p. 2309-20.
145. Kim, S.S., et al., Urinary cystatin C and tubular proteinuria predict progression of diabetic nephropathy. Diabetes Care, 2013. 36(3): p. 656-61.
146. Keane, W.F., et al., The risk of developing end-stage renal disease in patients with type 2 diabetes and nephropathy: the RENAAL study. Kidney Int, 2003. 63(4): p. 1499-507.
147. Agarwal, D.K., Diabetic nephropathy--prevention and treatment. J Indian Med Assoc, 2002. 100(3): p. 158-60, 162-3.
148. Atkins, R.C., et al., Proteinuria reduction and progression to renal failure in patients with type 2 diabetes mellitus and overt nephropathy. Am J Kidney Dis, 2005. 45(2): p. 281-7.
149. Steffes, M.W., et al., Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int, 2001. 59(6): p. 2104-13.
150. Susztak, K., et al., Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes, 2006. 55(1): p. 225-33.
151. Wang, Z., et al., NADPH oxidase-derived ROS contributes to upregulation of TRPC6 expression in puromycin aminonucleoside-induced podocyte injury. Cell Physiol Biochem, 2009. 24(5-6): p. 619-26.
152. Emami, H., et al., The effect of BMS-582949, a P38 mitogen-activated protein kinase (P38 MAPK) inhibitor on arterial inflammation: a multicenter FDG-PET trial. Atherosclerosis, 2015. 240(2): p. 490-6.
153. Qin, Q., et al., Astragalus membranaceus inhibits inflammation via phospho-P38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-kappaB pathways in advanced glycation end product-stimulated macrophages. Int J Mol Sci, 2012. 13(7): p. 8379-87.
154. Bai, Y.Y., et al., Synergistic Effects of Transplanted Endothelial Progenitor Cells and RWJ 67657 in Diabetic Ischemic Stroke Models. Stroke, 2015. 46(7): p. 1938-46.
155. Lv, Z.M., et al., The role of the p38 MAPK signaling pathway in high glucose-induced epithelial-mesenchymal transition of cultured human renal tubular epithelial cells. PLoS One, 2011. 6(7): p. e22806.
156. Matsumoto-Ida, M., et al., Activation of TGF-beta1-TAK1-p38 MAPK pathway in spared cardiomyocytes is involved in left ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol, 2006. 290(2): p. H709-15.
157. Pejchal, J., et al., Activation of p38 MAPK and expression of TGF-beta1 in rat colon enterocytes after whole body gamma-irradiation. Int J Radiat Biol, 2012. 88(4): p. 348-58.
158. Goldberg, P.L., et al., p38 MAPK activation by TGF-beta1 increases MLC phosphorylation and endothelial monolayer permeability. Am J Physiol Lung Cell Mol Physiol, 2002. 282(1): p. L146-54.
159. Wang, L., et al., Diabetes mellitus stimulates pancreatic cancer growth and epithelial-mesenchymal transition-mediated metastasis via a p38 MAPK pathway. Oncotarget, 2016. 7(25): p. 38539-38550.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.119.199
論文開放下載的時間是 校外不公開

Your IP address is 3.145.119.199
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code