Responsive image
博碩士論文 etd-0506118-163254 詳細資訊
Title page for etd-0506118-163254
論文名稱
Title
水相浮力輔助法製備石墨烯可撓式透明導電極與液晶元件應用
Fabrication of graphene-based flexible transparent conductive film by floating-assisted method and its liquid crystal device application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-05-25
繳交日期
Date of Submission
2018-07-16
關鍵字
Keywords
智慧薄膜、水相浮力輔助法、旋轉塗佈法、還原官能基化氧化石墨烯、可撓式透明導電薄膜
Smart film, Floating-assisted method, Spin-coating, Reduce functionalized graphene oxide, Flexible transparent conductive film
統計
Statistics
本論文已被瀏覽 5638 次,被下載 0
The thesis/dissertation has been browsed 5638 times, has been downloaded 0 times.
中文摘要
可撓式透明導電薄膜目前正快速發展且廣泛應用於穿戴裝置上。由於市面上最常應用的透明導電電極材料為氧化銦錫材料(ITO),因其脆性大及環境穩定性差等問題而不易做成可撓式導電薄膜。因此,在本研究中我們成功合成大尺寸的氧化石墨烯(graphene oxide)水溶液,再利用化學方法進行官能基化。官能基化後的氧化石墨烯水溶液再藉由旋轉塗佈法在6吋矽晶片上形成均勻的薄膜,接著又旋轉塗佈上一層PMMA (poly(methyl methacrylate)),再利用新開發的水相浮力輔助法使薄膜浸泡於去離子水中時會自動剝離矽晶片而漂浮在水面上,因而得到較薄、均勻對比,且高透光的官能基化氧化石墨烯薄膜。接著透過400℃及氬氣的環境下將官能基化氧化石墨烯薄膜進行還原,再將其轉移至導電高分子PEDOT膜上,藉此結合形成高透光度(93.57%)、導電性佳(371.06 ± 48.64 Ω/sq)、高穩定性且耐10000次彎折的可撓式透明導電薄膜。最後,我們也成功應用此複合薄膜結合高分子分散液晶(PDLC)製成可撓式智慧薄膜,其在交流電110 V的驅動下具有64%穿透度及上升時間(rise time)為1.244毫秒與下降時間(fall time)為183.429毫秒之反應時間。
Abstract
Flexible transparent conductive films are rapidly developed and widely used in wearable devices. However, the most commonly used transparent conductive electrode material is indium tin oxide (ITO), which remains several problems of brittleness and poor environmental stability, making it difficult to be used as flexible transparent conductive films. Therefore, in this study, we succeeded in synthesizing large-sized graphene oxide aqueous solution with chemical functionalization of bulky alkyl groups. These functionalized graphene oxides (FGO) were spin-coated on a 6-inch SiO2 wafer. A layer of PMMA (poly(methyl methacrylate)) was also spin-coated on top of the functionalized graphene oxide film to enable floating-assisted method to peel off a highly transparent FGO film on the water surface. We reduced the functionalized graphene oxide film on the support of copper foil under argon environment at 400℃, and then transferred it onto the conductive polymer PEDOT film to yield PEDOT/rFGO composite films. These composite films exhibit high transmittance (93.57%), good conductivity (371.06 ± 48.64 Ω/sq), high stability, and excellent mechanical strength against over 10000 times of bending. This composite thin film was successfully combined with polymer dispersed liquid crystal (PDLC) for fabrication of flexible smart films (switchable films), which exhibit 64% transmittance with the rise time of 1.244 ms and the fall time of 183.429 ms under the applied voltage of 110 V AC.
目次 Table of Contents
目錄
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 1
圖目錄 4
表目錄 7
第一章、緒論 8
1.1 研究動機 9
1.2 研究背景 10
1.2.1 氧化銦錫電極之性質 10
1.2.2 石墨烯之性質 11
1.2.3 石墨烯之製備方法 12
1.2.3.1 機械剝離法 12
1.2.3.2 碳化矽裂解法 12
1.2.3.3 化學氣相沉積法 13
1.2.3.4 化學剝離法 15
1.2.4 氧化石墨烯薄膜製程 16
1.2.4.1 電泳沉積法 16
1.2.4.2 旋轉或噴灑塗佈法 16
1.2.4.3 浸塗法 17
1.2.4.4 轉印法 17
1.2.4.5 Langmuir–Blodgett 法 17
1.2.5 還原氧化石墨烯之方法 19
1.2.5.1 光還原反應 19
1.2.5.2 光催化反應 19
1.2.5.3 水熱法 19
1.2.5.4 化學還原法 20
1.2.5.5 高溫鍛燒法 21
1.2.6 導電高分子PEDOT:PSS之介紹 22
1.2.7 智慧薄膜之介紹 23
1.3 文獻回顧 25
第二章、實驗樣品合成及鑑定方法 30
2.1 實驗藥品 30
2.2 實驗鑑定方法 31
2.3 透明導電薄膜製作 32
2.3.1 以PAOM法製備高氧化程度之氧化石墨烯 32
2.3.2 以哈默法製備氧化石墨烯 32
2.3.3 製備官能基化氧化石墨烯 33
2.3.3.1 利用水相浮力輔助法製備官能基化氧化石墨烯薄膜 33
2.3.3.2 官能基化氧化石墨烯的還原 33
2.3.4 以化學氣相沉積法製備單層石墨烯 34
2.3.5 PEDOT:PSS薄膜之製備 35
2.3.6 複合薄膜之製備 35
2.3.7 可撓式智慧薄膜之製備 36
第三章、研究結果 37
3.1 合成之氧化石墨烯鑑定 37
3.2 合成之官能基化氧化石墨烯鑑定 37
3.3 官能基化氧化石墨烯薄膜 46
3.3.1 以旋轉塗佈法製備不同濃度之薄膜 46
3.3.2 以水相浮力輔助法製備不同濃度之薄膜 48
3.4 還原官能基化氧化石墨烯薄膜 56
3.4.1 化學還原法-氫碘酸 56
3.4.2 化學還原法-硼氫化鈉 56
3.4.3 高溫鍛燒還原法 56
3.5 PEDOT:PSS薄膜 59
3.5.1 PEDOT與化學氣相沉積法製備單層石墨烯之複合薄膜 59
3.5.2 PEDOT與還原官能基化氧化石墨烯之複合薄膜 60
3.5.3 複合薄膜性質探討 60
3.6 可撓式智慧薄膜 65
第四章、研究結果討論 67
4.1 官能基化與水相浮力輔助法之探討 67
第五章、結論 69
參考文獻 70
附錄 78


圖目錄
圖 1 1由二維的單層石墨烯結構所組成的各種維度材料,零維為富勒烯、一維為奈米碳管以及三維的石墨。 11
圖 1 2 利用(a)機械剝離法所製之石墨烯顯微鏡圖及(b)碳化矽裂解法製備之石墨烯STM圖。 12
圖 1 3 利用化學氣相沉積法製備石墨烯之過程。 14
圖 1 4 利用不同金屬催化劑如(a)金屬鎳及(b)金屬銅製備石墨烯之生長機制圖。 14
圖 1 5 利用PAOM及哈默法製備氧化石墨烯之合成途徑。 16
圖 1 6 (a)電泳沉積法、(b)旋轉塗佈法、(c)噴灑塗佈法及(d)浸塗法之示意圖。 17
圖 1 7 (a)轉印法及(b)Langmuir-Blodgett法之示意圖。 18
圖 1 8 (a)光催化還原過程反應式及(b)TiO2、TiO2-GO及TiO2-GR之照片圖。 19
圖 1 9 利用氫碘酸還原氧化石墨烯之反應機制。 20
圖 1 10 高溫鍛燒還原氧化石墨烯之反應機制。 21
圖 1 11 PEDOT:PSS之結構式。 22
圖 1 12 利用不同濃度甲酸處理PEDOT薄膜之(a)導電度及(b)穩定度。 23
圖 1 13 (a-b)電致變色、(c)高分子分散液晶及(d)懸浮粒子元件之示意圖。 24
圖 1 14 光線通過不同寬度的銀奈米導線的成像示意圖。 26
圖 1 15 製備金屬奈米導線與還原氧化石墨烯導電薄膜示意圖。 26
圖 1 16 利用液-汽交界面使複合材料自組裝成薄膜之示意圖。 27
圖 1 17 (a)銅奈米導線薄膜及(b)塗佈導電高分子在銅奈米導線薄膜上之SEM圖。 28
圖 1 18 製備石墨烯/銀奈米導線/高分子複合薄膜之流程圖。 28
圖 2 1 製備還原官能基化氧化石墨烯與PEDOT複合薄膜流程圖。 36
圖 2 2 可撓式智慧薄膜結構圖。 36
圖 3 1 合成之三種(a)氧化石墨烯及(b)官能基化氧化石墨烯之XRD圖。 40
圖 3 2 合成之三種(a)氧化石墨烯及(b)官能基化氧化石墨烯之拉曼光譜圖。 40
圖 3 3 (a) LGO、(b) SGO及(c) HGO 之C 1s XPS光譜圖。 41
圖 3 4 (a) FLGO、(b) FSGO及(c) FHGO之C 1s XPS光譜圖。 42
圖 3 5 (a) FLGO、(b)FSGO及(c) FHGO之N 1s XPS光譜圖。 43
圖 3 6 (a,b) LGO之SEM圖。 44
圖 3 7 tert-Butylamine、LGO及FLGO之IR光譜圖。 44
圖 3 8 (a-c)將不同濃度之FLGO溶液旋轉塗佈在SiO2/Si上及(d-f)利用水相浮力輔助法成膜後再轉移至SiO2/Si上之FLGO薄膜SEM圖。 50
圖 3 9 (a-c)將不同濃度之FSGO溶液旋轉塗佈在SiO2/Si上及(d-f)利用水相浮力輔助法成膜後再轉移至SiO2/Si上之FSGO薄膜SEM圖。 51
圖 3 10 (a-c)將不同濃度之FHGO溶液旋轉塗佈在SiO2/Si上及(d-f)利用水相浮力輔助法成膜後再轉移至SiO2/Si上之FHGO薄膜SEM圖。 52
圖 3 11 不同濃度之FLGO薄膜以拉曼mapping之結果。 53
圖 3 12 不同濃度之FSGO薄膜以拉曼mapping之結果。 54
圖 3 13 不同濃度之FHGO薄膜以拉曼mapping之結果。 55
圖 3 14 (a)以57%氫碘酸還原一面及(b)還原兩面造成破碎的照片 (c)利用0.01 M硼氫化鈉還原後的照片 (d)圖a及c之薄膜透光度圖。 58
圖 3 15 CVD石墨烯、rFLGO及rFHGO之透光度圖。 58
圖 3 16 PEDOT薄膜透光度圖。 62
圖 3 17 (a)改變轉速下及(b)改變濃度下所製備之PEDOT薄膜透光度及導電度圖。 63
圖 3 18 (a) PEDOT/CVD-graphene與PEDOT/rFLGO之複合薄膜透光度圖、(b)導電薄膜穩定度測試圖、(c) PEDOT/rFLGO薄膜彎曲10000次片電阻值變化圖及(d)薄膜霧度測量圖。 64
圖 3 19 (a) PET(i)、CVD-石墨烯(ii)、rFLGO(1.5 mg/mL) (iii)及PEDOT/rFLGO (1.5 mg/mL) (iv)之照片 (b)10×10 cm2大小之PEDOT/rFLGO (1.5 mg/mL)導電薄膜照片。 64
圖 3 20 (a)以PEDOT及PEDOT/rFLGO導電膜所製之PDLC元件之V-T圖、(b-c)PEDOT元件及(d-e)PEDOT/FLGO元件在不同驅動電壓下之反應時間圖。 66
圖 3 21 智慧薄膜(a)通電前與(b)通電後之照片。 66
圖 4 1 利用tert-Butylamine合成FLGO反應示意圖。 68

表目錄
表 1 1 文獻報導之複合薄膜透光度及片電阻值數據表。 29
表 3 1 各種氧化石墨烯與官能基化氧化石墨烯之XPS分析組成表。 45
表 3 2 由XPS及元素分析儀分析各氧化石墨烯及官能基化氧化石墨烯之元素比例表。 45
表 3 3 以不同還原方法還原官能基化氧化石墨烯薄膜之透光度及片電阻值。 57
表 3 4 薄膜在不同電流下所測得之片電阻值。 62
表 3 5 (左)改變轉速下及(右)改變濃度下所製備之PEDOT薄膜透光度及導電度數據表。 63
參考文獻 References
1. Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A Roadmap for Graphene. Nature 2012, 490, 192-200.
2. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385-388.
3. Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E. P.; Nika, D. L.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits. Appl. Phys. Lett. 2008, 92, 151911.
4. Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339-1339.
5. Zhou, Y.; Bao, Q.; Tang, L. A. L.; Zhong, Y.; Loh, K. P. Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chem. Mat. 2009, 21, 2950-2956.
6. Matsumoto, Y.; Koinuma, M.; Kim, S. Y.; Watanabe, Y.; Taniguchi, T.; Hatakeyama, K.; Tateishi, H.; Ida, S. Simple Photoreduction of Graphene Oxide Nanosheet under Mild Conditions. ACS Appl. Mater. Interfaces 2010, 2, 3461-3466.
7. Williams, G.; Seger, B.; Kamat, P. V. TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano 2008, 2, 1487-1491.
8. Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H.-M. Direct Reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids. Carbon 2010, 48, 4466-4474.
9. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 2007, 45, 1558-1565.
10. Shin, H.-J.; Kim, K. K.; Benayad, A.; Yoon, S.-M.; Park, H. K.; Jung, I.-S.; Jin, M. H.; Jeong, H.-K.; Kim, J. M.; Choi, J.-Y.; Lee, Y. H. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Adv. Funct. Mater. 2009, 19, 1987-1992.
11. Chen, C.-M.; Huang, J.-Q.; Zhang, Q.; Gong, W.-Z.; Yang, Q.-H.; Wang, M.-Z.; Yang, Y.-G. Annealing a Graphene Oxide Film to Produce a Free Standing High Conductive Graphene Film. Carbon 2012, 50, 659-667.
12. Chen, C.-H.; Hu, S.; Shih, J.-F.; Yang, C.-Y.; Luo, Y.-W.; Jhang, R.-H.; Chiang, C.-M.; Hung, Y., Jr. Effective Synthesis of Highly Oxidized Graphene Oxide That Enables Wafer-Scale Nanopatterning: Preformed Acidic Oxidizing Medium Approach. Sci. Rep. 2017, 7, 3908.
13. Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano 2008, 2, 463-470.
14. Pham, V. H.; Cuong, T. V.; Hur, S. H.; Shin, E. W.; Kim, J. S.; Chung, J. S.; Kim, E. J. Fast and Simple Fabrication of a Large Transparent Chemically-Converted Graphene Film by Spray-Coating. Carbon 2010, 48, 1945-1951.
15. Dong, X.; Su, C. Y.; Zhang, W.; Zhao, J.; Ling, Q.; Huang, W.; Chen, P.; Li, L. J. Ultra-Large Single-Layer Graphene Obtained from Solution Chemical Reduction and Its Electrical Properties. Phys. Chem. Chem. Phys. 2010, 12, 2164-2169.
16. Granqvist, C. G.; Hultåker, A. Transparent and Conducting ITO Films: New Developments and Applications. Thin Solid Films 2002, 411, 1-5.
17. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669.
18. Li, Z. F.; Zhang, H.; Liu, Q.; Sun, L.; Stanciu, L.; Xie, J. Fabrication of High-Surface-Area Graphene/Polyaniline Nanocomposites and Their Application in Supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 2685-2691.
19. Yang, J.; Liu, P.; Wei, X.; Luo, W.; Yang, J.; Jiang, H.; Wei, D.; Shi, R.; Shi, H. Surface Engineering of Graphene Composite Transparent Electrodes for High-Performance Flexible Triboelectric Nanogenerators and Self-Powered Sensors. ACS Appl. Mater. Interfaces 2017, 9, 36017-36025.
20. Gomez De Arco, L.; Zhang, Y.; Schlenker, C. W.; Ryu, K.; Thompson, M. E.; Zhou, C. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics. ACS Nano 2010, 4, 2865-2873.
21. Liu, H.; Tao, L.; Zhang, Y.; Xie, C.; Zhou, P.; Liu, H.; Chen, R.; Wang, S. Bridging Covalently Functionalized Black Phosphorus on Graphene for High-Performance Sodium-Ion Battery. ACS Appl. Mater. Interfaces 2017, 9, 36849-36856.
22. Kim, Y.; Kim, K.; Kim, K. B.; Park, J.-Y.; Lee, N.; Seo, Y. Flexible Polymer Dispersed Liquid Crystal Film with Graphene Transparent Electrodes. Curr. Appl. Phys. 2016, 16, 409-414.
23. Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183.
24. de Heer, W. A.; Berger, C.; Wu, X.; First, P. N.; Conrad, E. H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M. L.; Potemski, M.; Martinez, G. Epitaxial Graphene. Solid State Commun. 2007, 143, 92-100.
25. Biró, L. P.; Lambin, P. Grain Boundaries in Graphene Grown by Chemical Vapor Deposition. New J. Phys. 2013, 15.
26. Li, X.; Cai, W.; Colombo, L.; Ruoff, R. S. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Lett. 2009, 9, 4268-4272.
27. Dimiev, A. M.; Tour, J. M. Mechanism of Graphene Oxide Formation. ACS Nano 2014, 8, 3060-3068.
28. Hong, Y.; Wang, Z.; Jin, X. Sulfuric Acid Intercalated Graphite Oxide for Graphene Preparation. Sci. Rep. 2013, 3, 3439.
29. An, S. J.; Zhu, Y.; Lee, S. H.; Stoller, M. D.; Emilsson, T.; Park, S.; Velamakanni, A.; An, J.; Ruoff, R. S. Thin Film Fabrication and Simultaneous Anodic Reduction of Deposited Graphene Oxide Platelets by Electrophoretic Deposition. J. Phys. Chem. Lett. 2010, 1, 1259-1263.
30. Bera, S.; Udayabhanu, G.; Narayan, R.; Rout, T. Methodologies of Application of Sol-Gel Based Solution onto Substrate: A Review. J. Coat. Technol. Res. 2016, 3, 1-14.
31. Allen, M. J.; Tung, V. C.; Gomez, L.; Xu, Z.; Chen, L.-M.; Nelson, K. S.; Zhou, C.; Kaner, R. B.; Yang, Y. Soft Transfer Printing of Chemically Converted Graphene. Adv. Mater. 2009, 21, 2098-2102.
32. Hong, P. N.; Bénalloul, P.; Guennouni-Assimi, Z.; Farha, R.; Bourdillon, C.; Fauré, M. C.; Goldmann, M.; Marcillac, W.; Coolen, L.; Maître, A.; Schwob, C. Optical Properties of an Opal with a Planar Defect Fabricated by Inverse Schaefer and Langmuir–Blodgett Techniques. Opt. Quant. Electron. 2014, 47, 55-65.
33. Wang, H.; Robinson, J. T.; Li, X.; Dai, H. Solvothermal Reduction of Chemically Exfoliated Graphene Sheets. ‎J. Am. Chem. Soc. 2009, 131, 9910-9911.
34. Garg, R.; Dutta, N. K.; Choudhury, N. R. Work Function Engineering of Graphene. Nanomaterials 2014, 4, 267-300.
35. Xu, Y.; Wang, Y.; Liang, J.; Huang, Y.; Ma, Y.; Wan, X.; Chen, Y. A Hybrid Material of Graphene and Poly (3,4-ethyldioxythiophene) with High Conductivity, Flexibility, and Transparency. Nano Res. 2009, 2, 343-348.
36. Ouyang, J.; Xu, Q.; Chu, C.-W.; Yang, Y.; Li, G.; Shinar, J. On the Mechanism of Conductivity Enhancement in Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Film Through Solvent Treatment. Polymer 2004, 45, 8443-8450.
37. Mengistie, D. A.; Ibrahem, M. A.; Wang, P.-C.; Chu, C.-W. Highly Conductive PEDOT:PSS Treated with Formic Acid for ITO-Free Polymer Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 2292-2299.
38. Ouyang, J. Solution-Processed PEDOT:PSS Films with Conductivities as Indium Tin Oxide Through a Treatment with Mild and Weak Organic Acids. ACS Appl. Mater. Interfaces 2013, 5, 13082-13088.
39. Beaujuge, P. M.; Reynolds, J. R. Color Control in π-Conjugated Organic Polymers for Use in Electrochromic Devices. ‎Chem. Rev. 2010, 110, 268-320.
40. Singh, R.; Tharion, J.; Murugan, S.; Kumar, A. ITO-Free Solution-Processed Flexible Electrochromic Devices Based on PEDOT:PSS as Transparent Conducting Electrode. ACS Appl. Mater. Interfaces 2017, 9, 19427-19435.
41. Ghosh, A.; Norton, B. Interior Colour Rendering of Daylight Transmitted Through a Suspended Particle Device Switchable Glazing. Sol. Energy Mater. Sol. Cells 2017, 163, 218-223.
42. Lee, S. C.; Some, S.; Kim, S. W.; Kim, S. J.; Seo, J.; Lee, J.; Lee, T.; Ahn, J. H.; Choi, H. J.; Jun, S. C. Efficient Direct Reduction of Graphene Oxide by Silicon Substrate. Sci. Rep. 2015, 5, 12306.
43. Huang, S. Y.; Zhao, B.; Zhang, K.; Yuen, M. M.; Xu, J. B.; Fu, X. Z.; Sun, R.; Wong, C. P. Enhanced Reduction of Graphene Oxide on Recyclable Cu Foils to Fabricate Graphene Films with Superior Thermal Conductivity. Sci. Rep. 2015, 5, 14260.
44. Zhao, J.; Pei, S.; Ren, W.; Gao, L.; Cheng, H.-M. Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films. ACS Nano 2010, 4, 5245-5252.
45. Savchak, M.; Borodinov, N.; Burtovyy, R.; Anayee, M.; Hu, K.; Ma, R.; Grant, A.; Li, H.; Cutshall, D. B.; Wen, Y.; Koley, G.; Harrell, W. R.; Chumanov, G.; Tsukruk, V.; Luzinov, I. Highly Conductive and Transparent Reduced Graphene Oxide Nanoscale Films via Thermal Conversion of Polymer-Encapsulated Graphene Oxide Sheets. ACS Appl. Mater. Interfaces 2018, 10, 3975-3985.
46. Menamparambath, M. M.; Yang, K.; Kim, H. H.; Bae, O. S.; Jeong, M. S.; Choi, J. Y.; Baik, S. Reduced Haze of Transparent Conductive Films by Smaller Diameter Silver Nanowires. Nanotechnology 2016, 27, 465706.
47. Yoo, B.; Shin, K. R.; Hwang, D. Y.; Lee, D. H.; Shin, D. H. Effect of Surface Roughness on Leakage Current and Corrosion Resistance of Oxide Layer on AZ91 Mg Alloy Prepared by Plasma Electrolytic Oxidation. Appl. Surf. Sci. 2010, 256, 6667-6672.
48. Kim, J.; Lim, J. W.; Mota, F. M.; Lee, J. E.; Boppella, R.; Lim, K. Y.; Kim, K.; Choi, W. K.; Kim, D. H. Reduced Graphene Oxide Wrapped Core-Shell Metal Nanowires as Promising Flexible Transparent Conductive Electrodes with Enhanced Stability. Nanoscale 2016, 8, 18938-18944.
49. Zhu, Z.; Mankowski, T.; Balakrishnan, K.; Shikoh, A. S.; Touati, F.; Benammar, M. A.; Mansuripur, M.; Falco, C. M. Ultrahigh Aspect Ratio Copper-Nanowire-Based Hybrid Transparent Conductive Electrodes with PEDOT:PSS and Reduced Graphene Oxide Exhibiting Reduced Surface Roughness and Improved Stability. ACS Appl. Mater. Interfaces 2015, 7, 16223-16230.
50. Zhang, B.; Liu, D.; Liang, Y.; Zhang, D.; Yan, H.; Zhang, Y. Flexible Transparent and Conductive Films of Reduced-Graphene-Oxide Wrapped Silver Nanowires. Mater. Lett. 2017, 201, 50-53.
51. Zhao, F.-G.; Kong, Y.-T.; Xu, Z.-W.; Yao, X.; Zuo, B.; Li, W.-S. High-Performance Flexible Transparent Conductive Films Achieved by Cooperation between 1D Copper Nanowires and 2D Graphene Materials. J. Mater. Chem. C 2017, 5, 5509-5516.
52. Dou, L.; Cui, F.; Yu, Y.; Khanarian, G.; Eaton, S. W.; Yang, Q.; Resasco, J.; Schildknecht, C.; Schierle-Arndt, K.; Yang, P. Solution-Processed Copper/Reduced-Graphene-Oxide Core/Shell Nanowire Transparent Conductors. ACS Nano 2016, 10, 2600-2606.
53. He, L.; Tjong, S. C. Silver-Decorated Reduced Graphene Oxides as Novel Building Blocks for Transparent Conductive Films. RSC Adv. 2017, 7, 2058-2065.
54. Chen, C.; Yang, Q. H.; Yang, Y.; Lv, W.; Wen, Y.; Hou, P. X.; Wang, M.; Cheng, H. M. Self‐Assembled Free‐Standing Graphite Oxide Membrane. Adv. Mater. 2009, 21, 3007-3011.
55. Han, X.-W.; Meng, X.-Z.; Zhang, J.; Wang, J.-X.; Huang, H.-F.; Zeng, X.-F.; Chen, J.-F. Ultrafast Synthesis of Silver Nanoparticle Decorated Graphene Oxide by a Rotating Packed Bed Reactor. Ind. Eng. Chem. Res. 2016, 55, 11622-11630.
56. Dong, H.; Wu, Z.; Jiang, Y.; Liu, W.; Li, X.; Jiao, B.; Abbas, W.; Hou, X. A Flexible and Thin Graphene/Silver Nanowires/Polymer Hybrid Transparent Electrode for Optoelectronic Devices. ACS Appl. Mater. Interfaces 2016, 8, 31212-31221.
57. Lan, W.-J.; Chen, C.-H. Hybridization of Graphene in 3D Complex Nanovoids: Synergistic Nanocomposites for Electrocatalytic Reduction of Hydrogen Peroxide. ‎Electrochim. Acta 2015, 180, 1014-1022.
58. Rao Vusa, C. S.; Manju, V.; Berchmans, S.; Arumugam, P. Electrochemical Amination of Graphene Using Nanosized PAMAM Dendrimers for Sensing Applications. RSC Adv. 2016, 6, 33409-33418.
59. Lin, Z.; Liu, Y.; Wong, C.-p. Facile Fabrication of Superhydrophobic Octadecylamine-Functionalized Graphite Oxide Film. Langmuir 2010, 26, 16110-16114.
60. Chakraborty, S.; Saha, S.; Dhanak, V. R.; Biswas, K.; Barbezat, M.; Terrasi, G. P.; Chakraborty, A. K. High Yield Synthesis of Amine Functionalized Graphene Oxide and Its Surface Properties. RSC Adv. 2016, 6, 67916-67924.
61. L. G. Wade, Organic Chemistry 8th ed.; Pearson: London, 2013.
62. Shi, L.; Yang, J.; Yang, T.; Hanxun, Q.; Li, J.; Zheng, Q. Molecular Level Controlled Fabrication of Highly Transparent Conductive Reduced Graphene Oxide/Silver Nanowire Hybrid Films. RSC Adv. 2014, 4, 43270-43277.
63. Wu, X.; Liu, J.; Wu, D.; Zhao, Y.; Shi, X.; Wang, J.; Huang, S.; He, G. Highly Conductive and Uniform Graphene Oxide Modified PEDOT:PSS Electrodes for ITO-Free Organic Light Emitting Diodes. J. Mater. Chem. C 2014, 2, 4044-4050.
64. Esquinazi, P.; Barzola-Quiquia, J.; Dusari, S.; García, N. Length Dependence of the Resistance in Graphite: Influence of Ballistic Transport. J. Appl. Phys. 2012, 111, 033709.
65. Chou, T.-R.; Chen, S.-H.; Chiang, Y.-T.; Chang, T.-T.; Lin, C.-W.; Chao, C.-Y. Highly Conductive PEDOT:PSS Film by Incorporating Secondary Doping and Post-Treatment for ITO-Free Polymer Dispersed Liquid Crystal Display. Mol. Cryst. Liq. Cryst. 2017, 647, 28-36.
66. Zhang, Y.; Shao, L.; Li, J.; Xu, Q.; Liu, L.; Zhang, H.; Kou, S.; Wang, Y. Effect of rGO on Polymer-Dispersed Liquid Crystal Fabricated by RAFT Polymerisation. Liq. Cryst. 2015, 42, 1428-1435.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code