Responsive image
博碩士論文 etd-0507107-182850 詳細資訊
Title page for etd-0507107-182850
論文名稱
Title
多輸入多輸出系統的最佳線性傳收機設計 : 一種斜投影的架構
Optimum Linear Transceiver Design for MIMO Systems : An Oblique Projection Framework
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-04-27
繳交日期
Date of Submission
2007-05-07
關鍵字
Keywords
符碼間干擾、區塊間干擾、通道資訊、串接式等化器、區塊傳輸系統、斜投影、迫零、前置編碼器
oblique projection, inter-symbol interference, precoder, inter-block interference, channel state information, cascaded equalizer, Block transmission systems, zero-forcing
統計
Statistics
本論文已被瀏覽 5747 次,被下載 0
The thesis/dissertation has been browsed 5747 times, has been downloaded 0 times.
中文摘要
從過去的研究結果顯示,很多目前使用的通訊系統是可以單用一個整合型的多重速率濾波器組傳收機模型建置完成。在文獻上,利用這個整合型的多重速率濾波器組傳收機模型來實現一個具冗餘資料量的區塊傳輸系統,我們通常稱為多重輸入多重輸出(Multiple-Input-Multiple-Output, MIMO)系統。本篇論文將利用所提出的斜投影架構,針對多輸入多輸出系統在具完美重建(Perfect Reconstruction, PR)通道下,設計一個最佳的單區塊基底的前置編碼器及其相對應的等化器。我們特別探討在一個有限傳送功率的數位通訊系統鏈結中最感興趣的兩個衡量標準,即平均位元錯誤率的最小化與相互資訊量的最大化。本篇論文的研究架構發展如下。
首先,針對一個使用單區塊基底前置編碼器的系統,我們將建立一個接收訊號模型能相容於堆零(Trailing Zeros, TZ)與循環前置(Cyclic-Prefix, CP)兩種冗餘資料形式。然後,針對區塊傳輸系統(即多輸入多輸出系統),我們利用斜投影的特性,提出一個串接式等化器(Cascaded equalizer)。在這個串接式等化器的實現機制中,區塊間干擾將可以先被斜投影完整地消除,爾後伴隨提供一具自由度矩陣來等化區塊內的符碼間干擾。當傳送端具有完整通道資訊,且在無符碼間干擾與有限傳送功率的條件限制下,我們將利用所提出串接式等化器中的自由度矩陣,設計一個能滿足最低平均位元錯誤率(或最大相互資訊量)的最佳單區塊基底前置編碼器。於是,這個能滿足無符碼間干擾條件的串接式等化器變成一個串接式迫零(Zero-forcing, ZF)等化器。藉由理論的推導證實與模擬的結果顯示,本篇論文所提出的設計架構,不但在具充份冗餘資料量的環境下可以與過去文獻結果保持相同的錯誤率及相互資訊量,並且可以將文獻上的結果延伸至不具充份冗餘資料量的區塊傳輸環境。
Abstract
Previous studies have demonstrated that many existing communication systems can be formulated within a unified multirate filterbank transceiver model. A redundant block transmission system implemented via this unified multirate filterbank transceiver model is usually known as a multiple-input-multiple-output (MIMO) system in literature. This dissertation devises an optimum linear block-based precoder and the corresponding equalizer for MIMO systems over perfect reconstruction (PR) channels by exploiting the proposed oblique projection framework. Particularly, two main criteria of interest in a digital communication link with limited transmission power are investigated, namely, average bit error rate (BER) minimization and mutual information rate maximization. The study framework is developed as follows. For a block-based precoder, a received signal model is formulated for the two redundancy schemes, viz., trailing-zeros (TZ) and cyclic-prefix (CP). By exploiting the property of oblique projection, a cascaded equalizer for block transmission systems (i.e., MIMO systems) is proposed and implemented with a scheme, in which the inter-block interference (IBI) is completely eliminated by the oblique projection and followed by a matrix degree of freedom for inter-symbol interference (ISI) equalization. With the available channel state information at the transmitter side, the matrix for ISI equalization of the cascaded equalizer is utilized to design an optimum linear block-based precoder, such that the BER is minimized (or the mutual information rate is maximized), subject to the ISI-free and the transmission power constraints. Accordingly, the cascaded equalizer with the ISI-free constraint yields a cascaded ZF equalizer. Theoretical derivations and simulation results confirm that the proposed framework not only retains identical BER and information rate performances to previous works for cases with sufficient redundancy, but also allows their results to be extended to the cases of insufficient redundancy.
目次 Table of Contents
Chapter 1 Introduction ..1
1.1 Literature survey ..2
1.2 Problem statement and objective of this dissertation ..7
1.3 Organization of this dissertation ..9
Chapter 2 Zero-Forcing Equalizer for Redundant Block Transmissions ..12
2.1 Introduction ..12
2.2 Signal model for redundant block transmissions ..13
2.2.1 General block transmission signal model ..13
2.2.2 Signal model for block-based precoding ..15
2.3 Zero-forcing equalizer with oblique projection ..18
2.3.1 Oblique projections ..18
2.3.2 The zero-forcing equalizer for block transmission systems ..18
2.4 Decomposition of the zero-forcing equalizer ..22
2.5 Remarks ..23
2.6 Computer simulations ..26
2.7 Summary ..30
Chapter 3 Minimum BER Block-Based Precoder Design for Zero-Forcing Equalization ..38
3.1 Introduction ..38
3.2 New equalizing scheme and minimum BER precoder design ..39
3.2.1 A new equalizing scheme ..39
3.2.2 Minimum BER precoder ..41
3.3 Remarks ..47
3.4 Computer simulations ..48
3.5 Summary ..51
Chapter 4 Maximum Information Rate Block-Based Precoder Design with Cascaded Equalizer ..59
4.1 Introduction ..59
4.2 Maximum information rate precoder design ..60
4.2.1 Lemma of maximum information rate for block transmissions ..60
4.2.2 Maximum information rate precoder ..61
4.3 Remarks ..63
4.4 Computer simulations ..64
4.5 Summary ..67
Chapter 5 Concluding Remarks ..77
Appendix A Derivation of the equivalency of the BER performance indicated in Fig. 3.2(b) and Fig. 3.2(c) 81
Appendix B Proof of Theorem 3 ..83
Bibliography ..84
參考文獻 References
[1] R. Van Nee, R. Prasad, OFDM Wireless Multimedia Communication, Artech House, Boston, 2000.
[2] A. Scaglione, G. B. Giannakis, and S. Barbarossa, “Redundant filterbank precoders and equalizers ─ Part I: Unification and optimal designs,” IEEE Trans. Signal Processing, vol 47, pp. 1988-2006, July 1999.
[3] S. Haykin, Adaptive Filter Theory. Fourth Ed. NJ. Prentice-Hall, 2002.
[4] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency-division multiplexing using discrete Fourier transform,” IEEE Trans. Commun., vol.19, pp. 628-634, Oct. 1971.
[5] IEEE Std 802.11a: “Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: high-speed physical layer in the 5 GHz band,” Sep. 1999.
[6] C.-H. Wu and S. J. Chern, “A novel zero-order FIR zero-forcing filterbanks equalizer using oblique projector approach for OFDM systems, “ IEICE Trans. Commun., vol. E88-B, no.12, pp. 4545-4557, Dec. 2005.
[7] A. Scaglione, G. B. Giannakis, and S. Barbarossa, “Redundant filterbank precoders and equalizers-Part II: Blind channel estimation, synchronization, and direct equalization,” IEEE Trans. Signal Processing, vol 47, pp. 2007-2022, July 1999.
[8] J. G. Proakis, Digital Communications. New York: McGraw-Hill, 2001.
[9] A. N. Akansu, P. Duhamel, X. Lin, and M. de Courville, “Orthogonal transmultiplexers in communication: A review,” IEEE Trans. Signal Processing, vol. 46, pp. 979-995, Apr. 1998.
[10] Y. Ding, T. N. Davidson, Z.-Q. Luo, and K. M. Wong, “Minimum BER block precoders for zero-forcing equalization,” IEEE Trans. Signal Processing, vol. 51, no. 7, pp. 2410-2423, Sep. 2003.
[11] Y.–P. Lin and S.-M. Phoong, “Perfect discrete multitone modulation with optimal transceivers,” IEEE Trans. Signal Processing, vol.48, no.6, pp. 1702-1711, June. 2000.
[12] R. T. Behrens and L.L. Scharf, “Signal processing applications of oblique projection operators,” IEEE Trans. Signal Processing, vol. 42, pp. 1413-1424, June 1994.
[13] P. L. Ainsleigh, “Observations on Oblique Projectors and Pseudoinverses,” IEEE Trans. Signal Processing, vol. 45, no. 7, pp. 1886-1889, July 1997.
[14] Asymmetric Digital Subscriber Lines(ADSL)-Metallic Interference, ANSI T1.413, 1998.
[15] J. A. Bingham, “Multicarrier modulation for data transmission: An idea whose time has come, ” IEEE Commun. Mag., vol. 28, pp. 5-14, May 1990.
[16] J. S. Chow, J. C. Tu, and J. M. Cioffi, “Performance evaluation of a multichannel transceiver system for ADSL and VHDSL receivers, ” IEEE J. Select. Areas Commun., vol. 9, pp. 909-919, Aug, 1991.
[17] N. J. Fliege, “Orthogonal multiple carrier data transmission,” Euro. Trans. Telecommun., vol. 3, no. 3, pp. 255-264, May 1992.
[18] J. S. Chow, J. C. Tu, and J. M. Cioffi, “A discrete multitone transceiver system for HDSL applications, ” IEEE J. Select. Areas Commun., vol. 9, pp. 895-908, Aug, 1991.
[19] G. D. Forney, Jr. and M. V. Eyuboğlu, “Combined equalization and coding using precoding,” IEEE Commun. Mag., pp. 25-34, Dec. 1991.
[20] A. Scaglione, S. Barbarossa, and G. B. Giannakis, “Filterbank transceivers optimizing information rate in block transmissions over dispersive channels,” IEEE Trans. Inform. Theory, vol. 45, pp. 1019-1032, April 1999.
[21] C.-H. Wu and S. J. Chern, "A novel decomposed FIR zero-forcing filterbanks equalizer for OFDM Systems," Proc. of International Symposium on Intelligent Signal Processing and Communication Systems, Hong Kong, Dec. 2005, pp. 281-284.
[22] G. H. Golub and C.F. V. Loan, Matrix Computations, Second ed. Baltimore, MD: John Hopkins Univ. Press, 1989.
[23] X. G. Xia, “New precoding for intersymbol interference cancellation using nonmaximally decimated multirate filterbanks with ideal FIR equalizers,” IEEE Trans. Signal Processing, vol. 45, no. 10, pp. 2431-2441, Oct. 1997.
[24] G. Cherubini, E. Eleftheriou, and S. Ölçer, “Filtered multitone modulation for very high-speed digital subscriber lines,” IEEE J. Select. Areas Commun., vol. 20, no. 5, pp. 1016-1028, June, 2002.
[25] D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint tx-rx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization,” IEEE Trans. Signal Processing, vol. 51, no. 7, pp. 2381-2401, Sep. 2003.
[26] S.-Y. Kung, Y. Wu, and X. Zhang, “Bezout space-time precoders and equalizers for MIMO channels,” IEEE Trans. Signal Processing, vol. 50, no. 10, pp. 2499-2514, Oct. 2002.
[27] Y.-P. Lin and S.-M. Phoong, “Minimum redundancy for ISI free FIR filterbank transceivers,” IEEE Trans. Signal Processing, vol. 50, no. 4, pp. 842-853, Apr. 2002.
[28] B. Vrcelj, and P. P. Vaidyanathan, “MIMO biorthogonal partners and applications,” IEEE Trans. Signal Processing, vol. 50, no. 3, pp. 528-542, Mar. 2002.
[29] V. Pohl, V. Jungnickel, and C. von Helmolt, “The algebraic structure of frequency-selective MIMO channels,” IEEE Trans. Signal Processing, vol. 53, no. 7, pp. 2498-2512, July. 2005.
[30] D. P. Palomar, M. Bengtsson, and B. Ottersten, “Minimum BER linear transceivers for MIMO channels via primal decomposition,” IEEE Trans. Signal Processing, vol. 53, no. 8, pp. 2866-2882, Aug. 2005.
[31] A. Pezeshki, L. L. Scharf, M. R. Azimi-Sadjadi, and Y. Hua, “Two-channel constrained least squares problems: solutions using power methods and connections with canonical coordinates,” IEEE Trans. Signal Processing, vol. 53, no. 1, pp. 121-135, Jan. 2005.
[32] P. P. Vaidyanathan, “Filter banks in digital communications,” IEEE Circuits Syst. Mag., vol. 1, pp. 4-25, Feb. 2001.
[33] R. Gray. Toeplitz and Circulant Matrices: A Review. Available online at http://www.isl.stanford.edu/~gray/toeplitz.pdf, 2001.
[34] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 1991.
[35] T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980.
[36] J. W. Brewer, “Kronecker Products and Matrix Calculus in System Theory,” IEEE Trans. on Circuits and Systems, vol. 25, no.9, pp. 772-781, Sept. 1978.
[37] S. S. Chan, T. N. Davidson, and K. M. Wong, “Asymptotically minimum BER linear block precoders for MMSE equalization,” IEE Proc. Commun., vol. 151, no. 4, pp. 297-304, Aug. 2004.
[38] Y. –P. Lin and S.-M. Phoong, “BER minimized OFDM systems with channel independent precoders,” IEEE Trans. Signal Processing, vol.51, no.9, pp. 2369-2380, Sep. 2003.
[39] S. Zhou and G. B. Giannakis, “Space-Time coding with maximum diversity gains over frequency-selective fading channels,” IEEE Signal Processing Letters, vol. 8, no. 10, pp. 269-272, Oct. 2001.
[40] W. Y. Zou and Y. Wu, “COFDM: An overview,” IEEE Trans. Broadcast., vol. 41, pp. 1-8, Mar. 1995.
[41] J. Terry and J. Heiskala, OFDM Wireless LANs: A theoretical and practical guide, Indiana: SAMS, 2001.
[42] R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission,” Bell Syst. Tech. J., vol. 45, pp. 1775-1796, Dec. 1966.
[43] S. D. Sandberg and M. A. Tzannes, “Overlapped discrete multitone modulation for high speed copper wire communications,” IEEE J. Select. Areas Commun., vol. 13, pp. 1571-1585, Dec. 1995.
[44] E. Nikula, A. Toskala, E. Dahlman, L. Girard, and A. Klein, “FRAMES multiple access for UMTS and IMT-2000,” IEEE Trans. Prof. Commun., vol. 41, pp. 216-224, Apr. 1998.
[45] 3GPP, TS 25.211~ TS 25.215, release 1999.
[46] S. J. Leon, Linear Algebra with Applications. NJ: Prentice-Hall, 1998.
[47] IEEE Std 802.11g: “Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Amendment 4: further higher data rate extension in the 2.4 GHz band,” Jun. 2003.
[48] ETSI, “Broadband radio access networks (BRAN); HIPERLAN type 2 technical specification part 1-physical layer,” Oct. 1999.
[49] ETSI, ”Radio broadcasting systems: digital audio broadcasting to mobile, portable and fixed receivers,” European Telecommunication Standard, ETS 300-401, Feb. 1995.
[50] ETSI, “Digital video broadcasting: framing structure, channel coding, and modulation for digital terrestrial television,” European Telecommunication Standard, EN 300-744, Aug. 1997.
[51] N. Al-Dhahir and J. M. Cioffi, “Block transmission over dispersive channels: Transmit filter optimization and realization, and MMSE-DFE receiver performance,” IEEE Trans. Inform. Theory, vol. 42, pp.137-160, Jan. 1996.
[52] G. G. Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless communication,” IEEE Trans. Commun., vol. 46, pp. 357-366, Mar. 1998.
[53] Z. Wang and G. B. Giannakis, “Wireless multicarrier communications: Where Fourier meets Shannon,” IEEE Signal Processing Mag., vol. 17, pp. 29-48, May 2000.
[54] E. N. Onggosanusi, A. M. Sayeed, and B. D. V. Veen, “Efficient signaling schemes for wideband space-time wireless channels using channel state information,” IEEE Trans Veh. Technol., vol. 52, no. 1, pp. 1-13, Jan. 2003.
[55] G. Cherubini, E. Eleftheriou, and S. Ölçer, “Filtered multitone modulation for very high-speed digital subscriber lines,” IEEE Commun. Mag., vol. 38, no. 5, pp. 98-104, May 2000.
[56] A. Ruiz, J. M. Cioffi, and S. Kastruria, “Discrete multiple tone modulation with coset coding for the spectrally shaped channel,” IEEE Trans. Commun., vol. 40, no. 6, pp. 1012-1029, June 1992.
[57] S. Kasturia, J. T. Aslanis, and J. M. Cioffi, “Vector coding for partial response channels,” IEEE Trans. Inform. Theory, vol. 36, pp. 741-762, July 1990.
[58] J. W. Lechleider, “The optimum combination of block codes and receivers for arbitrary channels,” IEEE Trans. Commun., pp. 615-621, May 1990.
[59] A. Scaglione, G. B. Giannakis, and S. Barbarossa, “Minimum redundancy filterbank precoders for blind channel identification irrespective of channel nulls,” in Proc. 1999 IEEE Wireless Communications and Networking Conf., New Orleans, LA, Sept. 1999, pp. 785-789.
[60] A. Stamoulis, G. B. Giannakis, and A. Scaglione, “Block FIR decision-feedback equalizers for filterbank precoded transmissions with blind channel estimation capabilities,” IEEE Trans. Commun., vol. 49, pp. 69-83, Jan. 2001.
[61] B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, and P. Duhamel, “Cyclic prefixing or zero padding for wireless multicarrier transmissions?,” IEEE Trans. Commun., vol. 50, pp. 2136-2148, Dec. 2002.
[62] Z. Wang, X. Ma, and G. B. Giannakis, “OFDM or single-carrier block transmissions?,” IEEE Trans. Commun., vol. 52, pp. 380-394, March 2004.
[63] G. Wornell, “Emerging applications of multirate signal processing and wavelets in digital communications,” Proc. IEEE, vol. 84, pp. 586-603, Apr. 1996.
[64] G. B. Giannakis, “Filterbanks for blind channel identification and equalization,” IEEE Signal Processing Letters, vol. 8, no. 10, pp. 269-272, Oct. 2001.
[65] G. B. Giannakis, Z. Wang, A. Scaglione, and S. Barbarossa, “AMOUR-Generalized multicarrier transceivers for blind CDMA regardless of multipath,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2064-2076, Dec. 2000.
[66] A. Stamoulis, W. Tang, and G. B. Giannakis, “Information rate maximizing FIR transceivers: Filterbank precoders and decision-feedback equalizers for block transmissions over dispersive channels,” in Proc. GLOBECOM’99, Rio de Janeiro, Brazil, Dec. 1999, pp.2142-2146.
[67] M. Tomlinson, “New automatic equalizer employing modulo arithmetic,” Electron. Lett., vol. 7, pp. 138-139, Mar. 1971.
[68] H. Harashima and T. Miyakawa, “Matched-transmission technique for channels with intersymbol interference,” IEEE Trans. Commun., vol. COM-20, pp. 774-780, Aug. 1972.
[69] K. H. Lee and D. P. Petersen, “Optimal linear coding for vector channels,” IEEE Trans. Commun., vol. COM-24, pp. 1283-1290, Dec. 1976.
[70] J. Salz, “Digital transmission over cross-coupled linear channels,” AT&T Tech. J., vol. 64, no. 6, pp. 1147-1159, July-Aug. 1985.
[71] J. Yang and S. Roy, “On joint transmitter and receiver optimization for multi-input multi-output (MIMO) transmission systems,” IEEE Trans. Commun., vol. 42, pp. 3221-3231, Dec. 1994.
[72] J. Yang and S. Roy, “Joint transmitter-receiver optimization for multi-input multi-output systems with decision feedback,” IEEE Trans. Inform. Theory, vol. 40, pp. 1334-1347, Sept. 1994.
[73] H. Sampath, P. Stoica, and A. Paulraj, “Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion,” IEEE Trans. Commun., vol. 49, pp. 2198-2206, Dec. 2001.
[74] A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath, “Optimal designs for space-time linear precoders and decoders,” IEEE Trans. Signal Processing, vol. 50, pp. 1051-1064, May 2002.
[75] C. -H. Wu and S. J. Chern, “Minimum BER block-based precoder design for zero-forcing equalization: An oblique projection framework,” IEEE Trans. Signal Processing (Accepted for publication as a regular paper), 2007.
[76] I. Kalet, “The multitone channel,” IEEE Trans. Commun., vol. 37, pp. 119-124, Feb. 1989.
[77] T. de Couasnon, R. Monnier, and J. B. Rault, “OFDM for digital TV broadcasting,” Signal Process., vol. 39, no. 1-2, pp. 1-32, Sept. 1994.
[78] R. G. Gallager, Information Theory and Reliable Communication. New York: Wiely, NY, 1968.
[79] A. Paulraj, R. Nabar, and D. Gore, “Introduction to space-time wireless communications,” Cambridge University Press 2003.
[80] G. K. Kaleh, “Channel equalization for block transmission system,” IEEE J. Select. Areas Commun., vol. 13, pp. 110-121, Jan, 1995.
[81] D. P. Palomar and J. R. Fonollosa, “Practical algorithms for a family of waterfilling solutions,” IEEE Trans. Signal Processing, vol. 53, no. 2, pp. 686-695, Feb. 2005.
[82] J. M. Cioffi, “A multicarrier primer,” ANSI TIE1.4 Committee Contribution, Nov, 1991.
[83] “Orthogonal Frequency Division Multiplexing,” U.S. Patent No. 3, 488,4555, filed November 14, 1966, issued Jan. 1970.
[84] T. Pollet, P. Spruyt, and M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and wiener phase noise,” IEEE Trans. Commun., vol. 43, pp. 191-193, Feb. 1995.
[85] J. L. Holsinger, “Digital communication over fixed-time dispersive channels,” in First IEEE Ann. Commun. Conv., June 1965, pp. 731-735.
[86] H. S. Markel and D. H. Staelin, “Optimal pre- and postfilters for multichannel signal processing, “IEEE Trans. Acoust. Speech Signal Processing, vol.36, no.2, pp. 287-289, Feb. 1988.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.129.100
論文開放下載的時間是 校外不公開

Your IP address is 18.218.129.100
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code