Responsive image
博碩士論文 etd-0507116-102706 詳細資訊
Title page for etd-0507116-102706
論文名稱
Title
結合濕法冶金及離子液體回收汽車廢觸媒轉化器中貴金屬之技術開發
Developing the Technology of Hydrometallurgy with Ionic Liquids to Recovery Precious Metals from Spent Automotive Catalysts
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-20
繳交日期
Date of Submission
2016-07-14
關鍵字
Keywords
汽車廢觸媒轉化器、離子液體、鋅粉置換、濕法冶金、貴金屬
Precious Metal, Spent Automotive Catalysts, Ionic Liquid, Hydrometallurgical, Zn Replacement
統計
Statistics
本論文已被瀏覽 5797 次,被下載 47
The thesis/dissertation has been browsed 5797 times, has been downloaded 47 times.
中文摘要
汽車觸媒轉化器在煙道的空氣污染控制上扮演相當重要的角色,藉由觸媒擔體中之貴金屬Pt與Rh,可促進未完全燃燒之CO及HC進行氧化反應為無害氣體。貴金屬Pt與Rh在地殼中濃度分別約為0.05 mg/kg與0.001 mg/kg,含量相當稀少,加上近年來全球對於貴金屬需求大於供給,導致貴金屬價格上漲。綜觀上述情形,從廢棄的汽車觸媒轉化器來回收貴金屬被視為重要的途徑之一。
本研究首先將汽車廢觸媒轉化器之外殼拆解,取出內部含貴金屬之載體,研磨成粉狀後以60 mesh篩網過篩,再以濕法冶金將載體中貴金屬浸漬溶出至王水中,接著利用鋅粉將貴金屬Pt與Rh從王水中置換析出,達到與其他基本金屬分離及提高純度之目的,析出之貴金屬Pt與Rh則富集於王水中形成貴金屬富集液。
接著利用具低揮發性且可回收再利用之離子液體,將貴金屬Pt與Rh分離萃取,並以實驗設計法進行貴金屬Pt萃取之萃取試驗,設定的參數有pH、反應時間、離子液體濃度及螯合劑濃度,並將實驗結果藉由反應曲面法分析最佳操作條件。以最佳操作條件進行驗證,Pt萃取率皆可達到100%。萃取完畢後以氯化銨(NH4Cl)溶液來沉澱離子液體中之貴金屬Pt,將生成之六氯鉑酸銨((NH4)2PtCl6)放入高溫爐中以1000 ℃鍛燒兩小時後,即可得到純度99.95%之海綿Pt,符合電子材料及界面活性劑所需之純度。
Abstract
The automotive catalytic converters play an important role in the control of air pollutants. The incomplete combustion of CO and HC could be oxidized as a harmless gas by the precious metal−platinum (Pt) and rhodium (Rh), but the concentrations of Pt and Rh in the earth crust are about 0.05 mg/kg and 0.001mg/kg which are quite rare. In additional, the global demand of precious metal has more than the supply leading to higher prices in recently years. Accordingly, Recovery of precious metals from spent automotive catalysts has been seen as an important approach.
First of the study, the shell of the spent automotive catalysts would be cut off to obtain the carrier. The carrier were ground to appear in the powdery, then sieved by 60 mesh. Second, the precious metals of carrier would be stripped with the aqua regia. The next step was to precipitate the Pt and Rh out of the solution by adding the zinc (Zn) powder to form a replacement and achieve the purpose of purify increasing. The Pt and Rh would be dissolved into aqua regia as the enriched solution.
The ionic liquid that has the properties of low volatile and recyclable was adopted to extract and separate the Pt from the Rh of enriched solution. And the experimental design method with parameters of pH, reaction time, concentrations of ionic liquid and chelators was used to carry on the test. Subsequently, the results would be analyzed by the response surface methodology to obtain the optimum operating conditions. Then, the NH4Cl(aq) was added into the ionic liquid that contained the Pt, and the (NH4)2PtCl6)(s) was formed. In the end, the (NH4)2PtCl6(s) was calcined under 1000 ℃ for 2 hours by the high-temperature furnace. The Pt sponge of 99.95% purifies which could be applied on the electric materials and surfactants were obtained.
目次 Table of Contents
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 汽車觸媒轉化器 4
2-1-1汽車觸媒轉化器催化反應原理 5
2-1-2觸媒擔體之化學性質 6
2-2 鉑族金屬 7
2-2-1鉑、鈀及銠的性質與用途 8
2-3 貴金屬回收狀況 9
2-3-1國內貴金屬回收情形 10
2-3-2國外貴金屬回收情形 11
2-4貴金屬回收方法 12
2-4-1濕法冶金 12
2-4-2火法冶金 15
2-5貴金屬之鋅粉置換反應 16
2-6離子液體簡介 17
2-6-1離子液體之特性 18
2-6-2離子液體之優勢 20
2-6-3離子液體之應用 21
第三章 研究方法 22
3-1研究架構與流程 23
3-2實驗材料與藥品 24
3-3主要實驗項目 25
3-4實驗設備 29
3-5全因子實驗設計法 34
3-5-1變異數分析 35
3-5-2反應曲面法 36
第四章 結果與討論 37
4-1廢觸媒之元素全量分析 37
4-2貴金屬浸漬溶出 39
4-2-1貴金屬Pt之浸漬溶出結果 39
4-2-2貴金屬Rh之浸漬溶出結果 41
4-3鋅粉置換反應 43
4-3-1鋅粉置換貴金屬Pt之結果 44
4-3-2鋅粉置換貴金屬Rh之結果 47
4-4 [BMIM][PF6]萃取貴金屬Pt之結果 50
4-4-1 [BMIM][PF6]萃取貴金屬Pt之變異數分析 54
4-4-2 [BMIM][PF6]萃取貴金屬Pt之反應曲面 56
4-4-3 [BMIM][PF6]萃取貴金屬Pt之預測效用水準及驗證 62
4-5 [QP][Cl]萃取貴金屬Pt之結果 64
4-5-1 [QP][Cl]萃取貴金屬Pt之變異數分析 67
4-5-2 [QP][Cl]萃取貴金屬Pt之反應曲面 69
4-5-3 [QP][Cl]萃取貴金屬Pt之預測效用水準及驗證 75
4-6 [QP][Bis]萃取貴金屬Pt之結果 77
4-6-1 [QP][Bis]萃取貴金屬Pt之變異數分析 80
4-6-2 [QP][Bis]萃取貴金屬Pt之反應曲面 82
4-6-3 [QP][Bis]萃取貴金屬Pt之預測效用水準及驗證 88
4-7 NH4Cl沉澱含貴金屬Pt之離子液體 90
4-8高溫鍛燒提純Pt之實驗 92
4-9離子液體回收再利用實驗 94
4-10實廠化分析 96
第五章 結論與建議 97
5-1結論 97
5-2建議 98
參考文獻 99
參考文獻 References
Argyle, M.D., Bartholomew C. H. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 2015; 5(1), 145-269.
Atilhan, M., Jacquemin, J., Rooney, D., Khraisheh, M., Aparicio, S. Viscous behavior of imidazolium-based ionic liquids. Ind Eng Chem Res 2013; 52, 16774-16785.
Baba, A.A., Ibrahim, L., Adekola, F.A., Bale, R.B., Ghosh, M.K., Sheik, A.R., Pradhan, S.R., Ayanda, O.S., Folorunsho, I.O. Hydrometallurgical processing of manganese ores: A review. Journal of Minerals and Materials Characterization and Engineering 2014; 2, 230-247.
Bardi, U., Caporali, S. Precious metals in automotive technology: An unsolvable depletion problem. Minerals 2014; 4(2), 388-398.
Belcastro, E.L., Clark, D.E., McGinnis, S.P., Pickrell, G.R., Holbrook, M.M. Life cycle analysis of a ceramic three-way catalytic converter. The Virginia Polytechnic Institute and State University 2012.
Boymans, E.H., Schouten, J.C., Vogt, D., Müller, C., Witte, P.T., Bitter, J.H., Richtering, W., Vlugt van der, J.I., Niemantsverdrie, J.W. Pd and Pt nanoparticles as selective hydrogenation catalysts. 2015.
Carrera, G.V.S.M., Zakrzewska, M.E., Nunes, A.V.M., Branco, L.C. Solubility of bioactive, inorganic and polymeric solids in ionic liquids — experimental and prediction perspectives. Ionic Liquids - Current State of the Art 2015.
Chauvin, Y., Olivier-Bourbigou, H. Nonaqueous. Ionic liquids as reaction solvents. Chemtech 1995; 25, 26-30.
Cytec Industries Inc. Trihexyl(tetradecyl)phosphonium chloride. 2008.
Danzaki, Y., Ashino, T. New convenient dissolution of iron-rhodium alloys using hydrochloric acid containing a small amount of nitric acid without heating for an ICP-AES analysis. Analytical Sciences 2001; 17.
Davis, J.H., Wierzbicki, A. In proceedings of the symposium on advances in solvent selection and substitution for extraction. American Institute of Chemical Engineers 2000.
Ekmekyapar, A., Demirkıran, N., Künkül, A., Aktaş, E. Leaching of malachite ore in ammonium sulfate solutions and production of copper oxide. Braz. J. Chem. Eng. 2015, 32(1), 155-165.
Emak Refining & Recycling Systems. Catalytic converter solutions: Precious metal recovery from catalytic converters. 2015.
Faridbod, F., Ganjali, M.R., Norouzi, P., Riahi, S., Rashedi, H. Application of room temperature ionic liquids in electrochemical sensors and biosensors. CC BY-NC-SA 3.0 license 2011.
Flieger, J., Grushka, E.B., Czajkowska-Żelazko, A. Ionic liquids as solvents in separation processes. Austin J Anal Pharm Chem. 2014; 1(2), 1009.
Gabriela, V.F.M., José, R.P.T., Jesús, L.V.G., Guillermo, C., Tiburcio, M., Gregorio, G.Z. Kinetic aspects of gold and silver recovery in cementation with zinc powder and electrocoagulation iron process. Advances in Chemical Engineering and Science 2012; 2, 342-349.
Guillén-Hurtado, N., Rico-Pérez, V., García-García, A., Lozano-Castelló, D., Bueno-López, A. Three-way catalysts: past, present and future. Universidad Nacional de Colombia. Facultad de Minas 2012; 79, 114-121.
Harjanto, S., Cao, Y., Shibayama, A., Naitoh, I., Nanami, T., Kasahara, K., Okumura, Y., Liu, K., Fujita, T. leaching of Pt, Pd and Rh from automotive catalyst residue in various chloride based solutions. Materials Transactions 2006; 47(1), 129-135.
Hoffmann, J.E. Platinum group. Encyclopædia Britannica, Inc. 2015.
Hoffmann, J.E. Recovery of platinum-group metals from gabbroic rocks metals from auto catalysts. Process Applied Technology 1988; 40(6), 40-44.
Hussein, W.A.M., Attia, E.M., Ghayad, I.M., Ghanem, W.A.M. Electrochemical behavior and corrosion Inhibition of zinc electrode in solutions of (NH4)2SO4 containing. Researcher 2014; 6(1).
Jha, M.K., Lee, J.C., Kim, M.S., Jeong, J., Kim, B.S., Kumar, V. Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: A review. Hydrometallurgy 2013; 133, 23-32.
Johnson Matthet Precious Metals Management. Forecast of platinum supply & demand 2015.
Khaliq, A., Rhamdhani, M.A., Brooks, G., Masood, S. Metal extraction processes for electronic waste and existing industrial routes: A review and Australian rerspective. Resources 2014; 3(1), 152-179.
Khupse, N.D., Kumar, A. Ionic liquids: New materials with wide applications. Indian Journal of Chemistry 2010; 49A, 635-648.
Kim, C.H., Woo, S.I., Jeon, S.H., Recovery of patinum-group metals from recycled automotive catalytic converters by carbochlorination. Industrial Engineering Chemistry 2000; 39, 1186-1192.
Kim, J., Kang, J., Jeong, U., Kim, H., Lee, H. Catalytic, conductive, and transparent platinum nanofiber webs for FTO-free dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2013; 5(8), 3176-3181.
Kizilaslan, E., Aktaş, S., Şeşen, M.K. Towards environmentally safe recovery of platinum from scrap automotive catalytic converters. Turkish J. Eng. Env. Sci. 2009; 33, 83-90.
Kolliopoulos, G., Balomenos, E., Giannopoulou, I., Yakoumis, I., Panias, D. Behavior of platinum group metals during their pyrometallurgical recovery from spent automotive catalysts. . Open Access Library Journal 2014; 1, e736.
Lertlapwasin, R., Bhawawet, N., Imyim, A., Fuangswasdi, S. Ionic liquid extraction of heavy metal ions by 2-aminothiophenol in 1-butyl-3-methylimidazolium hexafluorophosphate and their association constants, Separation and Purification Technology 2010; 72, 70-76.
Li, Q., Qiao, F., Yu, L. Will vehicle and roadside communications reduce emitted air pollution? International Journal of Science and Technology 2015; 5, 1.
Li, W., Zhang, Z., Han, B., Hu, S., Xie, Y., Yang, G. Effect of water and organic solvents on the ionic dissociation of ionic liquids, J. Phys. Chem. 2007; 111, 6452-6456.
Li, Z., Sun, X., Liu, J. Ionic liquid as novel solvent for extraction and separation in analytical chemistry. Ionic Liquids: Applications and Perspectives 2011.
Liew, F.C. Publication on Pyrometallurgy versus Hydrometallurgy. Engineering Department, TES-AMM, Singapore 2008.
Ljubiša, M., Renata, K., Vojka, G., Radmila, M., Jelena, P. Leaching process of platinum metals from spent autocatalysts. 17th International Research/Expert Conference 2013.
Marciniak, A. The solubility parameters of ionic liquids. Int. J. Mol. Sci. 2010; 11(5), 1973-1990.
Martínez-Palou, R., Olivares-Xometl, O., Likhanova, N.V., Lijanova, I. Green” pericyclic reactions assisted by ionic liquids. Ionic Liquids - Current State of the Art 2015.
Muroi, T. Noble Metals: Role of precious metal catalysts. InTech 2012, DOI: 10.5772/34249.
Murugesan, S., Quintero, O.A., Chou, B.P., Xiao, P., Park, K., Hall, J.W., Jones, R.A., Henkelman, G., Goodenough, J.B., Stevenson, K.J. Wide electrochemical window ionic salt for use in electropositive metal electrodeposition and solid state Li-ion batteries. J. Mater. Chem. A 2014; 2, 2194.
Nischkauer, W., Neouze, M.A., Vanhaecke, F., Limbeck, A. Extraction and pre-concentration of platinum and palladium from microwave-digested road dust via ion exchanging mesoporous silica microparticles prior to their quantification by quadrupole ICP-MS. Microchim Acta 2015; 182, 2369-237.
Okorie, I.A., Enwistle, J., Dean, J.R. Platinum group elements in urban road dust. Current Science 2015; 109(5).
Olivotos, S., Economou-Eliopoulos, M. Gibbs free energy of formation for selected platinum group minerals (PGM). Geosciences 2016; 6(1), 2.
Parmentier, D., Valia, Y.A., Metz, S.J., Burheim, O.S., Kroon, M.C. Regeneration of the ionic liquid tetraoctylammonium oleate after metal extraction. Hydrometallurgy 2015; 158, 56-60.
Polinares. Fact Sheet: Platinum Group Metals. EU Policy on Natural Resources 2012.
Ratti, R. Ionic liquids: Synthesis and applications in catalysis. Advances in Chemistry 2014; 2014, 16.
Regel-Rosocka, M., Rzelewska, M., Baczynska, M., Janus, M., Wisniewski, M. Removal of palladium (ii) from aqueous chloride solutions with cyphos phosphonium ionic liquids as metal ion carriers for liquid-liquid extraction and transport across polymer inclusion membranes. Physicochem. Probl. Miner. Process. 2015; 51(2), 621-631.
Rehman, F., Malik, S.R., Khan, A.M., Zafar, M.S., Waqa, S. Chemical treatment of coal by alkali using leaching process. Sci.Int. (Lahore) 2015, 27(6); 6137-6140.
Reşitoğlu, İ.A., Altinişik, K., Keskin, A. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technologies and Environmental Policy 2015; 17(1), 15-27.
Saito, S., Ohno, O., Igarashi, S., Kato, T., Yamaguchi, H. Separation and recycling for rare earth elements by homogeneous liquid-liquid extraction (HoLLE) using a pH-responsive fluorine-based surfactant. Metals 2015; 5, 1543-1552.
Salman, A.U.R., Rønning, M., Holmen, A., Rytter, E., Tsakoumis, N. Surface modified γ-alumina supports for cobalt fischer-tropsch catalysts. Norwegian University of Science and Technology Department of Chemical Engineering 2015.
Shibuya, S., Ozawa, Y., Watanabe, K., Izuo, N., Toda, T., Yokote, K., Shimizu, T. Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice. PLoS ONE 9(10): e109288.
Sigma-Aldrich Co. LLC. Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate. 2016.
Smiglak, M., Pringle, J. M., Lu, X., Han, L., Zhang, S., Gao, H., MacFarlane, D.R., Rogers, R.D. Ionic liquids for energy, materials, and medicine. Chem. Commun. 2014; 50, 9228-9250.
Suoranta, T., Zugazua, O., Niemelä, M., Perämäki, P. Recovery of palladium, platinum, rhodium and ruthenium from catalyst materials using microwave-assisted leaching and cloud point extraction. Hydrometallurgy 2015; 154, 56-62.
SynQuest Laboratories. 1-Butyl-3-methylimidazolium hexafluorophosphate. 2010.
Umeda, H., Sasaki, A., Takahashi, K., Haga, K., Takasaki, Y., Shibayama, A. Recovery and concentration of precious metals from strong acidic wastewater. Materials Transactions 2011; 52(7), 1462-1470.
Vergara, M.A.V., Lijanova, I.V., Likhanova, N.V., Xometl, O.O., Vigueras, D.J., Ramirez, A.J.M. Recycling and recovery of ammonium–based ionic liquids after extraction of metal cations from aqueous solutions. Separation and Purification Technology 2015; 155, 110-17.
Villemin, D., Didi, M.A. Extraction of rare earth and heavy metals, using ionic solvents as extraction medium (A Review). Orient J Chem 2013; 29(4).
Vivaldini, D.O., Luz, A.P., Salvini, V.R., Pandolfelli, V.C. In situ α-alumina hydrophobization dynamics at acid pH: effectiveness limitations of short-chain amphiphilic molecules. Materials Research 2014; 17(1), 284-288.
Watling, H.R. Review of biohydrometallurgical metals extraction from polymetallic mineral resources. Minerals 2015; 5(1), 1-60.
Wei, W., Cho, C.W., Kim, S., Song, M.H., Bediako, J.K., Yun, Y.S. Selective recovery of Au(III), Pt(IV), and Pd(II) from aqueous solutions by liquid–liquid extraction using ionic liquid Aliquat-336. Journal of Molecular Liquids 2016; 216, 18-24.
World Platinum Investment Council Ltd. Platinum quarterly Q3 2015.
Xiao, F, Mo, Z, Zhao, F, Zeng, B. Ultrasonic electrodeposition of gold platinum alloy nanoparticles on multi walled carbon nanotubes ionic liquid composite film and their electrocatalysis towards the oxidation of nitrite. Electrochem. Commun. 2008; 10, 1740-1743.
Yu, Y., Sun, Q, Liu, X, Wu, H, Zhou, T, Shi, G, Size controllable gold platinum alloy nanoparticles on nine functionalized ionic liquid surfaces and their application as electrocatalysts for hydrogen peroxide reduction. Chem. Eur. J. 2011; 17 11314-11323.
Zhang, C., Huang, K., Yu, P., Liu, H., Ionic liquid based three-liquid-phase partitioning and one-step separation of Pt(IV), Pd(II) and Rh(III). Sep. Purif. Technol. 2013; 108, 166-173.
Zhang, D, Chang, W.C., Okajima, T, Ohsaka, T, Electrodeposition of platinum nanoparticles in a room temperature ionic liquid. Langmuir 2011; 27, 14662-14668.
Zhang, S., Sun, N., He, X., Lu, X., Zhang, X. Physical properties of ionic liquids: Database and evaluation. J. Phys. Chem. Ref. Data 2006; 35(4).
中華民國交通部公路總局,“機動車輛登記數”,2015。
行政院環境保護署,“有害事業廢棄物申報統計”,2015。
行政院環境保護署,“空氣污染防制法”,1993。
李秋煌、陳郁文,“汽機車觸媒轉化器”,化工,第43卷,第1期,第44-66頁,1996。
李清華,“廢汽車觸媒資源回收之研究”,行政院環境保護署,102年度補助應回收廢棄物回收處理創新或研究發展計畫,2013。
林志森、鄭清宗、張啟達、林延彥、顏秀慧、翁志聖、西美霞、林坤讓、劉蘭萍、林冠嘉、洪文雅、李婉諦、戴邦文、李龍堯、林文祥、謝維晃、呂喬松、西美霞、陳瑜瑤、忻珮雯,“綠色生產力”,財團法人台灣綠色生產力基金會,第40期,第2頁,2015。
林浚泉,“鉑族金屬之產銷趨勢”,能源、資源與環境季刊,第2卷,第2期,第15-19頁,1991。
姚慧,張仲榮,高俊華,“新型耐強酸陶瓷催化轉化器中銠元素的溶出方法研究”,貴金屬,第36卷,第2期,第58-60頁,2015。
洪英修,“利用濕法冶金與超音波輔助溶劑萃取回收廢車觸媒中之鉑族屬”,國立中山大學,環境工程研究所,碩士論文,2001。
科邁斯集團,“ XRF應用於汽車觸媒中貴金屬的回收-手提式”,2012。
徐梓瑄,“聚碳酸酯於離子液體及甲醇中之降解反應研究”,明志科技大學,化學工程研究所,碩士論文,2011。
郭家豪,“廢汽車觸媒中鉑、鈀、銠資源回收之研究”,大葉大學,環境工程學系碩士班,碩士論文,2014。
郭鼎楠、蕭明謙,“兩段式微波快速合成離子液體及應用在重金屬廢液之萃取”,中華民國燃燒學會第二十屆學術研討會論文集,2010。
傅崇德、邱惠敏,“銦資源回收再利用技術及資源替代性介紹”,環保簡訊,第18期,2013。
劉霆琪,“應用親和性染料於離子液體中進行蛋白質液相/液相萃取”,國立交通大學,應用化學研究所,碩士論文,2007
蔡尚林,“資源廢棄物回收再利用管理”,行政院環保署委託,臺北科技大學主編,1999。
鄭慧君,“以相間轉移觸媒及離子液體在液-液系統合成鄰-羥基苯甲酸正庚酯之研究”,國立中興大學,化學工程學研究所,碩士論文,2015。
優勝奈米科技有限公司,“觸媒貴金屬回收,石化與汽車產業的環保競爭力”,2015。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code