Responsive image
博碩士論文 etd-0507116-102802 詳細資訊
Title page for etd-0507116-102802
論文名稱
Title
研發再生沸石及新型奈米級催化劑轉酯化製備廢食用油生質柴油
Developing Wood-Ash-Zeolite and Novel Nano-Catalyst for the Biodiesel Production from Waste Cooking Oil by a Transesterification Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-20
繳交日期
Date of Submission
2016-07-14
關鍵字
Keywords
沸石、生質柴油、廢食用油、二階段轉酯化、木顆粒
Wood pellets, Zeolite, Biodiesel, Waste cooking oil, Two-step transesterification
統計
Statistics
本論文已被瀏覽 5655 次,被下載 17
The thesis/dissertation has been browsed 5655 times, has been downloaded 17 times.
中文摘要
本研究以二階段轉酯化製備生質柴油,廢食用油作為製備生質柴油之原料油。首先,在預酯化的實驗中,將油品酸價降低至鹼性轉酯化標準酸價1 mg KOH/g以下。先以奈米級酸性二氧化鈦SO42-/TiO2進行預酯化反應,在加熱反應時間一小時、奈米級酸性二氧化鈦添加劑量4 wt%、加熱反應溫度65℃下、醇/油莫耳比9:1,使酸價為2.52 mg KOH/g之廢食用油降低至酸價0.956 mg KOH/g之預酯化生質柴油,預酯化效率為62%;再以木顆粒灰渣再生沸石進行預酯化反應,以相同之反應時間、反應溫度及醇/油莫耳比,只需木顆粒灰渣再生沸石2 wt%,就能使酸價為3.75 mg KOH/g之廢食用油降低至酸價0.365 mg KOH/g之預酯化生質柴油,預酯化效率為90%,達到轉酯化酸價之標準。最後進行轉酯化反應,在固定加熱反應時間一小時、加載Cs/Al/Fe3O4奈米級催化劑添加量2 wt%、加熱反應溫度65℃下、醇/油莫耳比9:1下,會有最佳產率98.4%。而本研究在催化劑回收及重複使用實驗得知,催化劑經重複使用10次後,其損失率約2.3 wt%,瞭解此催化劑回收效率良好,而以廢食用油進行重複實驗之產率重98.4%降至97.3%,可見其穩定性佳。在催化劑差異性分析中,木顆粒灰渣再生沸石作為預酯化反應之催化劑相較於奈米級酸性二氧化鈦,具有廢棄物再利用之價值,同時降低灰渣對環境之負荷,且以更低的成本達到更好的效果。
Abstract
The technology is developed by two-step pre-esterification and transesterification to produce biodiesel, the waste cooking oils (WCO) are the major raw materials of the research. First of all, the acidity nano-TiO2 would be applied to the pre-esterification of the waste cooking oil. The WCO acid value (2.52 mg KOH/g) was decreased to below the standard of 1mg KOH/g (0.956 mg KOH/g) as the 4wt% acidity nano-TiO2 added, heating temperature 65℃ and molar ratio of alcohol/oil 9:1, the pre-esterification efficiency is 62%. Then, the wood-ash-zeolite would be applied to the pre-esterification of the waste cooking oil. The WCO acid value (3.75 mg KOH/g) was decreased to below the standard of 1mg KOH/g (0.365 mg KOH/g) as the 2wt% wood-ash-zeolite added, heating temperature 65℃ and molar ratio of alcohol/oil 9:1, the pre-esterification efficiency is 90%. Finally, the nano-Fe3O4 loaded with Cs and Al would be used a catalyst to carry on the transesterification. There is a best yields of 98.4% as the 2wt% nano-Cs/Al/Fe3O4 added, heating temperature 65℃ and molar ratio of alcohol/oil 9:1. The reuse of the nano-Cs/Al/Fe3O4 in the study. We found when the catalyst is used 10 times, the loss rate is 2.3%. It shows the good recovery efficiency. And in the 10 times recovery yield of biodiesel is from 98.4% to 97.3%. It shows good stability. And in the catalyst differential analysis, the wood-ash-zeolite which has the value of waste recycling as catalysts for the pre-esterification compared to the acidity nano-TiO2. The wood-ash-zeolite not only reduces the ash on the environment, but uses a lower cost to achieve better results.
目次 Table of Contents
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1國際能源現況 4
2-1-1生質能源 5
2-2木顆粒 6
2-2-1一般灰渣之應用 8
2-2-2沸石之應用 10
2-3生質柴油 12
2-3-1生質柴油及其原料趨勢 13
2-3-2生質柴油之物化特性 15
2-4生質柴油製作方法 17
2-5催化劑 20
2-5-1酸性催化劑 21
2-5-2鹼性催化劑 22
2-5-3酵素催化劑 23
2-6催化劑製備方法 23
2-6-1含浸法 23
2-6-2溶膠-凝膠法 24
2-6-3水熱合成法 24
第三章 研究方法 25
3-1研究架構與流程 26
3-2實驗材料與藥品 27
3-3主要實驗項目 29
3-4實驗設備 35
第四章 結果與討論 40
4-1油品特性分析 40
4-2奈米級酸性二氧化鈦SO42-/TiO2之性質探討 42
4-2-1奈米級酸性二氧化鈦SO42-/TiO2之XRD晶體結構分析 42
4-2-2奈米級酸性二氧化鈦SO42-/TiO2之BET比表面積分析 43
4-2-3奈米級酸性二氧化鈦SO42-/TiO2之表面型態分析 43
4-3木顆粒灰渣再生沸石催化劑 45
4-3-1木顆粒灰渣再生沸石之XRD晶體結構分析 45
4-2-2木顆粒灰渣再生沸石之BET比表面積分析 45
4-2-3木顆粒灰渣再生沸石之表面型態分析 45
4-4加載Cs/Al/Fe3O4奈米級催化劑 48
4-4-1加載Cs/Al/Fe3O4奈米級催化劑之XRD晶體結構分析 48
4-4-2加載Cs/Al/Fe3O4奈米級催化劑之BET比表面積分析 48
4-4-3加載Cs/Al/Fe3O4奈米級催化劑之表面型態分析 49
4-5以奈米級酸性二氧化鈦SO42-/TiO2預酯化處理之探討 51
4-5-1醇/油莫耳比的影響 51
4-5-2奈米級酸性二氧化鈦SO42-/TiO2添加量的影響 51
4-5-3加熱反應時間的影響 52
4-5-4加熱反應溫度的影響 53
4-6以木顆粒灰渣再生沸石預酯化處理之探討 63
4-6-1醇/油莫耳比的影響 63
4-6-2木顆粒灰渣再生沸石添加量的影響 63
4-6-3加熱反應時間的影響 64
4-6-4加熱反應溫度的影響 65
4-7以加載Cs/Al/Fe3O4奈米級催化劑轉酯化反應生成廢食用油生質柴油之探討 72
4-7-1醇/油莫耳比的影響 72
4-7-2加載Cs/Al/Fe3O4奈米級催化劑添加量的影響 73
4-7-3加熱反應溫度的影響 73
4-8加載Cs/Al/Fe3O4奈米級催化劑之回收及重複使用實驗 77
4-9催化劑差異性分析 78
第五章 結論與建議 82
5-1結論 82
5-2建議 83
參考文獻 84
參考文獻 References
Alakoskia, E., Jämséna, M., Agarc, D., Tampiob , E., Wihersaari, M. From wood pellets to wood chips, risks of degradation and emissions from the storage of woody biomass – A short review. Renewable and Sustainable Energy Reviews 2016; 54, 376-383.
Alptekin, E., Canakci, M., Sanli, H. Evaluation of leather industry wastes as a feedstock for biodiesel production. Fuel 2012; 95, 214–20.
Azadi, P., Brownbridge, G., Mosbach, S., Smallbone, A., Bhave, A., Inderwildi, O., Kraft, M. The carbon footprint and non-renewable energy demand of algae-derived biodiesel. Applied Energy 2014; 113, 1632-1644.
Badday, A.S., Abdullah, A.Z., Lee, K.T. Optimization of biodiesel production process from Jatropha oil using supported heteropolyacid catalyst and assisted by ultrasonic energy. Renewable Energy 2013; 50, 427–32.
Balskos, M.W., Hernandez, E.E. Catalyst character and performance in edible oil hydrogenation. Catalysis Today 1997; 35, 415-425.
Ban, C.C., Ramli, M. The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concrete and mortar: An overview. Resources, Conservation and Recycling 2015; 55, 669-685.
Ban, C.C., Ramli, M. The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concrete and mortar: An overview. Resources, Conservation and Recycling 2015; 55, 669-685.
Bang, Y., Park, S., Han, S.J., Yoo, J., Song, J.H., Choi, J.H., Kang, K.H., Song, I.K. Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous Ni/Al2O3 catalyst prepared by an EDTA-assisted impregnation method. Applied Catalysis B: Environmental 2016; 180, 179-188.
Bilgili, F., Koçak, E., Bulut, Ü. The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach. Renewable and Sustainable Energy Reviews 2016; 54, 838-845.
Bilgin, A., Gülüm, M., Koyuncuoglu, I., Nac, E., Cakmak, A. Determination of transesterification reaction parameters giving the lowest viscosity waste cooking oil biodiesel. Procedia - Social and Behavioral Sciences 2015; 195(3), 2492-2500.
Canakci, M., Van Gerpen, J.H. Comparison of engine performance and emissions for petroleum diesel fuel, yellow grease biodiesel, and soybean oil biodiesel. Trans Am Soc Agric Eng 2003; 46, 937–44.
Cao, L., Wang, J., Liu, C., Chen, Y., Liu, K., Han, S. Ethylene vinyl acetate copolymer: A bio-based cold flow improver for waste cooking oil derived biodiesel blends. Applied Energy 2014; 132, 163-167.
Chang, J.S., Cheng, J.C., Ling, T.R., Chern, J.M., Wang, G.B., Chou, T.C., Kuo, C.T. Low acid value bio-gasoline and bio-diesel made from waste cooking oils using a fast pyrolysis process. Journal of the Taiwan Institute of Chemical Engineers 2016.
Corro, G., Sáncheza, N., Pal, U., Bañuelos, F. Biodiesel production from waste frying oil using waste animal bone and solar heat. Waste Management 2016; 47, 105-113.
Demirbas, A. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Convers Manage 2009; 50, 923–927.
Demirbas, A. Recent developments in biodiesel fuels. International Journal of Green Energy 2007; 4, 5-26.
Demirbas, M.F., Pyrolysis of vegetable oils and animal fats for the production of renewable fuels. Energy Educ Sci Technol 2008; 22, 59–67.
Doyle, A.M., Albayati, T.M., Abbas, A.S., Alismaeel, Z.T. Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin. Renewable Energy 2016; 97, 19-23.
Du Plessis, P.W., Ojumu, T.V., Fatoba, O.O., Akinyeye, R.O., Petrik, L.F. Distributional Fate of Elements during the Synthesis of Zeolites from South African Coal Fly Ash. Materials 2016; 7, 3305-3318.
Ergül, E., Ayrilmisb, N. Effect of outdoor storage conditions of wood chip pile on the technological properties of wood-based panel. Biomass and Bioenergy 2015; 61, 66-72.
Evans, B., Gray, R. Canada biofuels annual. USDA Foreign Agricultural Service: global agricultural information network 2013; CA13034, 1–40.
Feyzi, M., Hassankhani, A., Rafiee, H.R. Preparation and characterization of Cs/Al/Fe3O4 nanocatalysts for biodiesel production. Energy Conversion and Management 2013; 14, 62-68.
Filho, A.O.B., Barros, A.K.D., Labidi, S., Viegas, I.M.A., Marques, D.B., Romariz, A.R.S., Sousa, R.M. , Marques, A.L.B. , Marques, E.P. Application of artificial neural networks to predict viscosity, iodine value and induction period of biodiesel focused on the study of oxidative stability. Fuel 2015; 145, 127-135.
Fischedick, M., Schaeffer, R. Mitigation potential and costs. Renewable Energy Sources and Climate Change Mitigation, 2012.
Fukuda, H., Kondo, A., Noda, H. Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering 2001; 92, 405-416.
Gerhard, K. A comprehensive evaluation of the cetane numbers of fatty acid methyl esters. Fuel 2014; 119, 6-13.
Gerpen, J.V. Biodiesel processing and production. Fuel Process Technol 2005; 86, 1097–1107.
Goetzl, A. DEVELOPMENTS IN THE GLOBAL TRADE OF WOOD PELLETS. Office of Industries U.S. International Trade Commission, 2015.
Gong, M.H., Yang, J., Zhang, J.Y., Zhu, H.R., Tong, T.Z. Physical–chemical properties of aged asphalt rejuvenated by bio-oil derived from biodiesel residue. Construction and Building Materials 2016; 105, 35-45.
Gui, M.M., Lee, K., Bhatia, S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 2008; 33, 1646–1653.
Hawkins Wright Ltd. The Outlook for Wood Pellets, 2015.
He, Y., Xu, Y., Pang, Y., Tian, H., Wu, R. A regulatory policy to promote renewable energy consumption in China: Review and future evolutionary path. Renewable Energy 2016; 89, 695-705.
Hench, L.L., West, J.K. The sol-gel process. Chemical Reviews 1990; 90, 33-72.
Hilst, F., Hoefnagels, R., Junginger, M., Shen, L. Sustainable biomass for energy and materials: A greenhouse gas emission perspective. 2015.
Hu, S.Y., Guan, Y.P., Wang, Y., Han, H.Y. Nano-magnetic catalyst KF/CaO–Fe3O4 for biodiesel production. Applied Energy 2011; 88(8), 2685–2690.
International Energy Agency. Energy Climate and Change, 2015.
International Energy Agency. World Energy Outlook 2015, 2015.
International Trade Administration. 2015 Top Markets Report Renewable Fuels, 2015.
Juan, J.C., Kartika, D.A., Wu, T.Y., Hin, T.Y.Y. Biodiesel production from jatropha oil by catalytic and non-catalytic approaches: An overview. Bioresource Technology 2011; 102, 452-460.
Kafuku, G. and Mbarawa, M. Alkaline catalyzed biodiesel production from moringa oleifera oil with optimized production parameters. Applied Energy 2008; 87, 2561-2565.
Kafuku, G., Mbarawa, M. Biodiesel production from Croton megalocarpus oil and its process optimization. Fuel 2010; 89, 2556 – 2560.
Kawamura, K., Yasuda, T., Hatanaka, T., Hamahiga, K., Matsuda, N., Ueshima, M., Nakai, K. Oxidation of aliphatic alcohols and benzyl alcohol by H2O2 under the hydrothermal conditions in the presence of solid-state catalysts using batch and flow reactors. Chemical Engineering Journal 2016; 285, 49-56.
Kerihuel, A., Senthil Kumar, M., Bellettre, J., Tazerout, M. Use of animal fats as CI engine fuel by making stable emulsions with water and methanol. Fuel 2005;84, 1713–1716.
Koshy, N. and Singh D.N. Fly ash zeolites for water treatment applications. Journal of Environmental Chemical Engineering 2016; 4, 1460-1472.
Kuang, Y.H., Zhang, Y.J., Zhou, B., Li, C.B., Cao, Y.J., Li, L.J. A review of renewable energy utilization in islands. Renewable and Sustainable Energy Reviews 2016; 59, 504-513.
Kumar, M.S., Kerihuel, A., Bellettre, J., Tazerout, M. A comparative study of different methods of using animal fat as a fuel in a compression ignition engine. J Eng Gas Turbines Power 2005; 128, 907–914.
Kumar, M.S., Kerihuel, A., Bellettre, J., Tazerout, M. Ethanol animal fat emulsions as a diesel engine fuel—Part 2: Engine test analysis. Fuel 2006;85, 2646–2652.
Li, G. And Fei, W.D. Abnormal thermal expansion behavior of aluminum borate whisker reinforced aluminum composite containing Fe3O4 particles. Materials Chemistry and Physics 2006; 99(1), 34-38.
Liang, C.W., Ku, C. K., Liang, J. J. Engine exhaust noise feedback to traffic flow and vehicle emission control on-road: A case study in Taichung City. Sustain. Environ. Res 2012; 22(3), 159-165.
Lim, S., Teong, L.K. Recent trends opportunities and challenges of biodiesel in Malaysia: An overview. Renewable and Sustainable Energy Reviews 2010; 14, 938-954.
Lin, Y.C., Chen, S.C., Chen, C.E., Yang, P.M., Jhang, S.R. Rapid Jatropha-biodiesel production assisted by a microwave system and a sodium amide catalyst. Fuel 2014; 135, 435-442.
Liu, S.H., Lin, Y.C., Hsu, K.H. Emissions of Regulated Pollutants and PAHs from Waste-cooking-oil Biodiesel-fuelled Heavy-duty Diesel Engine with Catalyzer. Aerosol. Air. Qual. Res 2012; 12, 218-227.
Lokman, I.M., Rashid, U., Taufiq-Yap, Y.H. Production of biodiesel from palm fatty acid distillate using sulfonated-glucose solid acid catalyst: Characterization and optimization. Chinese Journal of Chemical Engineering 2015; 23(11), 1857-1864.
Luque, S., Lovett, J.C., Datta, B., Clancy, J., Campelo, J.M., Romero, A.A. Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview. Energy & Environmental Science 2010; 3, 1706-1721.
Ma, F., Hanna, M.A. Biodiesel production: a review. BioresourceTechnology 1999; 70, 1-15.
Massachusetts Division of Energy Resources. A Reference on Wood Pellet Fuels & Technology for Small Commercial & Institutional Systems, 2007.
Mejía, J.D., Salgado, N., Orrego, C.E. Effect of blends of Diesel and Palm-Castor biodiesels on viscosity, cloud point and flash point. Industrial Crops and Products 2013; 43, 791-797.
Meng, X., Chen, G., Wang, Y. Biodiesel production from waste cooking oil via alkali catalyst and its engine test. Fuel Process Technol 2008; 89; 851–857.
Miraboutalebi, S.M., Kazemi, P., Bahrami, P. Fatty Acid Methyl Ester (FAME) composition used for estimation of biodiesel cetane number employing random forest and artificial neural networks: A new approach. Fuel 2016; 166, 143-151.
Mussatto, S.I. A closer look at the developments and impact of biofuels in transport and environment; what are the next steps? Biofuel Research Journal 2016; 9, 331.
Nurfitri, I., Maniam, G.P., Hindryawati, N.,Yusoff, M.M., Ganesan, S. Potential of feedstock and catalysts from waste in biodiesel preparation: a review. Energy Convers Manage 2013; 74, 395–402.
Omar, R., Robinson, J.P. Conventional and microwave-assisted pyrolysis of rapeseed oil for bio-fuel production. J Anal Appl Pyrol 2014; 105, 131–142.
Paiano, A. and Lagioia G. Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case. Energy Policy 2016; 91, 161-173.
Pang, X.Y. and You, T.T. Preparation of Biodiesel through Transesterification of Animal Oil and Alcohol under the Catalysis of SO42- / TiO2. College of Chemistry and Environmental Science, Hebei University, 2008.
Phoon, L.Y., Hashim, H., Mat, R., Mustaffa, A.A. Flash point prediction of tailor-made green diesel blends containing B5 palm oil biodiesel and alcohol. Fuel 2016; 175, 287-293.
Pinzi, S.,Leiva, D., López-García, I., Redel-Macías, M.D., Dorado, M.P. Latest trends in feedstocks for biodiesel production. Biofuels, Bioprod Biorefin 2014;8, 126–43.
Ramírez-Verduzco, L.F., Rodríguez-Rodríguez, J.E., Jaramillo-Jacob A.R. Predicting cetane number, kinematic viscosity density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 2012; 91, 102 – 111.
Renewable Energy Policy Network for the 21st Century. Renewables 2015 Global Status Report, 2015.
Sanli, H., Canakci, M.,Alptekin, E. Predicting the higher heating values of waste frying oils as potential biodiesel feedstock. Fuel 2013.
Sarantopoulos, I., Chatzisymeon, E., Foteinis, S., Tsoutsos, T. Optimization of biodiesel production from waste lard by a two-step transesterification process under mild conditions. Energy for Sustainable Development 2014; 23, 110–114.
Sharma, Y.C., Singh, B. Development of biodiesel: Current scenario. Renewable and Sustainable Energy Reviews 2009; 19, 1646-1651.
Shu, Q., Yang, B., Yuan, H., Qing, S., Zhu, G. Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+. Catalysis Communications 2007; 8, 2159-2165.
Slade, R., Bauen, A., Gross, R. Global bioenergy resources. Nature Climate Change 2014; 4(2), 99–105.
Soriano, N.U., Migo, V.P., “Matsumura M. Ozonized vegetable oil as pour point depressant for neat biodiesel. Fuel 2006; 85, 25-31.
Speirs, J., McGlade, C., Slade, R. Uncertainty in the availability of natural resources: Fossil fuels, critical metals and biomass. Energy Policy 2015; 87, 654-664.
Srirangan, K., Akawi, L., Moo-Young, M., Chou, C.P. Towards sustainable production of clean energy carriers from biomass resources. Applied Energy 2015; 100, 172-186.
Tabatabaei, M., Karimi, K., Kumar, R., Horváth, I.S. Renewable Energy and Alternative Fuel Technologies. BioMed Research International 2015.
Tangestanifard, M. and Ghaziaskar, H.S. Methylation of toluene with methanol in sub/supercritical toluene using H-beta zeolite as catalyst. The Journal of Supercritical Fluids 2016; 113, 80-88.
Thek, G., Obernberger, I. The pellet handbook: the production and thermal utilization of biomass pellets. Earthscan Ltd, London, 2010.
Tomasevic, A.V., Marinkovic, S.S.S. Methanolysis of used frying oil,” Fuel Processing Technology 2003; 81, 1-6.
Tsai, J. H., Chen, S. J., Huang, K. L., Lin, W. Y., Lee, W. J., Lin, C. C., Hsieh, L. T., Chiu, J. Y., Kuo, W. C. Emissions from a generator fueled by blends of diesel, biodiesel, acetone, and isopropyl alcohol: Analyses of emitted PM, particulate carbon, and PAHs. Science of The Total Environment 2014; 466-467, 195-202.
U.S. Energy Information Administration. Annual Energy Outlook 2015 With Projections to 2040, 2015.
Uludamar, E., Yıldızhan, S., Aydın, K., Ozcanlı, M. Vibration, noise and exhaust emissions analyses of an unmodified compression ignition engine fuelled with low sulphur diesel and biodiesel blends with hydrogen addition. International Journal of Hydrogen Energy 2016.
Uprety, B.K., Chaiwong, W., Ewelike, C., Rakshit, S.K. Biodiesel production using heterogeneous catalysts including wood ash and the importance of enhancing byproduct glycerol purity. Energy Conversion and Management 2016; 115, 191-199.
Verduzco, L.F.R. Density and viscosity of biodiesel as a function of temperature: Empirical models. Renewable and Sustainable Energy Reviews 2013; 19, 652-665.
Wakihara, T., Okubo, T. Hydrothermal synthesis and characterization of zeolites. Chemistry Letters 2005; 34(3), 276-281.
Wang, J., Cao, L., Han, S. Effect of polymeric cold flow improvers on flow properties of biodiesel from waste cooking oil. Fuel 2014; 117, 876-881.
Wang, J., Xu, F., Xie, W.J., Mei, Z.J., Zhang, Q.Z., Cai, J., Cai, W.M. The enhanced adsorption of dibenzothiophene onto cerium/nickel-exchanged zeolite Y. Journal of Hazardous Materials 2009; 163, 538-543.
Wang, Y., Ou, S., Liu, P., Xue, F., Tang, S. Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis A: Chemical 2006; 252, 107-112.
Wang, Y., Ou, S., Liu, P., Xue, F., Tang, S. Comparison of two different processes to synthesize biodiesel by waste cooking oil. J Mol Catal A: Chem 2006; 252, 107–112.
Watanabe, Y., Nagao, T., Nishida, Y., Takagi, Y., Shimada, Y. Enzymatic Production of Fatty Acid Methyl Esters by Hydrolysis of Acid Oil Followed by Esterification. Journal of the American Oil Chemists Society 2007; 84, 1015-1021.
Woinarski, A.Z., Stevens, G.W., Snape, I. A Natural Zeolite Permeable Reactive Barrier to Treat Heavy-Metal Contaminated Waters in Antarctica: Kinetic and Fixed-bed Studies. Process Safety and Environmental Protection 2006; 84(2), 109-116.
Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., Xi, Y.Q. A comprehensive review on the applications of coal fly ash. Earth-Science Reviews 2015; 141, 105-121.
Zhang, Y., Chai, C.P., Luo, Y.J., Wang, L., Li, G.P. Synthesis, structure and electromagnetic properties of mesoporous Fe3O4 aerogels by sol–gel method. Materials Science and Engineering: B 2014; 188, 13-19.
Zheng, S., Kates, M., Dubé, M.A., McLean, D.D. Acid-catalyzed production of biodiesel from waste frying oil. Biomass Bioenergy 2006; 30, 267–272.
Zhu, L., Zhang, L., Qu, H., Zhong, Q. A study on chemisorbed oxygen and reaction process of Fe–CuOx/ZSM-5 via ultrasonic impregnation method for low-temperature NH3-SCR. Journal of Molecular Catalysis A: Chemical 2015; 409, 207-215.
Zhuang, X.Y., Chen, L., Komarneni, S., Zhou, C.H., Tong, D.S., Yang, H.M., Yu, W.H., Wang, H. Fly Ash-based Geopolymer: Clean Production, Properties and Applications. Journal of Cleaner Production, 2016.
Zullaikah, S., Lai, C.C., Vali, S.R., Ju, Y.H. A Two-step Acid-catalyzed Process for the Production of Biodiesel from Rice Bran Oil. Bioresource Technol 2005; 97, 1889-1896.
中油股份有限公司,“高級柴油物質安全資料表”,油品行銷事業部,2010。
行政院環境保護署,“焚化底渣再生粒料應用於道路級配粒料底層使用手冊”,2015。
林凱隆,“都市垃圾焚化熔渣粉體調製環保水泥之卜作嵐反應特性研究”,國立中央大學環境工程研究所,博士論文, 2002。
林裕仁,“森林生質資源利用技術之研究報告書”,2010。
侯仁義,“國際能源價格展望”, 2016年01月能源報導,第19頁,2016。
柯清水,“石油化學概論”,正文書局,1992。
徐慧宜,“混合型光觸媒降解水中4-硝基酚之研究”,國立雲林科技大學環境與安全衛生工程系,碩士論文,2005。
陳東煌,“奈米材料之製備-液相法”,成功大學化學工程學系奈米課程教材,2004。
黃聖鈞,“利用固態酸催化甘油為乙酸基甘油酯之研究”,國立台灣海洋大學,輪機工程學系,碩士論文,2011。
楊先仁、林永昌、黃啟輝、方士榮,“以棕櫚油泥漿製備生質柴油之技術開發”,遠東科技大學材料科學與工程系,2010。
楊昇府,王多美,李文成,“以電漿熔融水淬熔岩為原料製作熔岩纖維之研究-轉輪離心法製程案例”,產業綠色技術研討會,269-280,2008。
萬皓鵬和李宏台,“廢棄物衍生燃料的使用”,科學發展,第450 期,2010。
趙國評和楊素幸,“淺談生質能”,林業研究專訊,第14卷,第3期,2007。
蔡政鴻和陳惠芬,“礦物界的環保明星:沸石”,地球科學,第27卷,第4期,第66-69頁,2008。
蔡迪祥,“反應曲面法應用於廢棄炸油產製生質柴油之最適預酯化製程探討”,國立台灣大學,生物資源暨農學院生物產業機電工程學系,碩士論文,2010。
薛招腾,唐雪婷,王文兴,赵东元,“核-壳结构的沸石分子筛复合材料研究进展”,上海复旦大学,2015。
蘇郁潔,“在废煎炸油中用沸石催化剂去除游离脂肪酸”,中國工業生物技術信息網,2008。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code