Responsive image
博碩士論文 etd-0507118-174628 詳細資訊
Title page for etd-0507118-174628
論文名稱
Title
含Benzo[c][1,2,5]thiadiazole的熱活化延遲螢光材料之設計及合成
Design and Synthesis of Benzo[c][1,2,5]thiadiazole derivatives as TADF Emitters
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-16
繳交日期
Date of Submission
2018-07-23
關鍵字
Keywords
分子模擬、發光材料、深藍光、有機發光二極體、熱活化延遲螢光
Thermally activated delayed fluorescence, Deep blue, Light-emitting material, Molecular simulation, Organic light emitting diode
統計
Statistics
本論文已被瀏覽 5691 次,被下載 0
The thesis/dissertation has been browsed 5691 times, has been downloaded 0 times.
中文摘要
  本篇論文成功開發出新的藍色熱活化延遲螢光(TADF, Thermally Activated Delayed Fluorescence)材料BTZ-PXZ,經由光物理分析可知薄膜態的最大吸收為322nm、薄膜態的最大放光為371nm、HOMO為-5.41eV、LUMO為-1.88eV、單重態能階為2.72eV、三重態能階為2.64eV、實驗值ΔEST為0.08eV,ΔEST與其他藍光材料比較,其ΔEST相對偏低。如此可以降低單重態-三重態湮滅(singlet-triple annihilation, STA)效應及三重態-三重態湮滅(triple-triple annihilation, TTA)效應,因此可使效率驟減(efficiency roll-off)減少,並使外部量子效率(External Quantum Efficiency, EQE)上升。
  在過去的研究中,BTZ應用在TADF材料中僅有在Fan Ni等人在Journal of Materials Chemistry C發表的類似物BTZ-CZ、BTZ-DMAZ及BTZ-DPA,我們將其分子修飾為BTZ-PXZ,其特點是可以使HOMO電子雲集中,並與LUMO更分離,如此可達到更低的ΔEST。
  經由分子模擬套裝軟體Gaussian 09計算可得到極低的ΔEST(0.0087eV),因此是有潛力的TADF材料。在此基礎上,我們進行合成工作,我們最佳的合成條件及純化方法,從NMR光譜可以發現純度極高,可直接應用在元件製程上。
Abstract
In this study, a new blue Thermally Activated Delayed Fluorescence (TADF) , we call it ” BTZ-PXZ ” is designed and synthesized. The ΔEST of 4,7-di(10H- phenoxazin-10-yl)benzo[c][1,2,5]thiadiazole (BTZ-PXZ) is lower than 4,7-bis(9H- carbazol-9-yl)benzo[c][1,2,5]thiadiazole (BTZ-CZ), 4,7-bis(9,9-dimethylacridin- 10(9H)-yl)benzo[c][1,2,5]thiadiazole (BTZ-DMAZ) and N4,N4,N7,N7-tetraphenyl- benzo[c][1,2,5]thiadiazole-4,7-diamine (BTZ-DPA) which we can find some related papers in Journal of Materials Chemistry C. In this way, BTZ-PXZ can reduce the effect of singlet–triplet annihilation (STA) and triplet–triplet annihilation (TTA) and at the same time increase EQE.
In past related research, only Fan Ni et al.[59] applied BTZ in TADF. That is BTZ-CZ, BTZ-DMAZ and BTZ-DPA. We modify the compound to get BTZ-PXZ. The feature is that can separate HOMO from LOMO and make ΔEST lower.
We get ΔEST(0.0087eV) of BTZ-PXZ from Gaussian 09. The lowerΔEST gives a basis for our study and we start to synthesize BTZ-PXZ. We find the best method to synthesize BTZ-PXZ. In NMR spectrum, we can discover this material is very pure that can be used directly in component process.
目次 Table of Contents
中文論文審定書 i
英文論文審定書 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xii
第一章、 緒論 1
1-1前言 1
1-2有機發光二極體(OLED)之歷史背景 1
1-3有機發光二極體之運作原理 2
1-4發光層發光機制之簡介 3
1-4-1主客體參雜系統 3
1-4-2能量轉移機制 3
1-4-3分子發光機制 4
1-4-2螢光 6
1-4-4熱活化延遲螢光 6
1-5 TADF發展現況 7
1-5 TADF之文獻回顧 10
1-5-1歷史 10
1-5-2藍光TADF 15
1-5-2綠光TADF(500nm-580nm) 29
1-5-3紅光TADF(580nm-) 33
1-7 TADF之分子設計概念 36
1-8研究動機 37
1-9研究目標 38
第二章、 實驗部分 39
2-1使用儀器 39
2-1-2分子鑑定儀器 40
2-1-3熱分析儀器 41
2-1-4光學分析儀器 41
2-2分子模擬過程 44
2-2-1 Gaussian 09介紹 44
2-2-2 Spartan 16介紹 45
2-2-3密度泛函理論(Density functional theory) 45
2-2-4分子結構基態計算 47
2-2-5分子結構激發態計算 49
2-3合成及分離裝置 50
2-4藥品及溶劑 50
2-5合成方法 51
第三章、 結果與討論 53
3-1化合物 53
3-2分子模擬 53
3-3分子結構鑑定 56
3-3-1HNMR 56
3-3-2CNMR 58
3-3-3EI-MS 61
3-4熱分析數據 63
3-4-1熱重分析(TGA) 63
3-4-2示差掃描量熱儀(Differential Scanning Calorimetry, DSC) 63
3-5光學分析 64
3-5-1吸收光譜 64
3-5-2螢光光譜 65
3-5-3磷光光譜 66
3-5-3PESA光譜 67
*BTZ-CZ、BTZ-DMAC、BTZ-PXZ為參考文獻之數據[59] 67
3-5-4螢光生命週期光譜 68
第四章、 結論 69
4-1結論 69
4-2未來展望 69
參考文獻 70
附錄 81
參考文獻 References
[1] Pope, M., Kallmann, H. P., & Magnante, P. (1963). Electroluminescence in Organic Crystals. The Journal of Chemical Physics, 38(8), 2042-2043. doi:10.1063/1.1733929
[2] Partridge, R. H. (1983). Electroluminescence from polyvinylcarbazole films: 4. Electroluminescence using higher work function cathodes. Polymer, 24(6), 755-762. doi:http://dx.doi.org/10.1016/0032-3861(83)90015-0
[3] Tang, C. W., & VanSlyke, S. A. (1987). Organic electroluminescent diodes. Applied Physics Letters, 51(12), 913-915. doi:10.1063/1.98799
[4] Dexter Energy Transfer. (2017). Retrieved from https://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Fundamentals/Dexter_Energy_Transfer#title
[5] Nishimoto, T., Yasuda, T., Lee, S. Y., Kondo, R., & Adachi, C. (2014). A six-carbazole-decorated cyclophosphazene as a host with high triplet energy to realize efficient delayed-fluorescence OLEDs. Materials Horizons, 1(2), 264-269. doi:10.1039/C3MH00079F
[6] Davidson, I. D. J. a. M. W. Jablonski Energy Diagram. Retrieved from https://www.olympus-lifescience.com/en/microscope-resource/primer/java/jablonski/jabintro/
[7] 陳金鑫、黃孝文. (2009). OLED夢幻顯示器.OLED材料與元件. 台灣 五南.
[8] Wong, M. Y., & Zysman-Colman, E. (2017). Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Advanced Materials, 29(22), 1605444-n/a. doi:10.1002/adma.201605444
[9] Parker, C. A., Hatchard, C. G., & Joyce, T. A. (1965). Selective and Mutual Sensitization of Delayed Fluorescence. Nature, 205, 1282. doi:10.1038/2051282a0
[10] Blasse, G., & McMillin, D. R. (1980). On the luminescence of bis (triphenylphosphine) phenanthroline copper (I). Chemical Physics Letters, 70(1), 1-3. doi:http://dx.doi.org/10.1016/0009-2614(80)80047-9
[11] Endo, A., Ogasawara, M., Takahashi, A., Yokoyama, D., Kato, Y., & Adachi, C. (2009). Thermally Activated Delayed Fluorescence from Sn4+–Porphyrin Complexes and Their Application to Organic Light Emitting Diodes — A Novel Mechanism for Electroluminescence. Advanced Materials, 21(47), 4802-4806. doi:10.1002/adma.200900983
[12] Deaton, J. C., Switalski, S. C., Kondakov, D. Y., Young, R. H., Pawlik, T. D., Giesen, D. J., etc, Peters, J. C. (2010). E-Type Delayed Fluorescence of a Phosphine-Supported Cu2(μ-NAr2)2 Diamond Core: Harvesting Singlet and Triplet Excitons in OLEDs. Journal of the American Chemical Society, 132(27), 9499-9508. doi:10.1021/ja1004575
[13] Endo, A., Sato, K., Yoshimura, K., Kai, T., Kawada, A., Miyazaki, H., & Adachi, C. (2011). Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Applied Physics Letters, 98(8), 083302. doi:10.1063/1.3558906
[14] Uoyama, H., Goushi, K., Shizu, K., Nomura, H., & Adachi, C. (2012). Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 492(7428), 234-238. doi:10.1038/nature11687
[15] Dias, F. B., Bourdakos, K. N., Jankus, V., Moss, K. C., Kamtekar, K. T., Bhalla, V., etc, Monkman, A. P. (2013). Triplet Harvesting with 100% Efficiency by Way of Thermally Activated Delayed Fluorescence in Charge Transfer OLED Emitters. Advanced Materials, 25(27), 3707-3714. doi:doi:10.1002/adma.201300753
[16] Chen, X.-K., Zhang, S.-F., Fan, J.-X., & Ren, A.-M. (2015). Nature of Highly Efficient Thermally Activated Delayed Fluorescence in Organic Light-Emitting Diode Emitters: Nonadiabatic Effect between Excited States. The Journal of Physical Chemistry C, 119(18), 9728-9733. doi:10.1021/acs.jpcc.5b00276
[17] Youn, L. S., Takuma, Y., Seok, Y. Y., Qisheng, Z., & Chihaya, A. (2014). Luminous Butterflies: Efficient Exciton Harvesting by Benzophenone Derivatives for Full‐Color Delayed Fluorescence OLEDs. Angewandte Chemie International Edition, 53(25), 6402-6406. doi:doi:10.1002/anie.201402992
[18] Rajamalli, P., Senthilkumar, N., Gandeepan, P., Huang, P.-Y., Huang, M.-J., Ren-Wu, C.-Z., etc, Cheng, C.-H. (2016). A New Molecular Design Based on Thermally Activated Delayed Fluorescence for Highly Efficient Organic Light Emitting Diodes. Journal of the American Chemical Society, 138(2), 628-634. doi:10.1021/jacs.5b10950
[19] Lee, I. H., Song, W., & Lee, J. Y. (2016). Aggregation-induced emission type thermally activated delayed fluorescent materials for high efficiency in non-doped organic light-emitting diodes. Organic Electronics, 29, 22-26. doi:https://doi.org/10.1016/j.orgel.2015.11.019
[20] Serevicius, T., Nakagawa, T., Kuo, M.-C., Cheng, S.-H., Wong, K.-T., Chang, C.-H., etc, Adachi, C. (2013). Enhanced electroluminescence based on thermally activated delayed fluorescence from a carbazole-triazine derivative. Physical Chemistry Chemical Physics, 15(38), 15850-15855. doi:10.1039/C3CP52255E
[21] Kim, M., Jeon, S. K., Hwang, S. H., & Lee, J. Y. (2015). Stable Blue Thermally Activated Delayed Fluorescent Organic Light‐Emitting Diodes with Three Times Longer Lifetime than Phosphorescent Organic Light‐Emitting Diodes. Advanced Materials, 27(15), 2515-2520. doi:doi:10.1002/adma.201500267
[22] Lee, D. R., Kim, M., Jeon, S. K., Hwang, S. H., Lee, C. W., & Lee, J. Y. (2015). Design Strategy for 25% External Quantum Efficiency in Green and Blue Thermally Activated Delayed Fluorescent Devices. Advanced Materials, 27(39), 5861-5867. doi:doi:10.1002/adma.201502053
[23] Tsai, W.-L., Huang, M.-H., Lee, W.-K., Hsu, Y.-J., Pan, K.-C., Huang, Y.-H., etc, Wu, C.-C. (2015). A versatile thermally activated delayed fluorescence emitter for both highly efficient doped and non-doped organic light emitting devices. Chemical Communications, 51(71), 13662-13665. doi:10.1039/C5CC05022G
[24] Sun, J. W., Baek, J. Y., Kim, K.-H., Moon, C.-K., Lee, J.-H., Kwon, S.-K., etc, Kim, J.-J. (2015). Thermally Activated Delayed Fluorescence from Azasiline Based Intramolecular Charge-Transfer Emitter (DTPDDA) and a Highly Efficient Blue Light Emitting Diode. Chemistry of Materials, 27(19), 6675-6681. doi:10.1021/acs.chemmater.5b02515
[25] Sun, J. W., Baek, J. Y., Kim, K.-H., Huh, J.-S., Kwon, S.-K., Kim, Y.-H., & Kim, J.-J. (2017). Azasiline-based thermally activated delayed fluorescence emitters for blue organic light emitting diodes. Journal of Materials Chemistry C, 5(5), 1027-1032. doi:10.1039/C6TC04653C
[26] Mayr, C., Schmidt, T. D., & Brütting, W. (2014). High-efficiency fluorescent organic light-emitting diodes enabled by triplet-triplet annihilation and horizontal emitter orientation. Applied Physics Letters, 105(18), 183304. doi:10.1063/1.4901341
[27] Lin, T. A., Chatterjee, T., Tsai, W. L., Lee, W. K., Wu, M. J., Jiao, M., etc, Wu, C. C. (2016). Sky‐Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine‐Triazine Hybrid. Advanced Materials, 28(32), 6976-6983. doi:doi:10.1002/adma.201601675
[28] Wu, T.-L., Huang, M.-J., Lin, C.-C., Huang, P.-Y., Chou, T.-Y., Chen-Cheng, R.-W., etc, Cheng, C.-H. (2018). Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off. Nature Photonics, 12(4), 235-240. doi:10.1038/s41566-018-0112-9
[29] Komatsu, R., Sasabe, H., Seino, Y., Nakao, K., & Kido, J. (2016). Light-blue thermally activated delayed fluorescent emitters realizing a high external quantum efficiency of 25% and unprecedented low drive voltages in OLEDs. Journal of Materials Chemistry C, 4(12), 2274-2278. doi:10.1039/C5TC04057D
[30] Takehiro, T., Katsuyuki, S., Takuma, Y., Kazunori, T., & Chihaya, A. (2014). Donor–acceptor-structured 1,4-diazatriphenylene derivatives exhibiting thermally activated delayed fluorescence: design and synthesis, photophysical properties and OLED characteristics. Science and Technology of Advanced Materials, 15(3), 034202.
[31] Lee, D. R., Hwang, S.-H., Jeon, S. K., Lee, C. W., & Lee, J. Y. (2015). Benzofurocarbazole and benzothienocarbazole as donors for improved quantum efficiency in blue thermally activated delayed fluorescent devices. Chemical Communications, 51(38), 8105-8107. doi:10.1039/C5CC01940K
[32] Wong, M. Y., Hedley, G. J., Xie, G., Kölln, L. S., Samuel, I. D. W., Pertegás, A., etc, Zysman-Colman, E. (2015). Light-Emitting Electrochemical Cells and Solution-Processed Organic Light-Emitting Diodes Using Small Molecule Organic Thermally Activated Delayed Fluorescence Emitters. Chemistry of Materials, 27(19), 6535-6542. doi:10.1021/acs.chemmater.5b03245
[33] Liu, W., Zheng, C.-J., Wang, K., Chen, Z., Chen, D.-Y., Li, F., etc, Zhang, X.-H. (2015). Novel Carbazol-Pyridine-Carbonitrile Derivative as Excellent Blue Thermally Activated Delayed Fluorescence Emitter for Highly Efficient Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 7(34), 18930-18936. doi:10.1021/acsami.5b05648
[34] Li, B., Nomura, H., Miyazaki, H., Zhang, Q., Yoshida, K., Suzuma, Y., etc, Adachi, C. (2014). Dicarbazolyldicyanobenzenes as Thermally Activated Delayed Fluorescence Emitters: Effect of Substitution Position on Photoluminescent and Electroluminescent Properties. Chemistry Letters, 43(3), 319-321. doi:10.1246/cl.130907
[35] Park, W. J., Lee, Y., Kim, J. Y., Yoon, D. W., Kim, J., Chae, S. H., etc, Lee, S. J. (2015). Effective thermally activated delayed fluorescence emitter and its performance in OLED device. Synthetic Metals, 209, 99-104. doi:https://doi.org/10.1016/j.synthmet.2015.07.008
[36] Shizu, K., Noda, H., Tanaka, H., Taneda, M., Uejima, M., Sato, T., etc, Adachi, C. (2015). Highly Efficient Blue Electroluminescence Using Delayed-Fluorescence Emitters with Large Overlap Density between Luminescent and Ground States. The Journal of Physical Chemistry C, 119(47), 26283-26289. doi:10.1021/acs.jpcc.5b07798
[37] Moral, M., Muccioli, L., Son, W. J., Olivier, Y., & Sancho-García, J. C. (2015). Theoretical Rationalization of the Singlet–Triplet Gap in OLEDs Materials: Impact of Charge-Transfer Character. Journal of Chemical Theory and Computation, 11(1), 168-177. doi:10.1021/ct500957s
[38] Cho, Y. J., Jeon, S. K., Lee, S.-S., Yu, E., & Lee, J. Y. (2016). Donor Interlocked Molecular Design for Fluorescence-like Narrow Emission in Deep Blue Thermally Activated Delayed Fluorescent Emitters. Chemistry of Materials, 28(15), 5400-5405. doi:10.1021/acs.chemmater.6b01484
[39] Cho, Y. J., Chin, B. D., Jeon, S. K., & Lee, J. Y. (2015). 20% External Quantum Efficiency in Solution‐Processed Blue Thermally Activated Delayed Fluorescent Devices. Advanced Functional Materials, 25(43), 6786-6792. doi:doi:10.1002/adfm.201502995
[40] Kitamoto, Y., Namikawa, T., Ikemizu, D., Miyata, Y., Suzuki, T., Kita, H., etc, Oi, S. (2015). Light blue and green thermally activated delayed fluorescence from 10H-phenoxaborin-derivatives and their application to organic light-emitting diodes. Journal of Materials Chemistry C, 3(35), 9122-9130. doi:10.1039/C5TC01380A
[41] Suzuki, K., Kubo, S., Shizu, K., Fukushima, T., Wakamiya, A., Murata, Y., etc, Kaji, H. (2015). Triarylboron‐Based Fluorescent Organic Light‐Emitting Diodes with External Quantum Efficiencies Exceeding 20 %. Angewandte Chemie International Edition, 54(50), 15231-15235. doi:doi:10.1002/anie.201508270
[42] Numata, M., Yasuda, T., & Adachi, C. (2015). High efficiency pure blue thermally activated delayed fluorescence molecules having 10H-phenoxaborin and acridan units. Chemical Communications, 51(46), 9443-9446. doi:10.1039/C5CC00307E
[43] Hatakeyama, T., Shiren, K., Nakajima, K., Nomura, S., Nakatsuka, S., Kinoshita, K., etc, Ikuta, T. (2016). Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO–LUMO Separation by the Multiple Resonance Effect. Advanced Materials, 28(14), 2777-2781. doi:doi:10.1002/adma.201505491
[44] Duan, C., Li, J., Han, C., Ding, D., Yang, H., Wei, Y., & Xu, H. (2016). Multi-dipolar Chromophores Featuring Phosphine Oxide as Joint Acceptor: A New Strategy toward High-Efficiency Blue Thermally Activated Delayed Fluorescence Dyes. Chemistry of Materials, 28(16), 5667-5679. doi:10.1021/acs.chemmater.6b01691
[45] Nasu, K., Nakagawa, T., Nomura, H., Lin, C.-J., Cheng, C.-H., Tseng, M.-R., etc, Adachi, C. (2013). A highly luminescent spiro-anthracenone-based organic light-emitting diode exhibiting thermally activated delayed fluorescence. Chemical Communications, 49(88), 10385-10387. doi:10.1039/C3CC44179B
[46] Mei, L., Hu, J., Cao, X., Wang, F., Zheng, C., Tao, Y., etc, Huang, W. (2015). The inductive-effect of electron withdrawing trifluoromethyl for thermally activated delayed fluorescence: tunable emission from tetra- to penta-carbazole in solution processed blue OLEDs. Chemical Communications, 51(65), 13024-13027. doi:10.1039/C5CC04126K
[47] Cho, Y. J., Yook, K. S., & Lee, J. Y. (2014). High Efficiency in a Solution‐Processed Thermally Activated Delayed‐Fluorescence Device Using a Delayed‐Fluorescence Emitting Material with Improved Solubility. Advanced Materials, 26(38), 6642-6646. doi:doi:10.1002/adma.201402188
[48] Taneda, M., Shizu, K., Tanaka, H., & Adachi, C. (2015). High efficiency thermally activated delayed fluorescence based on 1,3,5-tris(4-(diphenylamino)phenyl)-2,4,6-tricyanobenzene. Chemical Communications, 51(24), 5028-5031. doi:10.1039/C5CC00511F
[49] Gábor, M., Hiroko, N., Qisheng, Z., Tetsuya, N., & Chihaya, A. (2012). Enhanced Electroluminescence Efficiency in a Spiro‐Acridine Derivative through Thermally Activated Delayed Fluorescence. Angewandte Chemie International Edition, 51(45), 11311-11315. doi:doi:10.1002/anie.201206289
[50] Nakagawa, T., Ku, S.-Y., Wong, K.-T., & Adachi, C. (2012). Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structure. Chemical Communications, 48(77), 9580-9582. doi:10.1039/C2CC31468A
[51] Kawasumi, K., Wu, T., Zhu, T., Chae, H. S., Van Voorhis, T., Baldo, M. A., & Swager, T. M. (2015). Thermally Activated Delayed Fluorescence Materials Based on Homoconjugation Effect of Donor–Acceptor Triptycenes. Journal of the American Chemical Society, 137(37), 11908-11911. doi:10.1021/jacs.5b07932
[52] Chao, T., Tao, Y., Xudong, C., Youtian, T., Fangfang, W., Cheng, Z., etc, Wei, H. (2015). Tuning a Weak Emissive Blue Host to Highly Efficient Green Dopant by a CN in Tetracarbazolepyridines for Solution‐Processed Thermally Activated Delayed Fluorescence Devices. Advanced Optical Materials, 3(6), 786-790. doi:doi:10.1002/adom.201500016
[53] Joo, C. Y., Kyu, J. S., Doo, C. B., Eunsun, Y., & Yeob, L. J. (2015). The Design of Dual Emitting Cores for Green Thermally Activated Delayed Fluorescent Materials. Angewandte Chemie International Edition, 54(17), 5201-5204. doi:doi:10.1002/anie.201412107
[54] Kim, M., Jeon, S. K., Hwang, S.-H., Lee, S.-s., Yu, E., & Lee, J. Y. (2016). Highly efficient and color tunable thermally activated delayed fluorescent emitters using a "twin emitter" molecular design. Chemical Communications, 52(2), 339-342. doi:10.1039/C5CC07999C
[55] Shipan, W., Xianju, Y., Zong, C., Hongyu, Z., Yu, L., & Yue, W. (2015). Highly Efficient Near‐Infrared Delayed Fluorescence Organic Light Emitting Diodes Using a Phenanthrene‐Based Charge‐Transfer Compound. Angewandte Chemie International Edition, 54(44), 13068-13072. doi:doi:10.1002/anie.201506687
[56] Jie, L., Tetsuya, N., James, M., Qisheng, Z., Hiroko, N., Hiroshi, M., & Chihaya, A. (2013). Highly Efficient Organic Light‐Emitting Diode Based on a Hidden Thermally Activated Delayed Fluorescence Channel in a Heptazine Derivative. Advanced Materials, 25(24), 3319-3323. doi:doi:10.1002/adma.201300575
[57] D., C. R., Enrique, O., J., B. H., Filippo, M., Gianluca, A., & Nicola, A. (2012). Luminescent Ionic Transition‐Metal Complexes for Light‐Emitting Electrochemical Cells. Angewandte Chemie International Edition, 51(33), 8178-8211. doi:doi:10.1002/anie.201201471
[58] Przemyslaw, D., Piotr, P., Masato, O., Youhei, T., Satoshi, M., & P., M. A. (2016). Dibenzo[a,j]phenazine‐Cored Donor–Acceptor–Donor Compounds as Green‐to‐Red/NIR Thermally Activated Delayed Fluorescence Organic Light Emitters. Angewandte Chemie International Edition, 55(19), 5739-5744. doi:doi:10.1002/anie.201600113
[59] Ni, F., Wu, Z., Zhu, Z., Chen, T., Wu, K., Zhong, C., etc, Yang, C. (2017). Teaching an old acceptor new tricks: rationally employing 2,1,3-benzothiadiazole as input to design a highly efficient red thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 5(6), 1363-1368. doi:10.1039/C7TC00025A
[60] Masui, K., Nakanotani, H., & Adachi, C. (2013). Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence. Organic Electronics, 14(11), 2721-2726. doi:https://doi.org/10.1016/j.orgel.2013.07.010
[61] Lee, J., Shizu, K., Tanaka, H., Nakanotani, H., Yasuda, T., Kaji, H., & Adachi, C. (2015). Controlled emission colors and singlet-triplet energy gaps of dihydrophenazine-based thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 3(10), 2175-2181. doi:10.1039/C4TC02530J
[62] 御風者 ALPS. Retrieved from https://www.nchc.org.tw/tw/inner.php?CONTENT_ID=161
[63] 江進福. (2001). 波函數與密度泛函. 物理雙月刊, 廿三卷五期.
[64] Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098-3100.
[65] Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter, 37(2), 785-789.
[66] 許達稔、鄭原忠. 量子化學計算軟體Gaussian簡介與應用(I):介紹Gaussian輸入檔格式與執行. Retrieved from http://www.cc.ntu.edu.tw/chinese/epaper/0037/20160620_3709.html
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.126.74
論文開放下載的時間是 校外不公開

Your IP address is 52.14.126.74
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code