Responsive image
博碩士論文 etd-0507118-193218 詳細資訊
Title page for etd-0507118-193218
論文名稱
Title
相位估測應用於超音波鎖相迴路驅動控制
Phase Estimation for Phase-Locked-Loop Ultrasonic Drive
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-05-29
繳交日期
Date of Submission
2018-06-11
關鍵字
Keywords
鎖相迴路、牛頓法、內插、超音波驅動、FPGA
phase-locked loop, Newton's method, interpolation, ultrasonic driving, FPGA
統計
Statistics
本論文已被瀏覽 5686 次,被下載 181
The thesis/dissertation has been browsed 5686 times, has been downloaded 181 times.
中文摘要
超音波換能器的驅動是藉由將驅動訊號的頻率操作於想要的共振頻率,進而獲得極大的震動效率。鎖相迴路法是一種超音波換能器常見的驅動方式,然而要使其能夠充分的得到最大效率必須先獲得精確的相位資訊,這點對於只有稀疏的取樣訊號而言很難辦到。本文以訊號內插的方式結合牛頓法,重建取樣波型的零交越點,進而估測出精確的電壓與電流相位資訊。這些演算法將藉由現場可程式化閘陣列實現,並將其應用於鎖相迴路,使得性能與切換式鎖相迴路(bang-bang PLL)相比有所提升。
Abstract
An ultrasonic drive requires frequency locking at its resonance for high vibration efficiency. Phase locked loop is a common approach to achieving this purpose. To fully employ the power of phase locked loop, however, it requires the precise phase information, which is difficult to obtain for coarsely sampled signals. This thesis combines the signal reconstruction method and Newton’s method to reconstruct the zero-crossing points of coarsely sampled waveforms and thereby to precisely estimate the phase difference of the driving voltage and current. The algorithm is implemented on an FPGA with the ultrasonic driving circuit. With the proposed phase estimation algorithm, the performance of the phase-locked-loop ultrasonic drive is improved over the conventional bang-bang design.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
第一章 超音波驅動技術簡介 1
1.1 超音波換能器驅動方法 1
1.2 回授訊號的精度問題 4
1.3 提升控制精度方法 5
第二章 相位估測演算法 7
2.1 估測相位方法 7
2.2 牛頓法 8
2.3 牛頓疊代式的近似實現 9
2.3.1 疊代式的收斂問題 10
2.3.2 超音波訊號的操作限制 10
第三章 FPGA實現相位與振幅估測 13
3.1 FPGA區塊安排 13
3.2 帶通濾波器設計 14
3.3 疊代式實現 16
3.3.1 疊代式化簡 16
3.3.2 非整數延遲濾波器設計 19
3.3.3 FPGA程式規劃 24
3.4 估測器設計 26
3.4.1 振幅估測設計 27
3.4.2 相位估測設計 29
3.5 實際量測結果分析 32
3.5.1 振幅估測結果量測 32
3.5.2 相位估測結果量測 33
第四章 FPGA實現超音波驅動控制 35
4.1 超音波噴塗的驅動考量 35
4.2 鎖相迴路驅動探討 36
4.2.1 切換式鎖相迴路 36
4.2.2 改良式鎖相迴路 38
4.3 量測結果比較與探討 41
4.3.1 鎖頻性能比較 42
4.3.2 負載變動比較 48
4.3.3 驅動訊號量測 52
第五章 技術優劣探討與論文總結 58
5.1.1 技術優劣勢探討 58
5.1.2 總結 60
參考文獻 61
參考文獻 References
[1] 鄭振東,超音波工程,全華科技圖書股份有限公司,1999年。
[2] J. Riemer, Ultrasonic spray coating of nanoparticles, Sono-Tek Corporation, 2011.
[3] J. Aldrich, S. Sherrit, X. Bao, Y. Bar-Cohen, M. Badescu, and Z. Chang, “Extremum-seeking control for an ultrasonic/sonic driller/corer (USDC) driven at high power,” Proc. of SPIE. Smart Structures and Materials 2006: Modeling, Signal Processing, and Control, vol. 6166, 616618, 2006.
[4] B. Mortimer, T. Du Bruyn, J. Davies, and J. Tapson, “High power resonant tracking amplifier using admittance locking,” Ultrasonics, vol. 39, pp. 257-261, 2001
[5] L. J. Smith, “Use of phase-locked-loop control for driving ultrasonic transducers,” NASA Lewis Research Center, Cleveland,United States, 1966.
[6] S. H. Yu, Y. F. Hsieh, P. Y. Lai, Y. L. Chen, C. P. Yang, and K. Lin, “FPGA-based resonant-frequency-tracking power amplifier for ultrasonic transducer,” Proc. International Conference on Applied Electronics, pp. 285-288, 2015.
[7] 賴姵穎,利用 FPGA實現鎖相迴路鎖頻演算法於超音波噴塗系統,中山大學電機工程學系研究所學位論文,2016年。
[8] 王振傑,電流源超音波驅動設計,中山大學電機工程學系研究所學位論文,2017年。
[9] V. Babitsky, V. Astashev, and A. Kalashnikov, “Autoresonant control of nonlinear mode in ultrasonic transducer for machining applications,” Ultrasonics, vol. 42, pp. 29-35, 2004.
[10] 陳奕伶,超音波換能器之切換迴授鎖頻驅動設計,中山大學電機工程學系研究所學位論文,2016年。
[11] A. Gelb and W. E. Vander Velde, Multiple-Input Describing Functions and Nonlinear System Design. New York: McGraw-Hill, 1968.
[12] 何中庸,PLL頻率合成與鎖相電路設計,全華科技圖書股份有限公司,2001年。
[13] 宋國明,PLL電路設計及應用,全華科技圖書股份有限公司,2006年。
[14] S. H. Yu and J. S. Hu, “Optimal synthesis of a fractional delay fir filter in a reproducing kernel hilbert space,” IEEE Signal Processing Lett., vol. 8, pp. 160–162, June, 2001.
[15] I. Newton, The Method of Fluxions and Infinite Series, 1736.
[16] C. G. Broyden, “A Class of Methods for Solving Nonlinear Simultaneous Equations,” Mathematics of Computation, vol. 19, pp. 577-593, 1965.
[17] H. K. Khalil, Nonlinear Systems, 3rd ed., Pearson Education Taiwan Ltd.
[18] C. Cummings, “Clock Domain Crossing (CDC) design & verification techniques using System Verilog,” Proc. Synopsys Users Group, Meeting Boston, Sep. 2008.
[19] R. Ginosar, “Metastability and synchronization: A tutorial,’’ IEEE Design & Test, vol.28, pp. 23–35, 2011.
[20] C. J. Chou, S. Mohanakrishnan, and J. B. Evans. “FPGA implementation of digital filters.” Proc. ICSPAT, pp. 80-88, 1993.
[21] L. B. Jackson, Digital Filters and Signal Processing: With MATLAB Exercises, 3rd ed. New York: Springer, 1996.
[22] 章書彬,有限量化位元數的數位濾波器設計,中山大學通訊工程學系研究所學位論文,2011年。
[23] R. C. Walker, “Designing bang-bang PLLs for clock and data recovery in serial data transmission systems.” Phase-Locking in High-Performance Systems. Piscataway, NJ: IEEE Press, 2003.
[24] N. Da Dalt, “A design-oriented study of the nonlinear dynamics of digital bang-bang PLLs,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol.52, no. 1, pp. 21–31, Jan. 2005.
[25] N. Da Dalt, “Linearized analysis of a bang-bang digital PLL and its validity limits applied to jitter transfer and jitter generation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 11, pp. 3663-3775, Dec 2008.
[26] B. E. Noltingk and E. A. Neppiras, “Cavitation produced by ultrasonics,” Proc. Phys. Soc. London B., vol. 63, pp. 674–685, Sep. 1950.
[27] F. R. Young, Cavitation. London: McGraw-Hill, 1989.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code