Responsive image
博碩士論文 etd-0508117-153214 詳細資訊
Title page for etd-0508117-153214
論文名稱
Title
運用廢食用生質柴油混合異丁醇之乳化油於柴油引擎之醛酮污染物排放特徵研究
Characteristics of Carbonyl Compounds Emissions from Diesel Engine by Using Emulsified Oil of Mixed Ethanol with Isobutanol
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-07
繳交日期
Date of Submission
2017-06-20
關鍵字
Keywords
臭氧生成潛勢、醛酮類化合物、異丁醇、柴油引擎、生質柴油
aldehydes and ketones, ozone formation potential, isobutanol, diesel engine, biomass diesel
統計
Statistics
本論文已被瀏覽 5693 次,被下載 24
The thesis/dissertation has been browsed 5693 times, has been downloaded 24 times.
中文摘要
本研究以超級柴油混合廢食用生質柴油(5%、10%)添加不同比例異丁醇(0%、5%、7%、10%)之乳化油於柴油引擎穩態低負載條件下進行測試,乳化油進行其基礎性質(粒徑、黏度)測試及分析,並對引擎所排放之前8種醛酮類化合物進行採樣與分析,探討乳化油之特性及柴油引擎性能與污染物排放之整體變化趨勢,以瞭解柴油引擎排放醛酮類化合物特徵與臭氧生成潛勢之研究。
乳化油方面進行黏度及粒徑之測試及分析,結果顯示隨著廢食用生質柴油添加比例增加,黏度及粒徑呈現上升之趨勢。添加不同比例異丁醇,黏度方面較無明顯影響,而粒徑會隨著添加比例上升呈現增加之趨勢。
引擎性能方面隨著生質柴油及異丁醇添加比例升高,制動單位燃料消耗率呈現逐漸上升之趨勢為較耗油,反之,制動熱效率呈現下降趨勢;傳統汙染物方面,CO受燃料本身黏度及十六烷值之影響呈現上升趨勢;而 NOx與 PM受燃料本身含水率及熱值之影響則呈現下降升趨勢。
總醛酮類化合物排放方面,5 %生質柴油之總醛酮類化合物排放濃度為6195.5g/m3,其排放因子為80.85 mg/kWh,隨著異丁醇比例增加(0% - 10%),排放濃度依序為6560 - 7342.5g/m3;當添加生質柴油比例升高至10%時,其排放濃度由6195.5 - 7562g/m3,單位油耗排放因子由80.85-98.68 mg/kWh;異丁醇比例5 -10 %,其排放濃度分別增加為8002 - 9910g/m3。
臭氧生成潛勢方面超級柴油排放之總OFP值為31998.10g - O3 / m3,將10%水及5%生質柴油製成乳化油,總OFP值為35029.55g - O3 / m3當添加異丁醇比例5 -10%時,其排放濃度由 36883.98 - 40600.73g - O3 / m3;當燃料中含水量及生質柴油添加比例上升為20%水及10%生質柴油,其總OFP值為39972.63g - O3 / m3,加入異丁醇比例5 -10%時,其總OFP值分別由42110.70 - 52179.06g - O3 / m3,故添加生質柴油及異丁醇都會增加廢氣中所排放之總醛酮類化合物。
對乳化油及污染排放進行二方面評估,結果添加5 %生質柴油及5 %異丁醇於擁有較小之黏度及奈米粒徑,可長期存放,在NOx污染物上具有減量之效果,而其他生質柴油及異丁純之添加比例則會使汙染物皆呈現上升趨勢,故可得知使用5 %生質柴油及5 %異丁醇為最佳之添加比例。
Abstract
In this study the emulsified oils based on super diesel mixed with waste edible biomass diesel (5%, 10%) and different ratios of isobutanol (0%, 5%, 7%, 10%) are tested under the steady state low load condition in a diesel engine. The fundamental properties (particle size, viscosity) of emulsified oil are tested and analyzed, and the top 8 aldehyde and ketone compounds emitted by the engine are sampled and analyzed to investigate the characteristics of emulsified oils and the overall variation trends of diesel engine and pollutant emission in order to understand the research on the features of aldehyde and ketone compounds emitted by diesel engine and ozone formation potential.
The results indicate that the viscosity and particle size both show rising trends with the increasing ratio of added waste edible biomass diesel, but the addition of different ratios of isobutanol has no obvious impact on the viscosity.
For the engine performance, along with the increasing ratio of biomass and isobutanol, the fuel consumption of the actuation unit shows a rising trend, which means to consume more oil. On the contrary, there is a declining trend of actuation thermal efficiency; as for the conventional pollutants, there is a rising trend of CO due to the impacts of fuel viscosity and cetane number, while there is a declining trend of NO¬X and PM due to the water content and calorific value of the fuel.
As for the total emissions of aldehydes and ketones, the concentrations of aldehydes and ketones with 5% of biomass diesel is 6195.5g/m3 and the emission factor of 80.85 mg/kWh. Along with the increasing ratio of isobutanol (0% - 10%), the emission concentrations are in the range of 6560 - 7342.5g/m3; when the ratio of added biomass diesel is increased to 10%, the emission concentrations are in the range of 6195.5 - 7562g/m3, and the emission factors per unit oil consumption are in the range of 80.85-98.68mg/kWh; with isobutanol ratio of 5 -10 %, the emission concentrations are increased to 8002 - 9910g/m3.
In terms of ozone formation potential (OFP), the total OFP value of super diesel is 31998.10g - O3 / m3. For the emulsified oil made of 10% of water and 5% of biomass diesel, the total OFP value is 35029.55g - O3 / m3. With the addition of isobutanol of 5 -10%, the emission concentrations are in the range of 36883.98 - 40600.73g - O3 / m3; when the water content of biomass diesel addition ratio in the fuel are increased to 20% of water and 10% of biomass diesel, the total OFP value is 39972.63g - O3 / m3. With the addition of isobutanol of 5 -10%, the total OFP values are in the range of 42110.70 - 52179.06g - O3 / m3. Therefore, the additions of biomass diesel and isobutanol will both result in the increase of emission of aldehydes and ketones in the exhaust.
The assessments of both aspects of emulsified oil and pollutant emission reveal that the addition of 5 % of biomass diesel and 5 % of isobutanol result in lower viscosity and smaller nano-particle size of the fuel, which can be stored for a long time with the effect of reduction of NOx pollutant. The fuels with other ratios of additions of biomass diesel and isobutanol are showing rising trends of pollutants. Therefore, we conclude that 5 % of biomass diesel and 5 % of isobutanol are the optimal ratios of addition.
目次 Table of Contents
目錄
審定書 i
摘要 ii
ABSTRACT iv
圖目錄 ix
表目錄 xiii
第一章 前言 xiii
1.1研究緣起 1
1.2研究目標 4
第二章 文獻回顧 5
2.1能源概述 5
2.1.1全球能源概述 5
2.1.2全國供需現況 7
2.1.3生質柴油概述 8
2.1.4生質柴油常用原料 11
2.2乳化油之形成與特性 15
2.2.1奈米乳化油簡介 15
2.2.2乳化類型 16
2.2.3影響乳化因素 17
2.2.4乳化形成技術 21
2.2.5乳化生質柴油有效標準 22
第三章 研究方法與步驟 25
3.1研究架構與流程 25
3.2實驗規劃與步驟 26
3.2.1 油品規劃 26
3.2.2廢食用生質柴油與異丁醇添加比例 26
3.2.3柴油引擎採樣規劃 27
3.3實驗器材與分析 27
3.3.1製成原料與儀器 27
3.3.2油品分析儀器 30
3.3.3採樣設備與污染物分析 32
3.3.4污染物分析與設備 34
3.3.5懸浮微粒採樣方法與分析: 35
3.3.6醛酮類化合物採樣方法與設備 36
3.3.7醛酮類化合物採樣方法與分析 39
3.3.8樣品準備工作 39
3.3.9分析設備及程序 40
3.4 醛酮類化合物分析之品質保證與品質控制 40
3.4.1空白試驗 40
3.4.2 方法偵測極限(Method Detection LiMIT,MDL) 41
3.4.3檢量線(Calibration curve)之配置 42
第四章 結果與討論 43
4.1廢食用生質柴油之基礎性質 43
4.1.1廢食用生質柴油之異丁醇與黏度 43
4.1.2 廢食用生質柴油粒徑與穩定度 44
4.2廢食用生質柴油對引擎性能之影響 46
4.2.1制動單位燃料消耗率(BSFC) 46
4.2.2制動熱效率(BTE) 48
4.3廢食用生質柴油對柴油引擎之傳統汙染物排放特徵 50
4.3.1異丁醇與廢食用生質柴油混合對一氧化碳(CO)排放之影響 50
4.3.2異丁醇與廢食用生質柴油混合對氮氧化物(NOx)排放之影響 55
4.3.3異丁醇與廢食用生質柴油混合對粒狀汙染物(PM2.5)排放之影響 59
4.4廢食用生質柴油混合異丁醇對柴油引擎之醛酮化合物排放特徵 64
4.4.1總醛酮類化合物之排放濃度及排放因子 64
4.4.2醛酮類化合物之組成分析 67
4.4.3廢食用生質柴油混合異丁醇對醛酮化合物排放之影響 71
4.5臭氧生成潛勢 95
第五章 結論與建議 98
5.1結論 98
5.2建議 99
參考文獻 100
參考文獻 References
Abbaszaadeh, A., Ghobadian, B., Omidkhah, M. R., & Najafi, G. (2012). Current biodiesel production technologies: a comparative review. Energy Conversion and Management, 63, 138-148.
Alahmer, A., Yamin, J., Sakhrieh, A., & Hamdan, M. A. (2010). Engine performance using emulsified diesel fuel. Energy Conversion and Management, 51(8), 1708-1713.
Aldhaidhawi, M., Chiriac, R., & Badescu, V. (2017). Ignition delay, combustion and emission characteristics of Diesel engine fueled with rapeseed biodiesel–A literature review. Renewable and Sustainable Energy Reviews, 73, 178-186.
Alptekin, E., & Canakci, M. (2009). Characterization of the key fuel properties of methyl ester–diesel fuel blends. Fuel, 88(1), 75-80.
Anand, R., Kannan, G. R., Nagarajan, S., & Velmathi, S. (2010). Performance emission and combustion characteristics of a diesel engine fueled with biodiesel produced from waste cooking oil (No. 2010-01-0478). SAE Technical Paper.
Attia, A. M., & Hassaneen, A. E. (2016). Influence of diesel fuel blended with biodiesel produced from waste cooking oil on diesel engine performance. Fuel, 167, 316-328.
Attia, A. M., & Kulchitskiy, A. R. (2014). Influence of the structure of water-in-fuel emulsion on diesel engine performance. Fuel, 116, 703-708.
Balamurugan, S., & Sajith, V. (2017). Experimental investigation on the stability and abrasive action of cerium oxide nanoparticles dispersed diesel. Energy, 131, 113-124.
Balat, M., Balat, H., & Öz, C. (2008). Progress in bioethanol processing. Progress in energy and combustion science, 34(5), 551-573.
Bora, P., Boro, J., Konwar, L. J., & Deka, D. (2016). Formulation of microemulsion based hybrid biofuel from waste cooking oil–A comparative study with biodiesel. Journal of the Energy Institute, 89(4), 560-568.
Celik, M., Yucesu, H. S., & Guru, M. (2016). Investigation of the effects of organic based manganese addition to biodiesel on combustion and exhaust emissions. Fuel Processing Technology, 152, 83-92.
Chauhan, B. S., Kumar, N., & Cho, H. M. (2012). A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends. Energy, 37(1), 616-622.
Correa, S. M., & Arbilla, G. (2008). Carbonyl emissions in diesel and biodiesel exhaust. Atmospheric environment, 42(4), 769-775.
Debnath, B. K., Saha, U. K., & Sahoo, N. (2015). A comprehensive review on the application of emulsions as an alternative fuel for diesel engines. Renewable and Sustainable Energy Reviews, 42, 196-211.
Fangsuwannarak, K., Wanriko, P., & Fangsuwannarak, T. (2016). Effect of Bio-polymer Additive on the Fuel Properties of Palm Biodiesel and on Engine Performance Analysis and Exhaust Emission. Energy Procedia, 100, 227-236.
Gadhave, A. (2014). Determination of hydrophilic-lipophilic balance value. Int. J. Sci. Res, 3(4), 573-575.
Ganapathy, T., Gakkhar, R. P., & Murugesan, K. (2011). Influence of injection timing on performance, combustion and emission characteristics of Jatropha biodiesel engine. Applied energy, 88(12), 4376-4386.
Gopal, K. N., Pal, A., Sharma, S., Samanchi, C., Sathyanarayanan, K., & Elango, T. (2014). Investigation of emissions and combustion characteristics of a CI engine fueled with waste cooking oil methyl ester and diesel blends. Alexandria Engineering Journal, 53(2), 281-287.
Guarieiro, L. L. N., de Souza, A. F., Torres, E. A., & de Andrade, J. B. (2009). Emission profile of 18 carbonyl compounds, CO, CO 2, and NO x emitted by a diesel engine fuelled with diesel and ternary blends containing diesel, ethanol and biodiesel or vegetable oils. Atmospheric Environment, 43(17), 2754-2761.
Hagos, F. Y., Aziz, A. R. A., & Tan, I. M. (2011, May). Water-in-diesel emulsion and its micro-explosion phenomenon-review. In Communication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on (pp. 314-318). IEEE.
Hoseini, S. S., Najafi, G., Ghobadian, B., Mamat, R., Sidik, N. A. C., & Azmi, W. H. (2017). The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends. Renewable and Sustainable Energy Reviews, 73, 307-331.
Ithnin, A. M., Noge, H., Kadir, H. A., & Jazair, W. (2014). An overview of utilizing water-in-diesel emulsion fuel in diesel engine and its potential research study. Journal of the Energy Institute, 87(4), 273-288.
Kannan, G. R., & Anand, R. (2011). Experimental investigation on diesel engine with diestrol–water micro emulsions. Energy, 36(3), 1680-1687.
Karabektas, M., & Hosoz, M. (2009). Performance and emission characteristics of a diesel engine using isobutanol–diesel fuel blends. Renewable Energy, 34(6), 1554-1559.
Labeckas, G., & Slavinskas, S. (2015). Combustion phenomenon, performance and emissions of a diesel engine with aviation turbine JP-8 fuel and rapeseed biodiesel blends. Energy Conversion and Management, 105, 216-229.
Leevijit, T., Prateepchaikul, G., Maliwan, K., Mompiboon, P., & Eiadtrong, S. (2017). Comparative properties and utilization of un-preheated degummed/esterified mixed crude palm oil-diesel blends in an agricultural engine. Renewable Energy, 101, 82-89.
Liu, Y., Jiao, W., & Qi, G. (2011). Preparation and properties of methanol–diesel oil emulsified fuel under high-gravity environment. Renewable energy, 36(5), 1463-1468.
Macor, A., Avella, F., & Faedo, D. (2011). Effects of 30% v/v biodiesel/diesel fuel blend on regulated and unregulated pollutant emissions from diesel engines. Applied Energy, 88(12), 4989-5001.
Maiboom, A., & Tauzia, X. (2011). NOx and PM emissions reduction on an automotive HSDI Diesel engine with water-in-diesel emulsion and EGR: An experimental study. Fuel, 90(11), 3179-3192.
Ng, J. H., Ng, H. K., & Gan, S. (2012). Characterisation of engine-out responses from a light-duty diesel engine fuelled with palm methyl ester (PME). Applied Energy, 90(1), 58-67.
Peng, C. Y., Yang, H. H., Lan, C. H., & Chien, S. M. (2008). Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust. Atmospheric Environment, 42(5), 906-915.
Prabu, S. S., Asokan, M. A., Roy, R., Francis, S., & Sreelekh, M. K. (2017). Performance, combustion and emission characteristics of diesel engine fuelled with waste cooking oil bio-diesel/diesel blends with additives. Energy, 122, 638-648.
Qi, D. H., Geng, L. M., Chen, H., Bian, Y. Z., Liu, J., & Ren, X. C. (2009). Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil. Renewable Energy, 34(12), 2706-2713.
Randazzo, M. L., & Sodre, J. R. (2011). Cold start and fuel consumption of a vehicle fuelled with blends of diesel oil–soybean biodiesel–ethanol. Fuel, 90(11), 3291-3294.
Sajjadi, B., Raman, A. A. A., & Arandiyan, H. (2016). A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models. Renewable and Sustainable Energy Reviews, 63, 62-92.
Silitonga, A. S., Masjuki, H. H., Mahlia, T. M. I., Ong, H. C., Chong, W. T., & Boosroh, M. H. (2013). Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renewable and Sustainable Energy Reviews, 22, 346-360.
Song, C., Zhao, Z., Lv, G., Song, J., Liu, L., & Zhao, R. (2010). Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol–diesel blend. Chemosphere, 79(11), 1033-1039.
Valente, O. S., Da Silva, M. J., Pasa, V. M. D., Belchior, C. R. P., & Sodré, J. R. (2010). Fuel consumption and emissions from a diesel power generator fuelled with castor oil and soybean biodiesel. Fuel, 89(12), 3637-3642.
Vellaiyan, S., & Amirthagadeswaran, K. S. (2016). The role of water-in-diesel emulsion and its additives on diesel engine performance and emission levels: A retrospective review. Alexandria Engineering Journal, 55(3), 2463-2472.
Wei, L., Cheung, C. S., & Ning, Z. (2017). Influence of waste cooking oil biodiesel on combustion, unregulated gaseous emissions and particulate emissions of a direct-injection diesel engine. Energy, 127, 175-185.
Yang, P. M., Lin, K. C., Lin, Y. C., Jhang, S. R., & Chen, S. C. (2016). Emission evaluation of a diesel engine generator operating with a proportion of isobutanol as a fuel additive in biodiesel blends. Applied Thermal Engineering, 100, 628-635.
BP Statistical Review of World Energy (2015)
美國BP世界能源,2016
李智傑,(2008),「酸性觸媒在生質柴油製程之研究」,碩士論文,國立成功大學化學工程學系。
李貽華,2005,「空氣及水污染對植物之影響」,行政院農業委員會農業藥物毒物試驗所。
林淵淙,2006,「生質柴油及乳化柴油對柴油引擎排放廢氣污染減量及提昇 能源效率之研究」,國立成功大學環境工程學系,博士論文
何文淵,1999,「汽油車引擎廢氣揮發性有機物成份及光化反應潛勢」,國立 成功大學環境工程研究所,碩士論文。
何泳翰,2015,「比較不同的介面活性劑對重柴油乳化行為研究」,碩士論文,台南大學環境資源管理研究所。
黃民舟,2011,「建構以綠色化學概念之普通化學相關實驗」,中原大學化學研究所,碩士論文。
經濟部能源局,2016,「能源產業技術白皮書」
陳介武,2000,「生化柴油發展與趨勢」,黃豆之工業應用與環保。
鄭儀節,2011,「以二甲醚混合柴油對柴油引擎醛酮類化合物排放特徵之研 究」,國立中山大學環境工程研究所,碩士論文。
施佳育,2013,「運用生質柴油及固定氫氧混合氣對於柴油引擎醛酮化合物排放特徵之研究」,中國立中山大學環境工程研究所,碩士論文。
楊皓翔,2012,「異丁醇混合柴油對柴油引擎醛酮類化合物排放特徵之研究」, 國立中山大學環境工程研究所,碩士論文。
王信凱,2008,「高雄都會區與中部鄉村多環芳香烴化合物濃度特徵之研究」, 國立中山大學環境工程研究所,博士論文。
王盈嵐,2011,「添加氫氧氣為替代燃料對柴油引擎排放醛酮類化合物減量 與節能效益之研究」,國立中山大學環境工程研究所,碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code