Responsive image
博碩士論文 etd-0508118-103247 詳細資訊
Title page for etd-0508118-103247
論文名稱
Title
大腦皮層厚度和海馬迴體積在青少年自閉症候群的變化
Changes of cerebral cortical thickness and hippocampal volume in adolescents with autism spectrum disorder
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-05-25
繳交日期
Date of Submission
2018-06-08
關鍵字
Keywords
青少年、自閉症候群、大腦皮質厚度、海馬迴體積、杏仁核體積
cerebral cortical thickness, hippocampal volume, amygdala volume, autism spectrum disorder, adolescents
統計
Statistics
本論文已被瀏覽 5650 次,被下載 0
The thesis/dissertation has been browsed 5650 times, has been downloaded 0 times.
中文摘要
自閉症候群是一種神經發育障礙,患者會呈現社交溝通、人際互動障礙及特定的行為模式。一般來說,過去的神經影像研究顯示自閉症患者的大腦皮質厚度可能在部分區域發現異常,但在海馬迴和杏仁核上的體積研究結果卻不一致。本研究希望透過測量本地蒐集到的受試者,以獲得排除性別、患者手足等可能影響結果的因素的亞洲人實驗結果。使用表面式大腦皮質厚度量測方法(FreeSurfer)計算自閉症青少年(17 名;平均年齡17.15±1.13 歲)和年齡匹配的典型發展對照組的大腦皮質厚度(10 名;平均年齡16.68±1.77 歲)。研究結果顯示,相較於對照組,自閉症青少年在顳葉和枕葉上皮質厚度較厚,扣帶迴中皮質厚度較薄,並且有較大的右側海馬迴絕對體積。這些結果符合一些以前的研究結果,但也與其他研究有些不一致。大腦結構和自閉症候群恐無絕對因果關係或診斷價值,現階段亦無確定有關發展上改變的結論。
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder which leads to impairment in social communication and specific behavior repertoire. In general, neuroimaging studies support the concept that regional abnormalities of the cerebral cortical thickness are associated with autism, while results from volumetric studies done on hippocampus and amygdala are inconsistent. The purpose of this study is to measure the results of local experiments that exclude factors such as gender, patient's siblings that might affect the results. In this study, the cortical thickness and volumes of hippocampus and amygdala were obtained by using a surface-based method (FreeSurfer) on 17 adolescents diagnosed with ASD (mean age=17.15±1.13 years old) and 10 age-matched typically developing controls (mean age=16.68±1.77 years old). The results revealed that the ASD adolescents have thicker cortical thickness on the temporal and occipital lobes and scattered thinner thickness in cingulate. In addition, a statistically significant increase of right hippocampal absolute volume is found in adolescents with ASD but becomes non-significant after normalization to individual’s intracranial volume. The finding of this study corroborates to several previous literatures, but also somewhat inconsistent with reports by others. However, there is no absolute cause-effect relationship or diagnostic value between brain structures and ASD. Besides, there are no consistent conclusions about structural changes in development at present.
目次 Table of Contents
論文審定書………………………………………………………………………… i
致謝………………………………………………….……………………………… ii
中文摘要………………………………………………….…………………….….. iii
Abstract……………...………………………………………...……………………. iv
Contents……………...………………………………………...…………………… vi
List of figures……………...…………………………..……………………………. viii
List of tables……………...………………………………………...……………….. ix
Chapter 1 Introduction…………………………………………………...………….. 1
1.1 Background…….………………………………………………..…………. 1
1.1.1 ASD…….……………………………………...……………..……. 1
1.1.2 MRI…….……………………………………...…..................……. 2
1.1.3 Cortical thickness (CT) …………………………....................……. 2
1.1.4 Previous structural MRI studies in autism spectrum disorder……… 3
1.2 Purpose of this study…….………………………..………………………… 7
Chapter 2 Materials & Method……………………………...……………………… 9
2.1 Materials…….……………………………………………………………. 9
2.1.1 Participants…….……………………………...…………………… 9
2.1.2 Structural imaging parameters………………………………….… 11
2.2 Method…….………………………………………………...…………... 12
2.2.1 FreeSurfer………………………………………………………... 12
2.2.2 Cortical reconstruction………………………….……………….. 12
2.2.3 Cortical areas…………………………………..…………………. 16
2.2.4 General linear model (GLM) correction……………….…………. 18
Chapter 3 Results………………………………………………………………… 25
3.1 Gaussian kernel…..……………………………………………………… 25
3.2 Cortical thickness……………………………………………………… 27
3.3 Volume of Hippocampus and Amygdala………………………………… 31
3.4 Relative volume of Hippocampus and Amygdala…..…………………… 31
Chapter 4 Discussion…………………………………………………………....… 33
4.1 Gaussian kernel...………………………………………………...……… 33
4.2 Cortical thickness………………………………………………...……… 33
4.3 Hippocampus and Amygdala………………………...…………..……… 37
4.4 Limitations…………………………...………………………………… 39
4.5 Conclusion…………………...……………………………………….… 40
Reference…………………………………………………………………….……… 41
參考文獻 References
1. (COR), A.P.A., Diagnostic and Statistical Manual of Mental Disorders (DSM-5®),
Fifth Edition. Diagnostic and Statistical Manual of Mental Disorders. 2013,
Arlington: Amer Psychiatric Pub Inc. 947.
2. Enwefa, R.E.a.S., Autism Spectrum Disorders, Nutrition, Neurobiology and
Special Education Services by 2020. Global Journal of Intellectual &
Developmental Disabilities (GJIDD), November 2017. 3(3).
3. Christensen, D.L., et al., Prevalence and Characteristics of Autism Spectrum
Disorder Among Children Aged 8 Years--Autism and Developmental Disabilities
Monitoring Network, 11 Sites, United States, 2012. MMWR Surveill Summ, 2016.
65(3): p. 1-23.
4. Szatmari, P., Heterogeneity and the genetics of autism. J Psychiatry Neurosci,
1999. 24(2): p. 159-65.
5. Andrade, C., Antidepressant Exposure During Pregnancy and Risk of Autism in
the Offspring, 1: Meta-Review of Meta-Analyses. J Clin Psychiatry, 2017. 78(8):
p. e1047-e1051.
6. Andrade, C., Antidepressant Exposure During Pregnancy and Risk of Autism in
the Offspring, 2: Do the New Studies Add Anything New? J Clin Psychiatry, 2017.
78(8): p. e1052-e1056.
7. Zielinski, B.A., et al., Longitudinal changes in cortical thickness in autism and
typical development. Brain, 2014. 137(Pt 6): p. 1799-812.
8. Mensen, V.T., et al., Development of cortical thickness and surface area in autism
spectrum disorder. Neuroimage Clin, 2017. 13: p. 215-222.
9. Economo, C.v., The Cytoarchitectonics of the Human Cerebral Cortex. Journal of
Anatomy, 1929. 63(Pt 3): p. 389-389.
10. Salat, D.H., et al., Thinning of the cerebral cortex in aging. Cereb Cortex, 2004.
14(7): p. 721-30.
11. Tamnes, C.K., et al., Development of the Cerebral Cortex across Adolescence: A
Multisample Study of Inter-Related Longitudinal Changes in Cortical Volume,
Surface Area, and Thickness. J Neurosci, 2017. 37(12): p. 3402-3412.
12. Shaw, P., et al., Neurodevelopmental trajectories of the human cerebral cortex. J
Neurosci, 2008. 28(14): p. 3586-94.
13. Sowell, E.R., et al., Longitudinal mapping of cortical thickness and brain growth
in normal children. J Neurosci, 2004. 24(38): p. 8223-31.
14. Zhou, D., et al., Accelerated longitudinal cortical thinning in adolescence.
Neuroimage, 2015. 104: p. 138-45.
15. Dickerson, B.C., et al., The cortical signature of Alzheimer's disease: regionally
specific cortical thinning relates to symptom severity in very mild to mild AD
dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb
Cortex, 2009. 19(3): p. 497-510.
16. Wallace, G.L., et al., Age-related temporal and parietal cortical thinning in autism
spectrum disorders. Brain, 2010. 133(Pt 12): p. 3745-54.
17. Haar, S., et al., Anatomical Abnormalities in Autism? Cereb Cortex, 2016. 26(4):
p. 1440-52.
18. Ha, S., et al., Characteristics of Brains in Autism Spectrum Disorder: Structure,
Function and Connectivity across the Lifespan. Exp Neurobiol, 2015. 24(4): p.
273-84.
19. Chaddad, A., et al., Hippocampus and amygdala radiomic biomarkers for the
study of autism spectrum disorder. BMC Neurosci, 2017. 18(1): p. 52.
20. Sparks, B.F., et al., Brain structural abnormalities in young children with autism
spectrum disorder. Neurology, 2002. 59(2): p. 184-92.
21. Shou, X.J., et al., A Volumetric and Functional Connectivity MRI Study of Brain
Arginine-Vasopressin Pathways in Autistic Children. Neurosci Bull, 2017. 33(2):
p. 130-142.
22. Pierce, K., et al., Face processing occurs outside the fusiform 'face area' in autism:
evidence from functional MRI. Brain, 2001. 124(Pt 10): p. 2059-73.
23. Herbert, M.R., et al., Dissociations of cerebral cortex, subcortical and cerebral
white matter volumes in autistic boys. Brain, 2003. 126(Pt 5): p. 1182-92.
24. Haznedar, M.M., et al., Limbic circuitry in patients with autism spectrum
disorders studied with positron emission tomography and magnetic resonance
imaging. Am J Psychiatry, 2000. 157(12): p. 1994-2001.
25. Bigler, E.D., et al., Temporal lobe, autism, and macrocephaly. AJNR Am J
Neuroradiol, 2003. 24(10): p. 2066-76.
26. Barnea-Goraly, N., et al., A preliminary longitudinal volumetric MRI study of
amygdala and hippocampal volumes in autism. Prog Neuropsychopharmacol Biol
Psychiatry, 2014. 48: p. 124-8.
27. Palmen, S.J., et al., No evidence for preferential involvement of medial temporal
lobe structures in high-functioning autism. Psychol Med, 2006. 36(6): p. 827-34.
28. Schumann, C.M., et al., The amygdala is enlarged in children but not adolescents
with autism; the hippocampus is enlarged at all ages. J Neurosci, 2004. 24(28): p.
6392-401.
29. Luders, E., et al., Gender effects on cortical thickness and the influence of scaling.
Hum Brain Mapp, 2006. 27(4): p. 314-24.
30. Carpenter, L.A., L. Soorya, and D. Halpern, Asperger's syndrome and highfunctioning
autism. Pediatr Ann, 2009. 38(1): p. 30-5.
31. Collins, D.L., et al., Automatic 3D intersubject registration of MR volumetric data
in standardized Talairach space. J Comput Assist Tomogr, 1994. 18(2): p. 192-
205.
32. Segonne, F., et al., A hybrid approach to the skull stripping problem in MRI.
Neuroimage, 2004. 22(3): p. 1060-75.
33. Kempton, M.J., et al., Structural neuroimaging studies in major depressive
disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen
Psychiatry, 2011. 68(7): p. 675-90.
34. Cachia, A., et al., Cortical folding abnormalities in schizophrenia patients with
resistant auditory hallucinations. Neuroimage, 2008. 39(3): p. 927-35.
35. Klein, A. and J. Tourville, 101 labeled brain images and a consistent human
cortical labeling protocol. Front Neurosci, 2012. 6: p. 171.
36. Wallace, G.L., et al., Longitudinal cortical development during adolescence and
young adulthood in autism spectrum disorder: increased cortical thinning but
comparable surface area changes. J Am Acad Child Adolesc Psychiatry, 2015.
54(6): p. 464-9.
37. Scheel, C., et al., Imaging derived cortical thickness reduction in high-functioning
autism: key regions and temporal slope. Neuroimage, 2011. 58(2): p. 391-400.
38. Hadjikhani, N., et al., Anatomical differences in the mirror neuron system and
social cognition network in autism. Cereb Cortex, 2006. 16(9): p. 1276-82.
39. Misaki, M., et al., Characteristic cortical thickness patterns in adolescents with
autism spectrum disorders: interactions with age and intellectual ability revealed
by canonical correlation analysis. Neuroimage, 2012. 60(3): p. 1890-901.
40. Warrier, C., et al., Relating structure to function: Heschl's gyrus and acoustic
processing. J Neurosci, 2009. 29(1): p. 61-9.
41. Goddard, M.N., et al., Neural systems for social cognition: gray matter volume
abnormalities in boys at high genetic risk of autism symptoms, and a comparison
with idiopathic autism spectrum disorder. Eur Arch Psychiatry Clin Neurosci,
2016. 266(6): p. 523-31.
42. Olson, I.R., et al., Social cognition and the anterior temporal lobes: a review and
theoretical framework. Soc Cogn Affect Neurosci, 2013. 8(2): p. 123-33.
43. Sabatinelli, D., et al., Emotional perception: correlation of functional MRI and
event-related potentials. Cereb Cortex, 2007. 17(5): p. 1085-91.
44. Halpern, M.E., et al., Lateralization of the vertebrate brain: taking the side of
model systems. J Neurosci, 2005. 25(45): p. 10351-7.
45. Hiraishi, H., et al., Unusual developmental pattern of brain lateralization in young
boys with autism spectrum disorder: Power analysis with child-sized
magnetoencephalography. Psychiatry Clin Neurosci, 2015. 69(3): p. 153-60.
46. Stevens, F.L., R.A. Hurley, and K.H. Taber, Anterior cingulate cortex: unique role
in cognition and emotion. J Neuropsychiatry Clin Neurosci, 2011. 23(2): p. 121-
5.
47. Burgess, N., E.A. Maguire, and J. O'Keefe, The human hippocampus and spatial
and episodic memory. Neuron, 2002. 35(4): p. 625-41.
48. Strange, B. and R. Dolan, Functional segregation within the human hippocampus.
Mol Psychiatry, 1999. 4(6): p. 508-11.
49. Hoschl, C. and T. Hajek, Hippocampal damage mediated by corticosteroids--a
neuropsychiatric research challenge. Eur Arch Psychiatry Clin Neurosci, 2001.
251 Suppl 2: p. II81-8.
50. Caron, M.J., et al., Do high functioning persons with autism present superior
spatial abilities? Neuropsychologia, 2004. 42(4): p. 467-81.
51. Burke, J.C. and L. Cerniglia, Stimulus complexity and autistic children's
responsivity: assessing and training a pivotal behavior. J Autism Dev Disord,
1990. 20(2): p. 233-53.
52. Maguire, E.A., et al., Navigation-related structural change in the hippocampi of
taxi drivers. Proc Natl Acad Sci U S A, 2000. 97(8): p. 4398-403.
53. Brothers, L., B. Ring, and A. Kling, Response of neurons in the macaque
amygdala to complex social stimuli. Behav Brain Res, 1990. 41(3): p. 199-213.
54. Grelotti, D.J., I. Gauthier, and R.T. Schultz, Social interest and the development
of cortical face specialization: what autism teaches us about face processing. Dev
Psychobiol, 2002. 40(3): p. 213-25.
55. Haxby, J.V., E.A. Hoffman, and M.I. Gobbini, Human neural systems for face
recognition and social communication. Biol Psychiatry, 2002. 51(1): p. 59-67.
56. Adolphs, R., Neural systems for recognizing emotion. Curr Opin Neurobiol, 2002.
12(2): p. 169-77.
57. Adolphs, R., D. Tranel, and A.R. Damasio, Dissociable neural systems for
recognizing emotions. Brain Cogn, 2003. 52(1): p. 61-9.
58. Cahill, L., et al., The amygdala and emotional memory. Nature, 1995. 377(6547):
p. 295-6.
59. Canli, T., et al., Event-related activation in the human amygdala associates with
later memory for individual emotional experience. J Neurosci, 2000. 20(19): p.
RC99.
60. Gottfried, J.A., J. O'Doherty, and R.J. Dolan, Encoding predictive reward value in
human amygdala and orbitofrontal cortex. Science, 2003. 301(5636): p. 1104-7.
61. Baron-Cohen, S., et al., The amygdala theory of autism. Neurosci Biobehav Rev,
2000. 24(3): p. 355-64.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code