Responsive image
博碩士論文 etd-0512117-134652 詳細資訊
Title page for etd-0512117-134652
論文名稱
Title
Galectin-1與ROGDI在子宮頸癌細胞之放射敏感性的角色與機轉
The Role and Mechanism of Galectin-1 and ROGDI in Cervical Cancer Cell Radio-sensitivity
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-05-24
繳交日期
Date of Submission
2017-06-12
關鍵字
Keywords
半乳醣凝集素一、放射敏感性、H-Ras訊息傳遞路徑
Galectin-1, ROGDI, H-Ras signaling pathway, γ-H2AX, radiosensitivity
統計
Statistics
本論文已被瀏覽 5687 次,被下載 653
The thesis/dissertation has been browsed 5687 times, has been downloaded 653 times.
中文摘要
子宮頸癌是台灣女性最常見的癌症之一,並且放射治療在其扮演重要之角色。由文獻得知,影響放射線敏感度的因素與DNA傷害修復及細胞週期有關。我們的研究使用子宮頸癌細胞株測試指出無論半乳醣凝集素一(Galectin-1)存在與否,放射敏感性皆會受到H-Ras訊息傳遞路徑影響。輻射照射經降低Galectin-1表現量之HeLa細胞會降低其腫瘤克隆生成。若輻射照射經增加galectin-1表現量之HeLa及C33A細胞皆增加其腫瘤克隆生成。然而,輻射照射經降低H-Ras表現量之HeLa及C33A細胞皆不影響其腫瘤克隆生成。降低HeLa細胞Galectin-1表現量會抑制其因輻射所誘發的Raf-1及ERK之磷酸化反應,增加C33A細胞Galectin-1表現量會增強其因輻射所誘發的Raf-1及ERK之磷酸化反應。使用彗星檢測試劑以及偵測γ-H2AX表現量顯示,Galectin-1會降低此兩株細胞因輻射照射所誘發的DNA損傷。ROGDI是一個經調控DNA損傷指標(γ-H2AX)活性進而與基因體穩定性有關之分子,一般來說,G2/M DNA損傷的檢查關鍵時期對輻射較為敏感,然而,G1/S過渡階段對輻射較具抵抗性。在HeLa和C33A中,降低ROGDI表現量將抑制CDK 1/2、cyclin A/B表現量進而造成細胞停滯於G2/M過渡時期。除此之外,使用流體細胞儀及腫瘤克隆生成技術偵測此兩株細胞輻射照射後數據顯示,降低此兩株細胞ROGDI表現量會使細胞停滯於G2期且降低其生存率。經由以上發現顯示,Galectin-1需依賴性通過H-Ras引發之DNA修補訊息傳遞路徑進而調控放射耐受性,且降低ROGDI表現量驅使細胞週期停滯於最具放射敏感性的階段(G2/M)以及藉由γ-H2AX活性指數增加顯示此階段DNA亦承受嚴重性的損傷。
Abstract
Cervical cancer is common cancer among women in Taiwan and Radiotherapy plays an important role. The literature indicates that radio-sensitivity is correlated to DNA repair and cell cycle. Our study tests whether Galectin-1 is involved in the radiosensitivity mediated by the H-Ras signaling pathway using cervical carcinoma cell lines. The knockdown of Galectin-1 expression in HeLa cells decreased clonogenic survival following irradiation. The clonogenic survival increased in both HeLa and C33A cells with Galectin-1 overexpression. The overexpression or knockdown of Galectin-1 did not alter radiosensitivity, whereas H-Ras was silenced in both cell lines. The knockdown of Galectin-1 inhibited the radiation-induced phosphorylation of Raf-1 and ERK in HeLa cells. Overexpression of Galectin-1 enhanced the phosphorylation of Raf-1 and ERK in C33A cells following irradiation. Galectin-1 decreased the DNA damage detected using comet assay and γ-H2AX in both cells following irradiation. ROGDI is associated with genome stability by regulating the activity of a DNA damage marker, γ-H2AX. In general, the G2/M DNA damage checkpoint is more sensitive to radiation, whereas the G1/S phase transition is more resistant to radiation. The downregulation of ROGDI led to a decreased expression of CDK 1/2 and cyclin A/B and resulted in a G2/M phase transition block in both HeLa and C33A cells. In addition, the downregulation of ROGDI increased cell accumulation at the G2 phase as detected using flow cytometry and decreased cell survival as revealed by clonogenic assay in HeLa and C33A cells following irradiation. These findings suggest that Galectin-1 mediates radioresistance through the H-Ras-dependent pathway involved in DNA damage repair and the downregulation of ROGDI can mediate radiosensitivity by blocking cells at G2/M, the most radiosensitive phase of the cell cycle, as well as exerting deleterious effects in the form of DNA damage, as shown by increased γ-H2AX activation.
目次 Table of Contents
論文審定書………………………………………………………………i
致謝………………………………………………………………………ii
中文摘要…………………………………………………………………iii
英文摘要…………………………………………………………………iv
第一章 前言………………………………………………………………1
1.1 醣蛋白分子與腫瘤細胞放射敏感性的相關性……………………..1
1.2 半乳醣凝集素一 (Galectin-1)………………………………….......2
1.3 ROGDI, 新的未知功能分子ROGDI………………………………..3
1.4 細胞週期與癌細胞放射線敏感度的關係…………………………..4
1.5 輻射離子傷害誘發γ-H2AX表現的意義…………………………....5
1.6 研究目的與未來展望………………………………………………..5
第二章 材料與方法………………………………………………………7
2.1 材料…………………………………………………………………..7
2.1.1 藥物與試劑……………………………………………………......7
2.1.2 抗體………………………………………………………….........8
2.1.3 細胞株……………………………………………………….........8
2.1.4 小片段干擾核糖核酸(siRNA)……………………………….......8
2.1.5 小片段髮夾型干擾核糖核酸(shRNA)………………………......9
2.1.6 質體…………………………………………………………........9
2.1.7 西方點墨法分析材料………………………………………........9
2.1.8 實驗套組……………………………………………………........9
2.2 方法………………………………………………………………...10
2.2.1 細胞培養…………………………………………………….......10
2.2.2 轉染siRNA進行基因剔除實驗……………………………........10
2.2.3 轉染shRNA進行基因剔除實驗……………………………......11
2.2.4 轉染表現質體……………………………………………….......12
2.2.5 應用流式細胞偵測儀偵測綠色螢光蛋白表現…………….......12
2.2.6 轉染持續活化H-Ras基因於HeLa細胞…………………….......13
2.2.7 免疫沉澱及西方點墨法…………………………………….......14
2.2.8 H-Ras活性測試……………………………………………….....15
2.2.9 放射處理及克隆測試……………………………………….......15
2.2.10 彗星偵測………………………………………………….........15
2.2.11 細胞增生及克隆生成測試……………………………….........16
2.2.12 應用流式細胞儀偵測細胞週期………………………….........16
2.2.13 應用原位鄰邊連接測試方法(PLA)檢測蛋白間
交互作用………………………………………………….........17
2.2.14 應用原位鄰邊連接測試方法(PLA)檢測單一蛋
白質表現量……………………………………………….........18
2.2.15 應用共軛焦顯微鏡觀察Galectin-1-GFP融合蛋白
分佈……………………………………………………….........18
2.2.16 質體製備………………………………………………….........19
2.2.17 RNA萃取及聚合酶連鎖反應分析……………………….........19
2.2.18 統計方法………………………………………………….........20
第三章 結果……………………………………………………………..21
3.1 調控子宮頸癌細胞中Galectin-1表現量…………………………..21
3.2 Galectin-1與HeLa及C33A的抗輻射敏感性有關…………………21
3.3 H-Ras在子宮頸癌抗輻射敏感性扮演顯著的角色,而非
K-Ras………………………………………………………………..22
3.4 Galectin-1藉由增強H-Ras訊息傳遞達到子宮頸癌細胞抗
輻射敏感性效果…………………………………………………....23
3.5 Galectin-1增強子宮頸癌細胞經輻射造成的DNA損傷
修補能力…………………………………………………………....24
3.6 調控ROGDI表現會影響各類腫瘤細胞生長速度………………..24
3.7 ROGDI在子宮頸癌細胞週期中扮演的角色……………………..25
3.8 降低ROGDI表現量會增加HeLa及C33A細胞對輻射的
敏感性……………………………………………………………....26
3.9 降低HeLa及C33A細胞ROGDI表現量會加速γ-H2AX (Ser139)
磷酸化表現………………………………………………………....27
第四章 討論…………………………………………………………….28
第五章 參考文獻……………………………………………………….33
Curriculum Vitae……………………………………………………….66
參考文獻 References
1. Huang EY, Wang CJ, Chen HC, et al. Multivariate analysis of para-aortic lymph node recurrence after definitive radiotherapy for stage IB-IVA squamous cell carcinoma of uterine cervix. Int J Radiat Oncol Biol Phys 2008; 72: 834–842.

2. Hertlein L, Lenhard M, Kirschenhofer A, et al. Cetuximab monotherapy in advanced cervical cancer: a retrospective study with five patients. Arch Gynecol Obstet 2011; 283: 109–113.

3. Kurtz JE, Hardy-Bessard AC, Deslandres M, et al. Cetuximab, topotecan and cisplatin for the treatment of advanced cervical cancer: a phase II GINECO trial. Gynecol Oncol 2009; 113: 16–20.

4. Goncalves A, Fabbro M, Lhomme´ C, et al. A phase II trial to evaluate gefitinib as second- or third-line treatment in patients with recurring locoregionally advanced or metastatic cervical cancer. Gynecol Oncol 2008; 108: 42–46.

5. Gaffney DK, Winter K, Dicker AP, et al. A Phase II study of acute toxicity for Celebrex (celecoxib) and chemoradiation in patients with locally advanced cervical cancer: primary endpoint analysis of RTOG 0128. Int J Radiat Oncol Biol Phys 2007; 67: 104–109.

6. Gaffney DK, Winter K, Dicker AP, et al. Efficacy and patterns of failure for locally advanced cancer of the cervix treated with celebrex (celecoxib) and chemoradiotherapy in RTOG 0128. Int J Radiat Oncol Biol Phys 2007; 69: 111–117.
7. Herrera FG, Chan P, Doll C, et al. A prospective phase I-II trial of the cyclooxygenase-2 inhibitor celecoxib in patients with carcinoma of the cervix with biomarker assessment of the tumor microenvironment. Int J Radiat Oncol Biol Phys 2007; 67: 97–103.

8. Van Kooyk Y and Rabinovich GA. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 2008; 9: 593–601.

9. Le QT, Shi G, Cao H, Nelson DW, et al. Galectin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol 2005; 23: 8932–8941.

10. Le QT, Kong C, Lavori PW, et al. Expression and prognostic significance of a panel of tissue hypoxia markers in head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 2007; 69: 167–175.

11. Chiang WF, Liu SY, Fang LY, et al. Overexpression of galectin-1 at the tumor invasion front is associated with poor prognosis in early-stage oral squamous cell carcinoma. Oral Oncol 2008; 44: 325–334.

12. Saussez S, Decaestecker C, Lorfevre F, et al. High level of galectin-1 expression is a negative prognostic predictor of recurrence in laryngeal squamous cell carcinomas. Int J Oncol 2007; 30: 1109–1117.

13. Parliament MB and Murray D. Single nucleotide polymorphisms of DNA repair genes as predictors of radioresponse. Semin Radiat Oncol 2010; 20: 232–240.

14. Iliakis G, Metzger L, Muschel RJ, et al. Induction and repair of DNA double strand breaks in radiation-resistant cells obtained by transformation of primary rat embryo cells with the oncogenes H-ras and v-myc. Cancer Res 1990; 50: 6575–6579.

15. Cho HJ, Jeong HG, Lee JS, et al. Oncogenic H-Ras enhances DNA repair through the Ras/phosphatidylinositol 3-kinase/Rac1 pathway in NIH3T3 cells. Evidence for association with reactive oxygen species. J Biol Chem 2002; 277: 19358–19666.

16. Chang IY, Youn CK, Kim HB, et al. Oncogenic H-Ras upregulates expression of Ku80 to protect cells from gamma-ray irradiation in NIH3T3 cells. Cancer Res 2005; 65: 6811–6819.

17. Youn CK, Kim MH, Cho HJ, et al. Oncogenic H-Ras upregulates expression of ERCC1 to protect cells from platinum-based anticancer agents. Cancer Res 2004; 64: 4849–4857.

18. Sklar MD. The ras oncogenes increase the intrinsic resistance of NIH 3T3 cells to ionizing radiation. Science 1988; 239: 645–647.

19. Hermens AF and Bentvelzen PA. Influence of the H-ras oncogene on radiation responses of a rat rhabdomyosarcoma cell line. Cancer Res 1992; 52: 3073–3082.

20. Cengel KA, Voong KR, Chandrasekaran S, et al. Oncogenic K-Ras signals through epidermal growth factor receptor and wild-type H-Ras to promote radiation survival in pancreatic and colorectal carcinoma cells. Neoplasia 2007; 9: 341–348.

21. Paz A, Haklai R, Elad-Sfadia G, Ballan E, et al. Galectin-1 binds oncogenic
H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 2001;
20: 7486–7493.

22. Elad-Sfadia G, Haklai R, Ballan E, et al. Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase. J Biol Chem 2002; 277: 37169–37175.

23. Hockel M, Schlenger K, Aral B, et al. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 1996; 56: 4509–4515.

24. Rofstad EK, Sundfør K, Lyng H, et al. Hypoxia-induced treatment failure in advanced squamous cell carcinoma of the uterine cervix is primarily due to hypoxia-induced radiation resistance rather than hypoxia-induced metastasis. Br J Cancer 2000; 83: 354–359.

25. Zhao XY, Chen TT, Xia L, et al. Hypoxia inducible factor-1 mediates expression of galectin-1: the potential role in migration/invasion of colorectal cancer cells. Carcinogenesis 2010; 31: 1367–1375.

26. Kohrenhagen N, Volker HU, Kapp M, et al. Increased expression of galectin-1 during the progression of cervical neoplasia. Int J Gynecol Cancer 2006; 16: 2018–2022.


27. Leffler H and Barondes SH. Specificity of binding of three soluble rat lung lectins to substituted and unsubstituted mammalian beta-galactosides. J Biol Chem 1986; 261: 10119–10126.

28. Szoke T, Kayser K, Baumhakel JD, et al. Prognostic significance of endogenous
adhesion/growth-regulatory lectins in lung cancer. Oncology 2005; 69:167–174.

29. Hsieh SH, Ying NW, Wu MH, et al. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene 2008; 27: 3746–3753.

30. Fischer C, Sanchez-Ruderisch H, Welzel M, et al. Galectin-1 interacts with the {alpha}5{beta}1 fibronectin receptor to restrict carcinoma cell growth via induction of p21 and p27. J Biol Chem 2005; 280: 37266–37277.

31. Williams JR, Zhang Y, Russell J, et al. Human tumor cells segregate into
radiosensitivity groups that associate with ATM and TP53 status. Acta Oncol 2007; 46:
628–638.

32. Williams JR, Zhang Y, Zhou H, et al. Genotype-dependent radiosensitivity:
clonogenic survival, apoptosis and cell-cycle redistribution. Int J Radiat Biol 2008; 84:
151–164.

33. Williams JR, Zhang Y, Zhou H, et al. A quantitative overview of radiosensitivity of human tumor cells across histological type and TP53 status. Int J Radiat Biol 2008; 84: 253–264.
34. Mirzayans R, Severin D and Murray D. Relationship between DNA double-strand break rejoining and cell survival after exposure to ionizing radiation in human fibroblast strains with differing ATM/p53 status: implications for evaluation of clinical radiosensitivity. Int J Radiat Oncol Biol Phys 2006; 66: 1498–1505.

35. Elad-Sfadia G, Haklai R, Balan E, et al. Galectin-3 augments K-Ras
activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J Biol Chem 2004; 279: 34922–34930.

36. De Souza CM, Souza J, Furtado CM, et al. Kohlschütter-Tönz syndrome in siblings
without ROGDI mutation. Oral HealthDent Manag 2014; 13: 728–730.

37. Huckert M, Mecili H, Laugel-Haushalter V, et al. A Novel Mutation in the
ROGDI Gene in a Patient with Kohlschütter-Tönz Syndrome. Mol Syndromol 2014; 5: 293–298.

38. Paulsen RD, Soni DV, Wollman R, et al. A genome-wide siRNA screen
reveals diverse cellular processes and pathways that mediate genome stability. Mol
Cell 2009; 35: 228–239.

39. 劉仁超: 一個調控大鼠肝星狀細胞增生、移動與活化的新基因Rogdi. 國立中山大學生物科學研究所碩士論文. 2009.

40. 黃彩華: ROGDI 是一個細胞週期的正向調節因子. 國立中山大學生物科學
研究所碩士論文. 2010.

41. Eriksson D, Löfroth PO, Johansson L, et al. Cell cycle disturbances and mitotic catastrophes in HeLa Hep2 cells following 2.5 to 10 Gy of ionizing radiation. Clin Cancer Res 2007; 13: 5501s–5508s.
42. Sewing A, Wiseman B, Lloyd AC, et al. High-intensity Raf signal causes
cell cycle arrest mediated by p21Cip1. Mol Cell Biol 1997; 17: 5588–5597.

43. Williams JR, Zhang Y, Russell J, et al. Human tumor cells segregate into radiosensitivity groups that associate with ATM and TP53 status. Acta Oncol 2007; 46: 628–638.

44. Williams JR, Zhang Y, Zhou H, et al. Genotype-dependent radiosensitivity: clonogenic survival, apoptosis and cell-cycle redistribution. Int J Radiat Biol 2008; 84: 151–164.

45. Williams JR, Zhang Y, Zhou H, et al. A quantitative overview of radiosensitivity of human tumor cells across histological type and TP53 status. Int J Radiat Biol 2008; 84: 253–264.

46. Fei P, Bernhard EJ and El-Deiry WS. Tissue-specific Induction of p53 Targets in vivo. Cancer Res 2002; 62: 7316–7327.

47. Okayasu R, Takakura K, Poole S, et al. Radiosensitization of normal human cells by LY294002: cell killing and the rejoining of DNA and interphase chromosome breaks. J Radiat Res 2003; 44: 329–333.


48. Kao GD, Jiang Z, Fernandes AM, et al. Inhibition of phosphatidylinositol -3-OH
kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing
radiation. J Biol Chem 2007; 282: 21206–21212.

49. Toulany M, Kehlbach R, Florczak U, et al. Targeting of AKT1 enhances radiation
toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand
break repair. Mol Cancer Ther 2008; 7: 1772–1781.

50. Golding SE, Rosenberg E, Neill S, et al. Extracellular signal-related kinase
positively regulates ataxia telangiectasia mutated, homologous recombination repair,
and the DNA damage response. Cancer Res 2007; 67: 1046–1053.

51. Huang EY, Chen YF, Chen YM, et al. A novel radioresistant mechanism of
galectin-1 mediated by H-Ras-dependent pathways in cervical cancer cells. Cell Death
Dis 2012; 3: e251.

52. Banáth JP, Macphail SH and Olive PL. Radiation sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines. Cancer Res. 2004; 64: 7144-7149.

53. Fei P, Bernhard EJ and El-Deiry WS. Tissue-specific Induction of p53 Targets in
Vivo. Cancer Res 2002; 62: 7316–7327.

54. David O. Cell Cycle: Principles of Control. Yale J Biol Med 2007; 80: 141–142.


55. Bendris N, Lemmers B, Blanchard JM, et al. Cyclin A2 mutagenesis analysis:
a new insight into CDK activation and cellular localization requirements. PLoS
ONE 2011; 6: e22879.

56. Henglein B, Chenivesse X, Wang J, et al. Structure and cell cycle-regulated
transcription of the human cyclin A gene. Proc Natl Acad Sci USA 1994; 91:
5490–5494.

57. Jeffrey PD, Russo AA, Polyak K, et al. Mechanism of CDK activation revealed by
the structure of a cyclinA-CDK2 complex. Nature 1995; 376: 313–320.

58. Raghavan P, Tumati V, Yu L, et al. AZD5438, an Inhibitor of Cdk1, 2, and 9,
Enhances the Radiosensitivity of Non-Small Cell Lung Carcinoma Cells. Int J Radiat
Oncol Biol Phys 2012; 84: e507–14.

59. Rotblat B, Belanis L, Liang H, et al. H-Ras nanocluster stability regulates the magnitude of MAPK signal output. PLoS One 2010; 5: e11991.

60. Satelli A and Rao US. Galectin-1 is silenced by promoter hypermethylation and its
re-expression induces apoptosis in human colorectal cancer cells. Cancer Lett 2011;
301: 38–46.

61. Grana TM, Rusyn EV, Zhou H, et al. Ras mediates radioresistance
through both phosphatidylinositol 3-kinase-dependent and Raf-dependent but mitogenactivated protein kinase/extracellular signal-regulated kinase kinase-independent signaling pathways. Cancer Res 2002; 62: 4142–4150.
62. Kasid U, Pfeifer A, Brennan T, et al. Effect of antisense c-raf-1 on tumorigenicity and radiation sensitivity of a human squamous carcinoma. Science 1989; 243: 1354–1356.

63. McKenna WG, Muschel RJ, Gupta AK, et al. The RAS signal transduction pathway and its role in radiation sensitivity. Oncogene 2003; 22: 5866–5875.

64. Dodson H, Wheatley SP and Morrison CG. Involvement of centrosome amplification in radiation-induced mitotic catastrophe. Cell Cycle 2007; 6: 364–370.

65. Dings RP, Williams BW, Song CW, et al. Anginex synergizes with radiation therapy to inhibit tumor growth by radiosensitizing endothelial cells. Int J Cancer 2005; 115: 312–319.

66. Thijssen VL, Postel R, Brandwijk RJ, et al. Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci USA 2006; 103: 15975–15980.

67. Pilch J, Franzin CM, Knowles LM, et al. The anti-angiogenic peptide anginex disrupts the cell membrane. J Mol Biol 2006; 356: 876–885.

68. Harper JW, Adami GR, Wei N, et al. The p21 Cdk-interacting protein Cip1 is a
potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75: 805–816.



69. Polyak K, Lee MH, Erdjument-Bromage H, et al. Cloning of p27Kip1, a cyclin
-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic
signals. Cell 1994; 78: 59–66.

70. D'Orazi G, Cecchinelli B and Bruno T. Homeodomain-interacting protein kinase-2
phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 2002; 4: 9–11.

71. Fragkos M, Jurvansuu J and Beard P. H2AX is required for cell cycle arrest via
the p53/p21 pathway. Mol Cell Bio 2009; 29: 2828–2840.

72. Herzog KH, Chong MJ, Kapsetaki M, et al. Requirement for Atm in ionizing
radiation-induced cell death in the developing central nervous system. Science 1998;
280: 1089–1091.

73. Bouvard V, Zaitchouk T, Vacher M, et al. Tissue and cell-specific expression of the
p53-target genes: bax, fas, mdm2 and waf1/p21, before and following ionising
irradiation in mice. Oncogene 2000; 19: 649–660.

74. Burns TF, Bernhard EJ and El-Deiry WS. Tissue specific expression of p53
target genes suggests a key role for KILLER/DR5 in p53-dependent apoptosis in vivo. Oncogene 2001; 20: 4601–4612.

75. Rogakou EP, Pilch DR, Orr AH, et al. DNA Double -stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273: 5858–5868.


76. Kobayashi J. Molecular mechanism of the recruitment of NBS1/hMRE11/hRAD50 complex to DNA double-strand breaks: NBS1 binds to γ-H2AX through FHA/BRCT domain. J Radiat Res 2004; 45: 473–478.

77. Foster ER and Downs JA. Histone H2A phosphorylation in DNA double-strand break repair. FEBS J 2005; 272: 3231–3240.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code