Responsive image
博碩士論文 etd-0512118-160115 詳細資訊
Title page for etd-0512118-160115
論文名稱
Title
利用分子束磊晶成長M面III族氮化物薄膜異質結構以及其特性分析
Growth and characterization of M-plane III-nitride thin films heterostructure by plasma-assisted molecular beam epitaxy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-03-28
繳交日期
Date of Submission
2018-06-13
關鍵字
Keywords
基板傾角、量子井、分子束磊晶系統、M面氮化銦鎵/氮化鎵、鋁酸鋰
LiAlO2, Molecular beam epitaxy, Misoriented, Quautum well, M-plane InGaN/GaN
統計
Statistics
本論文已被瀏覽 5679 次,被下載 267
The thesis/dissertation has been browsed 5679 times, has been downloaded 267 times.
中文摘要
在本文中將討論以電漿輔助式分子束磊晶成長數個系列M面氮化(銦)鎵樣品,首先利用濺鍍系統在藍寶石基板上沉積氮化鋁緩衝層再以分子束磊晶系統成長氮化鎵並分析其結構的結晶取向機制。其中氮化鋁為(11 ̅00)面為主的多晶結構。在氮鎵流量比較高時氮化鎵(0001)繞射鋒有增強的現象。而當氮鎵流量比較低時或者成長溫度較高時氮化鎵呈現以(11 ̅00)面為主的多晶結構,然而在這些成長條件下(11 ̅01)面、(112 ̅0)面以及(112 ̅2)面向的氮化鎵結構也被觀察到。

在以鋁酸鋰為基板的M面氮化鎵薄膜樣品當中我們發現在基板及氮化鎵薄膜介面產生的Li5GaO4對結晶品質及表面形貌來說扮演著重要的角色。接著我們使用雙層成長方式來同時改善結晶品質以及得到較平坦的表面形貌並以其作為氮化銦鎵/氮化鎵量子井的緩衝層。此外我們將M面氮化鎵成長在有傾角的鋁酸鋰基板上,在此系列樣品中我們發現結晶品質較佳的樣品帶有較強的雙軸異向應力。並且在改變M面氮化鎵緩衝層厚度的氮化銦鎵/氮化鎵量子井樣品中發現M面氮化鎵[11 ̅00]方向的原子間距以及量子井的寬度會隨著緩衝層厚度增加而增加。
Abstract
In this thesis, several series of M-plane (In)GaN were grown by plasma assisted molecular beam epitaxy. We have grown several GaN samples on sapphire(0001) substrates with a sputtered AlN buffer to investigate the orientation mechanism of GaN. The sputtered AlN presents a polycrystalline structure with a main structure, AlN(11 ̅00). The diffraction peak of GaN(0002) became stronger as the GaN were grown with higher N/Ga flux ratio. The GaN(11 ̅00) structure was observed as the GaN were grown with lower N/Ga flux ratio or at higher growth temperature. Under those condition, however, GaN(11 ̅01), GaN(112 ̅0) and GaN(112 ̅2) structures were observed as well.
The M-plane GaN samples were grown on LiAlO2 substrates. It was found that the formation of Li5GaO4 played an important role in the crystal quality and surface morphology of M-plane GaN films. In order to obtain high quality M-plane GaN thin films with smoother surface, a two-step growth method was introduced. After that, M-plane InGaN/GaN QW samples were grown with a two-step growth M-plane GaN buffer and were well investigated. Moreover, M-plane GaN samples were grown on the misoriented LiAlO2 substrates. We found that as the crystal quality was improved, the in-plane anisotropic strain was introduced. For the InGaN/GaN samples with a different thickness M-plane GaN buffer, the d-spacing distance of M-plane GaN extended and the InGaN thickness (well width) increased as the thickness increased.
目次 Table of Contents
1. Introduction..........................................................................................1
2. GaN grown on sapphire (0001) substrate with sputtered AlN buffer
2.1 Experimental data and discussions................................................7
2.2 Summary......................................................................................14
3. M-plane GaN grown on -LiAlO2 substrates
3.1 M-plane GaN grown with different N/Ga ratio...........................16
3.2 Two-step growth M-plane GaN...................................................29
3.3 Growth of M-plane InGaN/GaN QW..........................................36
3.4 Summary......................................................................................42
4. M-plane GaN grown on misoriented 11o LiAlO2 substrates
4.1 M-plane GaN grown with different N/Ga ratio...........................45
4.2 Two-step growth M-plane GaN...................................................51
4.3 Summary......................................................................................61
5. M-plane InGaN/GaN QW grown on misoriented 11o LiAlO2 substrates
5.1 InGaN/GaN grown at different temperature................................62
5.2 Different thickness of two-step growth M-plane GaN buffer......67
5.3 Summary......................................................................................76
6. Conclusion...........................................................................................78

References................................................................................................81
參考文獻 References
[1] S. Nakamura, M. Senoh, N. Iwasa, S. -I. Nagahama, T. Yamada and T. Mukai, Jpn. J. Appl. Phys. 34, L1332 (1995)
[2] S. Nakamura, S. Pearton and G. Fasol, The Blue Laser Diode, Berlin, Springer. (2000)
[3] M. Asif Khan, A. Bhattarai, J. K. Kuznia and D. T. Olson, Appl. Phys. Lett. 63, 1214 (1993)
[4] K. Tsubaki, N. Maeda, T. Saitoh and N. Kobayashi, Appl. Phys. Lett. 80, 3126 (2002)
[5] Ikai Lo, J. K. Tsai, W. J. Yao, P. O. Ho, L. W. Tu, T. C. Chang, S. Elhamri, W. C. Mitchel, K. Y. Hsieh, J. H. Huang, H. L. Huang and W. C. Tsai, Phys. Rev. B 65, 161306 (2002)
[6] Ikai Lo, W. T. Wang, M. H. Gau, S. F. Tsay and J. C. Chiang, Phys. Rev. B 72, 245329 (2005)
[7] Mitch M. C. Chou, D. R. Hang, H. Kalisch, R. H. Jansen, Y. Dikme, Michael Heuken, G. P. Yablonskii, J. Appl. Phys. 101, 103106 (2007).
[8] Mitch M. C. Chou, D. R. Hang, L. W. Chang, C. L. Chen, W. F. Yang, C. A.Li,J. J. Wu, J. Appl. Phys.107, 013502 (2010).
[9] Y. D. Lin, C. Y. Huang, Matthew T. Hardy, P. S. Hsu, Kenji Fujito, Arpan Chakraborty, Hiroaki Ohta, James S. Speck, Steven P. DenBaars, Shuji Nakamura, J. Appl. Phys.95, 081110 (2009).
[10] D.R. Hang, Mitch M.C. Chou, L. W. Chang, Y. Dikme, M. Heuken,J. Crystal Growth, 311,452 (2009).
[11] S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, T. Sota, Nature material, 5, 810 (2006)
[12] P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K. H. Ploog, Nature,406,865 (2000).
[13] Ikai Lo, C. H. Hsieh, Y. L. Chen, W. Y. Pang, Y. C. Hsu, J. C. Chiang, Mitch M. C. Chou, J. K. Tsai, D. M. Schaadt, Appl. Phys. Lett. 92, 202106 (2008).
[14] C. H. Hsieh, Ikai Lo, M. H. Gau, Y. L. Chen, Mitch M. C. Chou, W. Y. Pang, Y. I Chang, Y. C. Hsu, M. W. Sham, J. C. Chiang, J. K. Tsai, Jpn. J. Appl. Phys. 47, 891 (2008).
[15] C. Mauder, B. Reuters, L. RahimzadehKhoshroo, M. V. Rzheutskii, E. V. Lutsenko, G. P. Yablonskii, J. F. Woitok, M. Heuken, H. Kalisch, R. H. Jansen, J. Cryst. Growth, 312, 1823(2010).
[16] J. W. Gerlach, A. Hofmann, T. Höche, F. Frost, B. Rauschenbach, G. Benndorf, Appl. Phys. Lett., 88, 011902 (2006).
[17] Luanhong Sun, Jun Zou, Jiayue Xu, Bobo Yang and Long Li, J. Mater Sci.: Mater Electron, 27, 2049 (2016).
[18] Y. J. Sun, Oliver Brandt, Uwe Jahn, T. Y. Liu, AchimTrampert,Sven Cronenberg, SubhabrataDhar, Klaus H. Ploog, J. Appl. Phys.,92, 10 (2002).
[19] V. Jindal,F. Shahedipour-Sandvik, J. Appl. Phys.,107, 054907 (2010).
[20] M. A.Moram, M. E. Vickers, Rep. Prog. Phys., 72, 036502 (2009).
[21] K. R. Wang, C. Mauder, Q. Wan, B. Jenichen, J. F. Woitok, H. T. Grahn, H. Kalisch, M. Heuken, A. Vescan and A. Trampert, Appl. Phys. Express, 5, 105501 (2012).
[22] Chen Chi, Hirokazu Katsui, Rong Tu, Takashi Goto, Mater. Chem. Phys., 143, 1338 (2014).
[23] B. Liu, R. Zhang, Z. L. Xie, J. Y. Kong, J. Yao, Q. J. Liu, Z. Zhang, D. Y. Fu, X. Q. Xiu, P. Chen, P. Han, Y. Shi, Y. D. Zheng, S. M. Zhou, and G. Edwards, Appl. Phys. Lett., 92, 261906 (2008).
[24] S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog, Phys. Rev. B, 65, 075202 (2002).
[25] Hisashi Yamada, Kenji Iso, HisashiMasui, Makoto Saito, Kenji Fujito,Steven P. DenBaars, Shuji Nakamura, J. Cryst. Growth, 310, 4968(2008).
[26] C. Trager-Cowan, S. McArthur, P.G. Middleton, K.P. O'Donnell, D.Zubia,S.D. Hersee, Mater. Sci. Eng. B. 59, 235(1999).
[27] J. W. Gerlach, A. Hofmann, T. Höche, B. Rauschenbach, Phys. Res. B, 257, 913 (2007).
[28] T. Yao, S. K. Hong, Oxide and Nitride Semiconductors, Springer, Berlin, (2009).
[29] T. Flissikowski, O. Brandt, P. Misra, H. T. Grahn, K. H. Ploog, Phys. Rev. B, 65 (2002).
[30] B. Rau, P. Waltereit, O. Brandt, H. T. Grahn, K. H. Ploog, J. Puls, F. Henneberger, Appl. Phys. Lett. 77, 21 (2000).
[31] F. Vouilloz, D. Y. Oberli, M. A. Dupertuis, A. Gustafsson, F. Reinhardt, E. Kapon, Phys. Rev. B, 57, 12378 (1998).
[32] V. Jindal, F. Shahedipour-Sandvik, J. Appl. Phys., 107, 036502 (2009).
[33] N. Akopian, G. Bahir, D. Gershoni, M. D. Craven, J. S. Speck, and S. P. DenBaars, Appl. Phys. Lett., 86, 202104 (2005).
[34] H. Teisseyre, C. Skierbiszewski, B. Lucznik, G. Kamler, A. Feduniewicz, M. Siekacz, T. Suski, P. Perlin, I. Grzegory, and S. Porowski, Appl. Phys. Lett., 86, 162112 (2005).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code