Responsive image
博碩士論文 etd-0512118-180619 詳細資訊
Title page for etd-0512118-180619
論文名稱
Title
以共振頻率可調式壓電懸臂樑實現獵能與擾動扭矩吸收
A Piezoelectric Cantilever with Self-Adjusting Resonant Frequency for Energy Harvesting and Disturbing Torque Absorbing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
122
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-01
繳交日期
Date of Submission
2018-06-12
關鍵字
Keywords
吸震器、壓電懸臂樑、共振 頻率自我調整、獵能器
Energy harvester, Absorber, Piezoelectric cantilever, Self-adjusting resonant frequency
統計
Statistics
本論文已被瀏覽 5669 次,被下載 0
The thesis/dissertation has been browsed 5669 times, has been downloaded 0 times.
中文摘要
近年來,綠色能源和環境污染問題受到頻繁的討論,如何將環境中的能量轉換為可用的電能以取代具有污染性的發電方式已經成為目前的研究和發展趨勢。本研究致力於開發微型能量獵取裝置,將轉動環境中的動能轉換成足以供給無線胎壓監測系統 (Tire pressure monitoring system, TPMS) 運作的電能,以解決TPMS必須定期更換電池的麻煩以及減少廢棄電池對環境所造成的污染。
本研究設計一壓電懸臂樑安裝於輪子的徑向,利用固定方向的重力,使其在轉動的輪子上反覆變形,並產生電能。一般而言,懸臂樑的共振頻率為一定值,而本研究所提出的梯形懸臂樑獵能器,其共振頻率可隨不同車輪轉速自我調整,這使得該系統能在不同的車速下保持共振模態,以輸出較大的能量。調頻機制是利用離心力調整不同車速時梯形懸臂樑的作用長度,且在不同的作用長度下,梯形懸臂樑的固定端有不同的截面慣性矩,進而改變其共振頻率。本研究透過拉格朗日方程式 (Lagrange equation) 建立系統的物理模型,並利用推導之運動方程式設計合適的幾何參數。在發電的同時,配重懸臂樑亦可視為離心單擺吸震器 (Centrifugal Pendulum Vibration Absorber, CPVA) 吸收非預期的震動或扭矩。因此,本研究也進行了輪子受到干擾扭矩時的動態分析。
獵能器雛型機的加工,以及相關的實驗與驗證方法已建立完成,並驗證了本研究所建立之物理模型的正確性。實驗結果顯示,在240~1200 rpm之轉盤轉速下,能產生77~134微瓦之發電量,足以供給TPMS正常運作。另外,吸震的實驗顯示,雛型機的有效吸震頻寬約為130 Hz,且在60~110 Hz之間的振動干擾之下,能有超過58%的吸震效果。這些結果表明,在合適設計之下,配重懸臂樑可以同時具有發電和吸收干擾震動的能力。
Abstract
In recent years, the problems of renewable energy exploitation and environmental pollution have been frequently discussed. Converting the energy in the environment into electric energy to reduce wastes from power sources has become the focus of research and development. This thesis aims to develop an energy-harvesting device that converts kinetic energy in rotating environments into electrical energy which can be used as a power source for a tire pressure monitoring system (TPMS) to replace chemical batteries.
This study developed an energy harvester with a well-weighted trapezoidal cantilever that had the ability to self-adjust its resonant frequency approaching to the wheel rotation speed to keep a resonant mode in order to generate a higher amount of output power. The weighted length of the trapezoidal cantilever is tuned by the centrifugal force from a rotating wheel to vary the area moment of inertia at the cantilever root. The dynamic equation was derived through the Lagrange method. Moreover, the well-weighted cantilever can also be considered as a centrifugal pendulum vibration absorber (CPVA) to absorb unexpected vibrations or torque. Therefore, this study analyzed the dynamic behavior of the wheel when a disturbing torque was applied to it.
The experimental results revealed that the output power of the prototype was approximately 77–134 µW at the wheel rotation speeds in the range of 240–1200 rpm. This demonstrated that the proposed device has the potential to replace batteries in the TPMS. The effective vibration absorption bandwidth of the prototype is approximately 130 Hz, and more than 58% of the vibration absorption effect was observed under disturbing vibration between 60–110 Hz.
目次 Table of Contents
摘要 i
ABSTRACT ii
致謝 iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xiv
LIST OF SYMBOLS xv
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Survey 2
1.2.1 Kinetic Energy-Harvesting Methods 2
1.2.1.1 Electromagnetic Generators 3
1.2.1.2 Electrostatic Generators 5
1.2.1.3 Piezoelectric Generators 7
1.2.2 Broadband Vibration Energy Harvesting Methods 10
1.2.2.1 Application of Tire Pressure Monitor System 10
1.2.2.2 Broadband Vibration Energy Harvesting from Rotational Environments 12
1.2.3 Energy-Harvesting Vibration Absorber 20
CHAPTER 2 CONFIGURATION AND GOVERNING EQUATIONS 24
2.1 Weighted Cantilever with a Uniform Cross Section Structure 24
2.2 Trapezoidal Cantilever Energy Harvester 32
2.3 Well-Weighted Cantilever Energy Harvester 34
CHAPTER 3 DYNAMIC ANALYSIS 43
3.1 Dynamic Analysis of the Well-Weighted Cantilever 43
3.2 Analysis Conducted After Applying a Disturbing Torque to the Wheel 51
CHAPTER 4 POWER GENERATION ANALYSIS 60
4.1 Power Consumption of TPMS 60
4.2 Mechanical–Electrical Coupling Model 62
4.3 Numerical Results for Piezoelectric Cantilever in Power Generation 65
CHAPTER 5 EXPERIMENTAL RESULT 73
5.1 Experimental Setup and Prototype 73
5.2 Experimental Results of the Power Generation 76
5.3 Experiment Results of the Disturbing Torque Absorption 85
CHAPTER 6 CONCLUSIONS AND FUTURE WORK 89
6.1 Conclusions 89
6.2 Future Work 90
REFERENCES 92
參考文獻 References
[1] S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright, and V. Sundararajan, “Improving power output for vibration-based energy scavengers,” IEEE Pervasive Computing, vol. 4, no. 1, pp. 28-36, 2005.
[2] D. P. Arnold, “Review of microscale magnetic power generation,” IEEE Transactions on Magnetics, vol. 43, no. 11, pp. 3940-3951, 2007.
[3] J. Peirs, D. Reynaerts, and F. Verplaetsen, “Development of an axial microturbine for a portable gas turbine generator,” Journal of Micromechanics and Microengineering, vol. 13, no. 4, pp. 190-195, 2003.
[4] J. Peirs, D. Reynaerts, and F. Verplaetsen, “A microturbine for electric power generation,” Sensors and Actuators a-Physical, vol. 113, no. 1, pp. 86-93, 2004.
[5] K. Sasaki, Y. Osaki, J. Okazaki, H. Hosaka, and K. Itao, “Vibration-based automatic power-generation system,” Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 11, no. 8-10, pp. 965-969, 2005.
[6] M. K. Senesky, and S. R. Sanders, “A millimeter-scale electric generator,” IEEE Transactions on Industry Applications, vol. 44, no. 4, pp. 1143-1149, 2008.
[7] T. von Buren, and G. Troster, “Design and optimization of a linear vibration-driven electromagnetic micro-power generator,” Sensors and Actuators a-Physical, vol. 135, no. 2, pp. 765-775, 2007.
[8] S. Roundy, P. K. Wright, and K. S. J. Pister, “Micro-Electrostatic Vibration-to-Electricity Converters,” ASME 2002 International Mechanical Engineering Congress and Exposition, New Orleans, Louisiana, pp. 487-496, 2002.
[9] G. Despesse, T. Jager, C. Jean-Jacques, J.-M. Léger, A. Vassilev, S. Basrour, and B. Charlot, “Fabrication and characterization of high damping electrostatic micro devices for vibration energy scavenging,” Proc. Design, Test, Integration and Packaging of MEMS and MOEMS, Montreux, Switzerland, pp. 386-390, 2005.
[10] R. Tashiro, N. Kabei, K. Katayama, E. Tsuboi, and K. Tsuchiya, “Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion,” Journal of Artificial Organs, vol. 5, no. 4, pp. 0239-0245, 2002.
[11] H. A. Sodano, D. J. Inman, and G. Park, “A review of power harvesting from vibration using piezoelectric materials,” Shock and Vibration Digest, vol. 36, no. 3, pp. 197-206, 2004.
[12] R. Ahmed, F. Mir, and S. Banerjee, “A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity,” Smart Materials and Structures, vol. 26, no. 8, 085031, 2017.
[13] R. Calio, U. B. Rongala, D. Camboni, M. Milazzo, C. Stefanini, G. de Petris, and C. M. Oddo, “Piezoelectric Energy Harvesting Solutions,” Sensors, vol. 14, no. 3, pp. 4755-4790, 2014.
[14] H. D. Li, C. Tian, and Z. D. Deng, “Energy harvesting from low frequency applications using piezoelectric materials,” Applied Physics Reviews, vol. 1, no. 4, 041301, 2014.
[15] F. Khameneifar, S. Arzanpour, and M. Moallem, “A Piezoelectric Energy Harvester for Rotary Motion Applications: Design and Experiments,” IEEE-ASME Transactions on Mechatronics, vol. 18, no. 5, pp. 1527-1534, 2013.
[16] J. Kymissis, C. Kendall, J. Paradiso, and N. Gershenfeld, “Parasitic power harvesting in shoes,” Wearable Computers, 1998. Digest of Papers. Second International Symposium on, Pittsburgh, USA, pp. 132-139, 1998.
[17] S. Roundy, and P. K. Wright, “A piezoelectric vibration based generator for wireless electronics,” Smart Materials and Structures, vol. 13, no. 5, pp. 1131-1142, 2004.
[18] S. Roundy, “Energy harvesting for tire pressure monitoring systems: design considerations,” Proceedings of Power MEMS+ microMEMS, Sendai, Japan, pp. 9-12, 2008.
[19] G. Hatipoglu, and H. Urey, “FR4-based electromagnetic energy harvester for wireless tyre sensor nodes,” Procedia Chemistry, vol. 1, no. 1, pp. 1211-1214, 2009.
[20] R. Matsuzaki, and A. Todoroki, “Wireless Monitoring of Automobile Tires for Intelligent Tires,” Sensors, vol. 8, no. 12, pp. 8123-8138, 2008.
[21] S. Yang, and Y. Lee, “Interaction of structure vibration and piezoelectric actuation,” Smart Materials and Structures, vol. 3, no. 4, pp. 494, 1994.
[22] Y. C. Shu, and I. C. Lien, “Analysis of power output for piezoelectric energy harvesting systems,” Smart Materials and Structures, vol. 15, no. 6, pp. 1499-1512, 2006.
[23] H. Kim, S. Priya, H. Stephanou, and K. Uchino, “Consideration of impedance matching techniques for efficient piezoelectric energy harvesting,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 54, no. 9, pp. 1851-1859, 2007.
[24] D. B. Zhu, M. J. Tudor, and S. P. Beeby, “Strategies for increasing the operating frequency range of vibration energy harvesters: a review,” Measurement Science and Technology, vol. 21, no. 2, 022001, 2010.
[25] E. D. Niri, and S. Salamone, “A passively tunable mechanism for a dual bimorph energy harvester with variable tip stiffness and axial load,” Smart Materials and Structures, vol. 21, no. 12, 125025, 2012.
[26] Y. J. Wang, T. Y. Chuang, and J. H. Yu, “Design and kinetic analysis of piezoelectric energy harvesters with self-adjusting resonant frequency,” Smart Materials and Structures, vol. 26, no. 9, 095037, 2017.
[27] M. F. Daqaq, R. Masana, A. Erturk, and D. D. Quinn, “On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion,” Applied Mechanics Reviews, vol. 66, no. 4, 040801, 2014.
[28] M. Li, Y. M. Wen, P. Li, and J. Yang, “A resonant frequency self-tunable rotation energy harvester based on magnetoelectric transducer,” Sensors and Actuators a-Physical, vol. 194, pp. 16-24, 2013.
[29] L. Gu, and C. Livermore, “Compact passively self-tuning energy harvesting for rotating applications,” Smart Materials & Structures, vol. 21, no. 1, 015002, 2012.
[30] H. Fu, and E. M. Yeatman, “A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion,” Energy, vol. 125, pp. 152-161, 2017.
[31] H. X. Zou, W. M. Zhang, W. B. Li, Q. H. Gao, K. X. Wei, Z. K. Peng, and G. Meng, “Design, modeling and experimental investigation of a magnetically coupled flextensional rotation energy harvester,” Smart Materials and Structures, vol. 26, no. 11, 115023, 2017.
[32] R. L. Harne, and K. W. Wang, “A review of the recent research on vibration energy harvesting via bistable systems,” Smart Materials and Structures, vol. 22, no. 2, 023001, 2013.
[33] S. P. Pellegrini, N. Tolou, M. Schenk, and J. L. Herder, “Bistable vibration energy harvesters: A review,” Journal of Intelligent Material Systems and Structures, vol. 24, no. 11, pp. 1303-1312, 2013.
[34] S. Roundy, and J. Tola, “Energy harvester for rotating environments using offset pendulum and nonlinear dynamics,” Smart Materials and Structures, vol. 23, no. 10, 105004, 2014.
[35] Z. Q. Xie, C. A. K. Kwuimy, Z. G. Wang, and W. B. Huang, “A piezoelectric energy harvester for broadband rotational excitation using buckled beam,” Aip Advances, vol. 8, no. 1, 015125, 2018.
[36] Chichina.Av, and O. S. Temish, “Designing a Torsion-Vibration Damper,” Russian Engineering Journal-Ussr, vol. 51, no. 1, pp. 13-&, 1971.
[37] D. L. Cronin, “Shake Reduction in an Automobile Engine by Means of Crankshaft-Mounted Pendulums,” Mechanism and Machine Theory, vol. 27, no. 5, pp. 517-533, 1992.
[38] H. Kojima, and K. Nagaya, “A Study on the Torsional Dynamic Vibration Absorber Consisting of Rare-Earth Magnets,” Bulletin of the Jsme-Japan Society of Mechanical Engineers, vol. 26, no. 214, pp. 611-618, 1983.
[39] H. H. Denman, “Tautochronic Bifilar Pendulum Torsion Absorbers for Reciprocating-Engines,” Journal of Sound and Vibration, vol. 159, no. 2, pp. 251-277, 1992.
[40] R. Mitchiner, and R. Leonard, “Centrifugal pendulum vibration absorbers—theory and practice,” Journal of vibration and acoustics, vol. 113, no. 4, pp. 503-507, 1991.
[41] W. T. Thomson, and M. D. Dahleh, Theory of vibration with applications, Fifth Edition, pp. 145-147, Prentice-Hall Inc., 1997.
[42] M. Sharifbakhtiar, and S. W. Shaw, “The Dynamic-Response of a Centrifugal Pendulum Vibration Absorber with Motion-Limiting Stops,” Journal of Sound and Vibration, vol. 126, no. 2, pp. 221-235, 1988.
[43] E. Abouobaia, R. Bhat, and R. Sedaghati, “Development of a new torsional vibration damper incorporating conventional centrifugal pendulum absorber and magnetorheological damper,” Journal of Intelligent Material Systems and Structures, vol. 27, no. 7, pp. 980-992, 2016.
[44] C. P. Chao, S. W. Shaw, and C. T. Lee, “Stability of the unison response for a rotating system with multiple tautochronic pendulum vibration absorbers,” Journal of Applied Mechanics-Transactions of the Asme, vol. 64, no. 1, pp. 149-156, 1997.
[45] A. S. Alsuwaiyan, and S. W. Shaw, “Performance and dynamic stability of general-path centrifugal pendulum vibration absorbers,” Journal of Sound and Vibration, vol. 252, no. 5, pp. 791-815, 2002.
[46] M. N. H. Hamouda, and G. A. Pierce, “Helicopter vibration suppression using simple pendulum absorbers on the rotor blade,” Journal of the American helicopter society, vol. 29, no. 3, pp. 19-29, 1984.
[47] O. Cuvalci, and A. Ertas, “Pendulum as vibration absorber for flexible structures: Experiments and theory,” Journal of Vibration and Acoustics-Transactions of the Asme, vol. 118, no. 4, pp. 558-566, 1996.
[48] A. Fidlin, and R. Seebacher, “DMF simulation techniques,” 8th LuK symposium, pp. 55-71, 2006.
[49] M. Zink, and M. Hausner, “The centrifugal pendulum-type absorber,” ATZ worldwide, vol. 111, no. 7-8, pp. 42-47, 2009.
[50] Q. Tang, X. Xia, and X. Li, “Non-contact frequency-up-conversion energy harvester for durable & broad-band automotive TPMS application,” Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on, pp. 1273-1276, 2012.
[51] I. Kuehne, A. Frey, D. Marinkovic, M. Schreiter, and D. Wagner, “System design of a miniaturized piezoelectric energy harvesting module for power autonomous applications,” Technical Digest Landshuter Symposium MST, Landshut, Germany, pp. 171-180, 2010.
[52] http://holistic-connectivity.com/holistic-connectivity-tire-pressure-monitoring/.
[53] https://www.digikey.com.au/en/articles/techzone/2011/may/freescale-single-package-tire-pressure-monitoring-system.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code