Responsive image
博碩士論文 etd-0513113-140433 詳細資訊
Title page for etd-0513113-140433
論文名稱
Title
以大氣擴散模式探討半導體業排放對區域性之影響-以中科三期后里園區為例
Impact by the Emissions of Semiconductor Industries Using Gaussian Model-Example of Central Taiwan Science Park in Houli
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
138
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-04
繳交日期
Date of Submission
2013-06-13
關鍵字
Keywords
無機酸鹼、高斯擴散模式、揮發性有機物、半導體、臭氧生成潛勢
ozone formation potential, Gaussian diffusion model, inorganic acid-basis, semiconductor, volatile organic compounds
統計
Statistics
本論文已被瀏覽 5784 次,被下載 2555
The thesis/dissertation has been browsed 5784 times, has been downloaded 2555 times.
中文摘要
本研究以台中科學園區(后里園區)中某半導廠進行揮發性有機污染物(VOCs)及無機酸鹼排放管道檢測,並以大氣擴散模式評估對周圍空氣的影響。
檢測結果顯示,揮發性有機物在沸石濃縮轉輪總排放濃度為151.4 ppb,在蓄熱式焚化爐處理總排放濃度為3975.2 ppb;臭氧生成潛勢方面,OFP值最高均為芳香烴類各占(71.2、47.3 %),以甲苯各占(39.5、41.5 %)最高。無機酸鹼檢測顯示,以硫酸(H2SO4)排放濃度為最高(193–513 μg/Nm3),硝酸(HNO3)次之。排放係數以鹽酸(HCl)3.37 10-3為最高,另外管道中氨氣總排放量為3.87 ppm。
大氣擴散模擬結果顯示,VOCs最大著地濃度發生在廠區下風50公尺處,總濃度為22.0 ppb,當擴散至園區外時,濃度降低至10 ppb以下。無機酸中硫酸、硝酸、鹽酸、氫氟酸及磷酸之最大著地濃度,亦在廠區下風50 公尺處,濃度分別為0.94、0.77、0.89、1.05及0.16g/Nm3,故對周遭環境及居民影響甚小。
Abstract
In this study, emission concentrations of volatile organic pollutants (VOCs) and inorganic acid-basis gases were measured in a semiconductor factory in Houli Central Taiwan Science Park (CTSP). The Gaussian diffusion model was used to evaluate the impact of emitted pollutants on the ambient air.
Measured results show that emission concentration of VOCs from zeolite rotor concentrator tubes was 151.4 ppb; whereas emission concentration of VOCs from regenerative thermal oxidizer was 3975.2 ppb. The aromatic hydrocarbons contributed the highest portion of OFP (ozone formation potential) were 71.2 % 、47.3 % respectively. Respect of species, the toluene were 39.5 %、41.5 % respectively. For inorganic acid, emission concentration of H2SO4 was the highest (193 – 513 g/Nm3), followed by the concentration of HNO3. The HCl emission factor was the highest in the acid gas. Also, the emission concentration of NH3 was 3.87 ppm from the concentrationn tubes.
Simulation results show that the maximum ground-level concentration of VOCs was 22.0 ppb at a 50 m downwind site. When the pollutants dispersed to outside the park, the concentrations were reduced to below 10 ppb. Also, the maximum ground-level concentrations of sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid and phosphoric acid were 0.94,0.77,0.89,1.05, and 0.16 g/Nm3 respectively, all close to a 50 m downwind site. Thus, the impact of air pollutants to the ambient air was negligible.
目次 Table of Contents
誌 謝 i
摘 要 ii
ABSTRACT iii
目 錄 iv
表 目 錄 vii
圖 目 錄 ix

第一章 前言 1
1.1研究源起 1
1.2 研究目的 2

第二章 文獻回顧 3
2.1 園區概況 3
2.2 空氣污染物排放特性 3
2.3 法規標準 10
2.4 控制設備介紹 12
2.5 揮發性有機物之影響 22
2.6 高斯擴散應用 27

第三章 實驗方法 29
3.1研究架構與流程 29
3.2排放管道廢氣採樣地點及時程規劃 30
3.3採樣分析方法與程序 33
3.3.1 管道中揮發性有機物 33
3.3.2 管道中無機酸 35
3.3.3 管道中氨氣 38
3.4 光化反應性指標介紹 40
3.4.1 最大增量反應性 (MIR) 40
3.4.2 臭氧生成潛勢 (Ozone Formation potential, OFP) 41
3.5模式介紹 42
3.5.1大氣污染物高斯擴散(Gaussian diffusion)增量模擬 43
3.5.2 擴散係數 44
3.5.3 受體資料 48

第四章、結果與討論 49
4.1 採樣時間之氣象資料 49
4.2 管道中廢氣污染物 51
4.2.1管道中揮發性有機物之特性 51
4.2.2臭氧生成潛勢 (OFP) 61
4.2.3管道中無機酸 65
4.2.4 管道排氣中氨氣 68
4.3 排放係數及排放量推估 68
4.3.1排放係數 69
4.3.2 排放量推估 70
4.4 大氣擴散模擬結果 75
4.5模式模擬與周界實測值比較污染趨勢 82

第五章 結論與建議 84
5.1 結論 84
5.2 建議 85

參考文獻 86
附錄A 94
附錄B 124
參考文獻 References
Altenstedt J., Pleijel, K., 2000. An Alternative Approach to Photochemical Ozone Creation Potentials Applied under European Conditions. Journal of the Air and Waste Management Association 50, 1023 – 1036.
Andersson-Skold Y., Holmberg L., 2000. Photochemical Ozone Creation Potentials (POCP) and Replacement of Solvents in Europe. Atmospheric Environment 34, 3159 – 3169.
Blanchard C.L., 2000. Ozone Process Insights from Field Experiments Part III: Extent of Reaction and Ozone Formation. Atmospheric Environment 34, 2035 - 2043.
Bouet R., Duplantier S., Salvi O., 2005. Ammonia large scale atmospheric dispersion experiments in industrial configurations. Journal of Loss Prevention in the Process Industries 18, 512 – 519.
Buijisman E., Mass H.F.M., Asman W.A.H., 1987. Anthropogenic ammonia emission in Europe. Atmospheric Environment 21, 1009 – 1022.
Carter W.P.L., 1994. Development of Ozone Reactivity Scales for Volatile Organic Compounds. Journal of Air and Waste Management Assocication 44, 881 - 899.
Chang C. C., Lo J. G., Tsai C. H., Wang J. L., 2001. Concentration variability of halocarbons over a semiconductor and electronic industrial park and its implication in compliance with the montreal protocol. Environmental Science and Technology 35, 3273.
Chang F. T., Pei B. S., Lin Y. C., Bai H. L., 2003. Adsorption and desorption characteristics of semiconductor volatile organic compounds on the thermal swing honeycomb zeolite concentrator. Air & Waste Management Association 53, 1384 – 1390.
Chang T. Y., Lin S. J., Tsai S. W., Hsu H. T., Tsai C. T., Kuo H. W., Chiang C. F., Lai J. S., 2010. Characterization of Volatile Organic Compounds in the Vicinity of an Optoelectronics Industrial Park in Taiwan. Air & Waste Management Association 60, 55 – 62.
Chein H. M., Aggarwal S. G., Wu H. H., 2004. Efficient control system for low-concentration inorganic gases from a process vent stream: Application of surfactants in spray and packed columns. Environmental Science & Technology 38(21), 5766 – 5772.
Chein H. M., Chen T. M., 2003. Emission characteristics of volatile organic compounds from semiconductor manufacturing. Journal of the Air & Waste Management Association 53(8), 1029 – 1036.
Chein H. M., Chen T. M., Aggarwal S. G., Tsai C. J., Huang C. C., 2004. Inorganic acid emission factors of semiconductor manufacturing processes. Journal of the Air & Waste Management Association 54(2), 218 – 228.
Cheng H.R., Guo H., Saunders S.M., Lam S.H.M., Jiang F., Wang X.M., Simpson I.J., Blake D.R., Louie P.K.K., Wang T.J., 2010. Assessing Photochemical Ozone Formation in the Pearl River Delta with a Photochemical Trajectory model. Atmospheric Environment 44, 4199 – 4208.
Chiu K. H., Wu B. Z., Chang C. C., Sree U., Lo J. G., 2005. Distribution of volatile organic compounds over a semiconductor industrial park in Taiwan. Environmental Science & Technology 39(4), 973 – 983.
Derwent R. G., Jenkin M. E., 1991. Hydrocarbons and the Long-range Transport of Ozone and Pan across Europe. Atmospheric Environment 25, 1661 – 1678.
Derwent R. G., Jenkin M. E., Passant N. R., Pilling M. J., 2007. Reactivity-based Strategies for Photochemical Ozone Control in Europ. Environmental Secience & Policy 10, 445 - 453.
Derwent R. G., Jenkin M. E., Saunders S. M., Pilling M. J., 1998. Photochemical Ozone Creation Potentials for Organic Compounds in Northwest Europe Calculated with a Master Chemical Mechanism. Atmospheric Environment 32, 2429 – 2441.
Dodge M. C., 2000. Chemical Oxidant Mechanisms for Air Quality Modeling: Critical Review. Atmospheric Environment 34, 2103 - 2130.
Duan J. C., Tan J. H., Yang L., Wu S., Hao J. M., 2008. Concentration sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmospheric Research 88, 25 – 35.
Eom Y. S., Hong J. H., Lee S. J., Lee E. J., Cha J. S., Lee D. G., Bang S. A., 2006. Emission Factors of Air Toxics from Semiconductor Manufacturing in Korea. Air & Waste Management Association 56, 1518 – 1524.
Faulkner W. B., Powell J. J., Lange J. M., Shaw B. W., Lacey R. E., Parnell C. B., 2007. Comparison of dispersion models for ammonia emissions from a ground-level area source. Transactions of the Asabe 50(6), 2189 – 2197.
Hanna S. R., Paine R., Heinold D., Kintigh E., Baker D., 2007. Uncertainties in air toxics calculated by the dispersion models AERMOD and ISCST3 in the Houston ship channel area. Journal of Applied Meteorology and Climatology. 46(9), 1372 – 1382.
Hidy G. M., 2000. Ozone Process Insights from Field Experiments Part I: Overview. Atmospheric Environment 34, 2001 - 2022.
Kao A. S., 1994. Formation and Removal Reactions of Hazardous Air Pollutants. Journal of the Air & Waste Management Association 44, 683 - 696.
Kapoor R. K., Singh G., Tiwari S., 1992. Ammonia concentration vis-à-vis meteorological condition at Delhi, India. Atmospheric Environment 28, 1 – 9.
Kim O., Zhang Y., Tan Z., Ali N., 2004. Ammonia Absorption in a Vertical Contact Spray Tower at Low Ammonia Partial Pressures, 97th AWMA Conference.
Kleinman L. I., 2000. Ozone Process Insights from Field Experiments Part II: Observation-based Analysis for Ozone Production. Atmospheric Environment 34, 2023 - 2033.
Krishna T.V.B.P.S.R., Reddy M.K., Reddy R.C., Singh R.N., 2005. Impact of an industrial complex on the ambient air quality: Case study using a dispersion model. Atmospheric Environment 39(29), 5395 – 5407.
Lin Y. C., Bai H. L., Chang C. L., 2005. Applying hexagonal nanostructured zeolite particles for acetone removal. Air & Waste Management Association 55, 834 – 840.
Lin Y. C., Cheng M. T., Ting W. Y., Yeh C. R., 2006. Characteristics of gaseous HNO2, HNO3, NH3 and particulate ammonium nitrate in an urban city of Central Taiwan. Atmospheric Environment 40, 4725 – 4733.
Lina Y. C., Chang F. T., 2009. Optimizing operating parameters of a honeycomb zeolite rotor concentrator for processing TFT-LCD volatile organic compounds with competitive adsorption characteristics. Journal of Hazardous Materials 164, 517 – 526.
Lorber M., Eschenroeder A., Robinson R., 2000. Testing the USA EPA's ISCST-Version 3 model on dioxins: a comparison of predicted and observed air and soil concentrations. Atmospheric Environment 34, 3995 – 4010.
Mandurino C., Vestrucci P., 2009. Using meteorological data model pollutant dispersion in the atmosphere. Environmental Modelling & Software 24, 270 – 278.
Poulstrup A., Hansen H.L., 2004. Use of GIS and exposure modeling as tools in a study of cancer incidence in a population exposed to airborne dioxin. Environmental Health Perspectives 112(9), 1032 – 1036.
Saral A., Demir S., Yıldız Ş., 2009. Assessment of odorous VOCs released from a main MSW landfill site in Istanbul-Turkey via a modeling approach. Journal of Hazardous Materials. 168, 338 – 345.
Sax T., Isakov V., 2003. A case study for assessing uncertainty in local-scale regulatory air quality modeling applications. Atmospheric Environment 37, 3481 – 3489.
Scott H. M., Soskolne C. L., Martin S. W., Ellehoj E. A., Coppock R. W., Guidotti T. L., Lissemore K.D.,2003. Comparison of two atmospheric dispersion models to assess farm site exposure to sour gas processing plant emissions. Preventive Veterinary Medicine 57, 15 – 34.
Sharma S., Chandra A., 2008. Simulation of air quality using an ISCST3 dispersion model. Clean-Soil Air Water 36(1), 118 – 124.
Sillman S., 1999. The Relation between Ozone, NOx and Hydrocarbons in Urban and Polluted rural Environments. Atmospheric Environment 33, 1821 - 1845.
Sivacoumar R., Bhanarkar A. D., Goyal S. K., Gadkari S. K., Aggarwal A. L.,2001. Air pollution modeling for an industrial complex and model performance evaluation. Environmental Pollution 111(3), 471 – 477.
Slade D. H., ed. 1968. available as TID-24190 from National Technical Information Service, Springfield, VA. Meteorology and Atomic Energy 22151.
Smith M., 1968. Recommended Guide for the Prediction of the Dispersion of Airborne Effluents, The American Society of Mechanical Engineers, New York, New York.
Tsai C. J., Chang C. T., Liu T. W., Huang C. C., Chien C. L., Chein H. M., 2004. Emission characteristics and control efficiency of acidic and basic gases and aerosols from packed towers. Atmospheric Environment 38, 643 – 646.
Tsai J. H., Huang Y. S., Shieh Z. X., Chiang H. L., 2011. Concentration characteristics of VOCs and acids/bases in the gas phase and water-soluble ions in the particle phase at an electrical industry park during construction and mass production. Journal of Environmental Science and Health Part A 46, 540 – 551.
Turner D.B., 1970. Workbook of Atmospheric Dispersion Estimates. PHS Publication No. 999-AP-26. U.S. Department of Health, Education and Welfare, National Air Pollution Control Administration, Cincinnati, Ohio.
US EPA, 1995. Industrial Source Complex (ISC3) Dispersion Models- User's Guide I. Description of Model Algorithms In: Agency USEP (ed). Research Triangle Park: EPA.
US EPA, 1995. Industrial Source Complex (ISC3) Dispersion Models- User's Guide II. Description of Model Algorithms. In: Agency USEP (ed). Research Triangle Park: EPA.
Venegas L. E., Mazzeo N. A., 2006. Modelling of urban background pollution in Buenos Aires City (Argentina). Environmental Modelling & Software 21, 577 – 586.
Wang L. J., Parker D. B., Parnell C. B., Lacey R. E., Shaw B. W., 2006. Comparison of CALPUFF and ISCST3 models for predicting downwind odor and source emission rates. Atmospheric Environment 40, 4663 – 4669.
Xing Y, Guo H, Feddes J, Yu Z, Shewchuck S, Predicala B, 2007. Sensitivities of four air dispersion models to climatic parameters for swine odor dispersion. Transactions of the Asabe 50(3), 1007 – 1017.
Yang J., Chen Y. F., Cao L. M., Guo Y. L., Jia J. P., 2012. Development and Field-Scale Optimization of a Honeycomb Zeolite Rotor Concentrator/Recuperative Oxidizer for the Abatement of Volatile Organic Carbons from Semiconductor Industry. Environmental Science & Techonology 46, 441 – 446.
Yegnan A., Williamson D.G., Graettinger A.J., 2002. Uncertainty analysis in air dispersion modeling. Environmental Modelling & Software 17, 639 – 649.
工業技術研究院,2007,「中部科學工業園區第三期發展區95年度施工期間環境監測計畫(七星農場部分)及健康風險評估計劃(后里農場及七星農場部分),后里園區周界空氣品質及半導體中央尾氣系統調查工作」結案報告,工業技術研究院。
王世民,2008,「工業區空氣中金屬污染物分佈調查與風險評估研究」,博士論文,國立清華大學化學系。
王宜婷,2008,「結合地理資訊系統與擴散模式評估半導體廠無機酸排放對周遭空氣品質之影響」,碩士論文,國立台灣大學公共衛生學院環境衛生研究所。
王保雄,2004,「揮發性有機化合物之逐時採樣分析研究」碩士論文,國立清華大學原子科學研究所。
田浚致,2004,「利用空氣擴散模式模擬石化工業區致癌性污染物之濃度及推估居民之致癌風險」,碩士論文,國立成功大學環境醫學研究所。
行政院環境保護署,1992,「固定污染源空氣污染物排放標準」。
行政院環境保護署,1999,「半導體製造業空氣污染管制及排放標準」。
行政院環境保護署,2000,「揮發性有機廢氣生物處理系統建立及評估計畫」。
何伊婷,2007,「揮發性有機物排放量推估與方法建構之研究-以中部空品區為例」,碩士論文,崑山科技大學環境工程研究所。
吳鴻澤,2010,「高高屏空品區臭氧與非甲烷碳氫化合物特性之探討」,碩士論文,國立中興大學環境工程研究所。
宋宗信,2010,「以GC/MS偵測高科技工業區內空氣中揮發性有機物濃度之研究」,碩士論文,國立交通大學工學院永續環境科技學程。
周崇光,2003,「積體電路製程尾氣控制技術之發展與應用」,工業技術研究院環境與安全衛生中心十週年論文集。
周淑婉、吳俊儀,2007,「揮發性有機物(VOCs)之可行控制技術及排放減量策略」,第十九屆空氣污染防制研討會。
林志仁,1998,「高屏地區大氣揮發性有機物成分特徵與臭氧生成潛勢關聯性研究」,碩士論文,國立成功大學環境工程研究所。
林建三,2008,環境工程概論,台北市:鼎茂圖書出版股份有限公司。
林政鑒、蔡俊宏、陳立德,2003,「半導體業廢氣洗滌塔操作實務與探討」,產業環保工程實務技術研討會。
林嘉祥,2011,「某工業區大氣中揮發性有機物時空特徵調查及臭氧生成潛勢之分析」,碩士論文,國立中山大學環境工程研究所。
邱顯文,2007,「雪山隧道揮發性有機物排放特性分析」,碩士論文,國立聯合大學環境與安全衛生工程學系碩士班。
施寶慧,2001,「高科技工業園區周界環境空氣中酸性氣膠之探討」,碩士論文,國立交通大學環境工程研究所。
洪世明,2003,「焚化廠戴奧辛之健康風險評估及其大氣物理及化學反應模擬」,碩士論文,國立雲林科技大學環境與安全工程系碩士班。
張書豪、張木彬,1999,「科學園區空氣污染物排放特性之探討」國立中央大學環境工程學刊 6215 – 6228。
莊淳元,2004,「沸石吸附半導體揮發性有機物丙酮、單甲基醚丙二醇及乙酸甲氧基異丙酯控制技術之評估研究」,碩士論文,國立雲林科技大學環境與安全衛生工程研究所。
許菁珊,2006,「沸石對於光電產業揮發性有機化合物之吸/脫附研究」,碩士論文,國立中山大學環境工程研究所。
游建華、劉瑋廷,2011,「高科技產業沸石轉輪操作條件之研究」,區域與環境資源永續發展研討會。
黃秉瑜,2007,「新竹科學園區固定污染源排放減量管制策略」,碩士論文,國立交通大學工學院專班永續環境科技學程。
黃俊超,2003,「高科技產業無機酸鹼廢氣組成與填充式濕式洗滌塔控制效率之研究」,碩士論文,國立交通大學環境工程所。
黃俊超、吳信賢、楊憲昌、陳姿名,2004,「低濃度酸鹼廢氣高效率洗滌技術實廠應用案例」,產業環保工程實務技術研討會。
黃思蒨,2007,「運用受體模式與軌跡模式探討揮發性有機物之貢獻與傳輸」,碩士論文,逢甲大學環境工程與科學研究所。
黃郁文,2006,「石化工業區VOCs排放特性調查」,碩士論文,輔英科技大學環境工程與科學研究所。
黃馨儀、陸瑩、曾素媛,2007,「探討半導體製造業及光電材料及元件製造業中主要製程廢棄物之指紋差異性」,台灣環境資源永續發展研討會。
新竹市環境保護局,2002,「永續發展示範計畫-期中報告修正稿」。
楊玉玲,2009,「電子業揮發性有機物排放特性及其管理之研究」,碩士論文,國立台北科技大學環境工程與管理研究所。
經濟部工業局,1995,「半導體製造業污染防治技術」。
經濟部工業局,2001,「半導體業清潔生產技術手冊」。
劉妙生,2002,「高科技電子業揮發性有機物污染管制理論與實務」,碩士論文,元智大學機械工程研究所。
劉沁瑋,2002,「新竹科學工業園區空氣污染物排放總量推估及ISCST3擴散模式應用」碩士論文,國立交通大學環境工程研究所。
劉家豪,2004,「IC製造業產品生命週期分析」,碩士論文,國立成功大學環境工程研究所。
蔡春進,2002,「力晶半導體股份有限公司煙道廢氣異味與白煙可能原因之研究計畫」期末報告,國立交通大學環境工程研究所。
蕭祥憲、曹繼中、陳孟裕、黃純星、吳家正、周志彥,2003,「半導體製造業及光電製造業揮發性有機物污染檢測及其污染物定性分析研究」,空氣污染控制技術研討會。
錢一心,2010,「TFT-LCD 產業揮發性有機物(VOCs)空氣污染防制設備旋轉蓄熱式燃燒爐(RRTO)效能提升研究」,碩士論文,朝陽科技大學環境工程與管理系。
簡弘民、陳姿名,2002,「新竹科學工業園區暨竹南基地空氣污染物排放總量監測及管理規劃」期末報告,新竹科學園區管理局。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code