Responsive image
博碩士論文 etd-0514113-133259 詳細資訊
Title page for etd-0514113-133259
論文名稱
Title
利用摩擦攪拌製程於鋁-氧化矽、鋁-氧化銅及鋁-鎂-氧化銅系統製備奈米顆粒強化鋁基複材
In situ synthesis of nanoparticles reinforced Al-based composites from Al-SiO2, Al-CuO and Al-Mg-CuO systems by friction stir processing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-05-31
繳交日期
Date of Submission
2013-06-14
關鍵字
Keywords
摩擦攪拌製程、鋁-氧化矽系統、鋁-氧化銅系統、原位複合材料、鋁-鎂-氧化銅系統、鋁基複合材料
Al-SiO2, Aluminum based composite, Al-Mg-CuO, Al-CuO, Friction stir process, In situ composite
統計
Statistics
本論文已被瀏覽 5759 次,被下載 366
The thesis/dissertation has been browsed 5759 times, has been downloaded 366 times.
中文摘要
本研究旨在藉由摩擦攪拌製程(Friction stir process)誘發原位反應(In-situ reaction)以製造原位鋁基複合材料。透過調控摩擦攪拌製程參數(轉速、走速、道次)釐清反應量與參數間的關係,以及原位反應機制的研究,並進一步改良合金設計,提升反應量與強化效果。由摩擦攪拌製程所引進的大量塑性變形可提供細化微結構的效果,增加反應物間的接觸;而製程所引入的摩擦熱可進一步觸發置換反應(Displacement reaction)產生氧化鋁並釋出大量的反應熱。各系統之粉體(鋁與氧化矽;鋁與氧化銅;鋁、鎂與氧化銅)均勻混合以冷壓製成試棒,其中,鋁與氧化矽及鋁與氧化銅之試棒透過燒結提升試棒強度以利於摩擦攪拌製程進行。
在鋁與氧化矽系統中,摩擦攪拌製程成功的誘發鋁與氧化矽間的反應,生成穩定相氧化鋁(α-Al2O3)及矽,同時散佈於極細晶(1 μm)的基材中。在固定走速的條件下,反應量係與轉速及道次成正相關。降低走速可提高製程時間進而增加反應量。微結構觀察顯示,主要的強化相是奈米氧化鋁顆粒(20 nm),生成於鋁與氧化矽界面,經由摩擦攪拌製程散佈至基材中,普遍以氧化鋁團簇(Cluster)的型態存在。該強化相可有效的阻礙差排滑移,進而以Orowan strengthening提升強化效果。此外,熱處理(873 K/1hr)後可達完全反應,蓋因氧化鋁未完全包覆氧化矽使得氧化矽與鋁間仍保有接觸。機械性質方面,鋁與氧化矽試棒經FSP-500-15-4後,抗拉強度可達319 MPa,延展性為0.13。
在鋁與氧化銅系統中,散佈於基材中的氧化鋁是為鋁與氧化銅反應所生成,而銅與鋁反應後,則形成介金屬化合物(θ-Al2Cu)。此複材主要的強化相為奈米尺寸的氧化鋁,該氧化鋁為非晶質,經電子束照射後,相變態為γ-Al2O3。此外,殘餘的氧化銅具有核殼結構(Core-shell structure),核心由氧化銅及氧化亞銅組成,殼層則由非晶質氧化鋁構成。試棒經摩擦攪拌製程後,輔以熱處理未能有效的提升反應量,歸因於非晶質氧化鋁形成阻障層致使反應無法被熱處理引發。
鎂添加於鋁氧化銅系統中,藉由鎂與氧化銅反應取代鋁與氧化銅反應,獲得提升反應量的結果。鎂與氧化銅反應後,生成奈米尺寸的氧化鎂顆粒(10 nm),常以團簇(Cluster)型態存在與基材中,是為主要的強化相。鋁與銅之介金屬化合物(θ-Al2Cu)尺寸約為 200 nm。經摩擦攪拌製程後,鋁晶粒細化至0.6 μm。機械性質顯示,複材(Al-10Mg-10CuO)楊氏係數達88 GPa,相較鋁與氧化銅系統之複材,展現優異的機械性質,顯示鎂添加於鋁-氧化銅系統中,可有效的提升反應量及機械性質。
Abstract
Aluminum matrix composites reinforced with nanometer-sized particles were produced from powder mixture of Al and oxides by using friction stir processing (FSP). This approach combined the hot working nature of FSP and exothermic reactions between Al and oxides. In this study, composites synthesized from Al-SiO2, Al-CuO and Al-Mg-CuO were investigated, and the microstructure and mechanical properties of the composites were characterized.
In the Al-SiO2 composites, Al2O3 particles were produced in situ by oxide-aluminum displacement reactions. The Al2O3 particles were formed at the Al/SiO2 interface, and dispersed in the aluminum matrix by the stirring action of the rotating tool during FSP. Microstructural examinations revealed the Al2O3 particles present mainly in the form of clusters of nano-sized (approximately 20 nm) particles, which were identified as α-Al2O3. Because of the fine dispersion of nano-sized particles in an ultrafine-grained aluminum matrix, the composites exhibit superior tensile strength and ductility. Quantitative phase analysis indicated that the extent of the Al-SiO2 reaction increased in conjunction with an increasing tool rotation rate and a decreasing tool traverse speed in FSP.
In the Al-CuO composite, the in situ formed reinforcements include nanometer-sized Al2O3 and Al2Cu particles. These Al2O3 nano-particles were identified as amorphous in the as-FSPed condition. The average Al grain size in the FSPed composite was approximately 1 μm. The composite exhibited enhanced strength. The major contributions to the high strength of the composite are the ultrafine grained structure of aluminum matrix and the fine dispersion of nanometer-size reinforcing particles inside aluminum grains.
Aluminum based in situ composite was synthesized from powder mixture of Al/Mg/CuO by using friction stir processing (FSP). Microstructure characterization indicates that in situ formed MgO and Al2Cu nano-particles are uniformly distrubuted in submicron-grained aluminum matrix. Because of the large amount of nanometer-size reinforcements in a submicron-grained matrix, the composite exhibits superior Young’s modulus and strength. The reaction mechanism responsible for the in situ formation of MgO and Al2Cu particles in FSP is discussed. This work has demonstrated the beneficial effect of utilizing the Mg/metal-oxide displacement reaction in the synthesis of aluminum based in situ composite.
目次 Table of Contents
中文摘要 I
Abstract III
Contents V
List of Table VII
List of Figure Captions VIII
Chapter 1 Introduction 1
Chapter 2 Literature review 5
2.1 Friction stir process (FSP) 5
2.1.1 Fundamentals of FSW/FSP 5
2.1.2 Application of FSP for microstructure refinement 7
2.1.3 Fabrication of composites by using FSP 8
2.2 Strengthening mechanisms in particle reinforced metal matrix composites 9
2.3 In situ Al-TM composites produced by FSP 11
2.4 In situ composites synthesized by thermite reaction 15
2.5 In situ aluminum composites produced by combining thermite reaction and FSP 19
Chapter 3 Experimental procedures 22
3.1 Materials 22
3.2 Friction stir processing (FSP) 22
3.3 Microstructure characterization 23
3.4 Mechanical tests 23
3.5 Thermal analysis 24
Chapter 4 Results 25
4.1 Al-SiO2 system 25
4.1.1 Microstructure 25
4.1.2 Effect of FSP parameters 27
4.1.3 Mechanical properties 28
4.1.4 Effect of post-FSP heat treatment 29
4.2 Al-CuO system 31
4.2.1 Microstructure 31
4.2.2 Mechanical properties 33
4.2.3 Effect of post-FSP heat treatment 34
4.2.4 Effect of CuO content on the mechanical properties of FSPed Al-xCuO samples 35
4.3 Al-Mg-CuO system 38
4.3.1 Microstructure 38
4.3.2 Mechanical properties 39
4.3.3 Effect of chemical composition on the mechanical properties of FSPed Al-Mg-CuO 40
Chapter 5 Discussions 43
5.1 The effect of FSP parameters on the in situ Al-SiO2 reaction 43
5.2 I In-situ reactions in Al-SiO2 and Al-CuO during FSP 44
5.2.1 Al-SiO2 system 45
5.2.2 Al-CuO system 47
5.2.3 Polymorphs of Al2O3 resulted from thermite reactions 49
5.3 Effect of Mg on the in situ reaction in Al-CuO system 50
5.4 Tension-compression asymmetry 52
Chapter 6 Conclusion 54
Tables 56
Figures 62
Reference 91
參考文獻 References
1. D. J. Lloyd. Particle-reinforced aluminum and magnesium matrix composites. Int. Mater. Rev. 39 (1994) 1-23.
2. M. S. Miller, F. J. Humphreys. Strengthening mechanisms in particulate metal matrix composites. Scr. Mater. 25 (1991) 33-8.
3. J. W. Martin, R. D. Doherty, B. Cantor. Stability of Microstructures in Metallic Systems. Cambridge University Press, Cambridge (1976) 234–36.
4. S. C. Tjong, Z. Y. Ma. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R 29 (2000) 49-113.
5. R. Bauri, D. Yadav, G. Suhas. Effect of friction stir processing (FSP) on microstructure and properties of Al-TiC in situ composite. Mater. Sci. Eng. A 528 (2011) 4732-39.
6. C. J. Hsu, P. W. Kao, N. J. Ho. Ultrafine-grained Al-Al2Cu composite produced in situ by friction stir processing. Scr. Mater. 53 (2005) 341-45.
7. C. J. Hsu, P. W. Kao, N. J. Ho. Intermetallic-reinforced aluminum matrix composites produced in situ by friction stir processing. Mater. Lett. 61 (2007) 1315-18.
8. C. J. Hsu, C. Y. Chang, P. W. Kao, N. J. Ho, C. P. Chang. Al-Al3Ti nanocomposites produced in situ by friction stir processing. Acta Mater. 54 (2006) 5241-49.
9. Q. Zhang, B. L. Xiao, D. Wang, Z. Y. Ma. Formation mechanism of in situ Al3Ti in al matrix during hot pressing and subsequent friction stir processing. Mater. Chem. Phys. 130 (2011) 1109-17.
10. Q. Zhang, B. L. Xiao, P. Xue, Z. Y. Ma. Microstructural evolution and mechanical properties of ultrafine grained Al3Ti/Al-5.5Cu composites produced via hot pressing and subsequent friction stir processing. Mater. Chem. Phys. 134 (2012) 294-301.
11. I. S. Lee, P. W. Kao, N. J. Ho. Microstructure and mechanical properties of Al-Fe in situ nanocomposite produced by friction stir processing. Intermetallics 16 (2008) 1104-08.
12. I. S. Lee, P. W. Kao, C. P. Chang, N.J. Ho. Formation of Al-Mo intermetallic particle-strengthened aluminum alloys by friction stir processing. Intermetallics 35 (2013) 9-14.
13. D. Yadav, R. Bauri. Nickel particle embedded aluminum matrix composite with high ductility. Mater. Lett. 64 (2010) 664-67.
14. J. Qian, J. Li, J. Xiong, F. Zhang, X. Lin. In situ synthesizing Al3Ni for fabrication of intermetallic-reinforced aluminum alloy composites by friction stir processing. Mater. Sci. Eng. A 550 (2012) 279–85.
15. L. Ke, C. Huang, L. Xing, K. Huang. Al-Ni intermetallic composites produced in situ by friction stir processing. J. Alloy Compd. 503 (2010) 494-99.
16. Z. Y. Ma. Friction stir processing technology: A review. Metall. Mater. Trans. A 39 (2008) 642-58.
17. I. S. Lee, C. J. Hsu, C. F. Chen, N. J. Ho, P. W. Kao. Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing. Compos. Sci. Technol. 71 (2011) 693-98.
18. H. Zhu, J. Min, J. Li, L. Ge, H. Wang. In situ fabrication of (α-Al2O3 +Al3Zr)/Al composites in an Al-ZrO2 system. Compo. Sci. Technol. 70 (2010) 2183-89.
19. C. F. Chen, P. W. Kao, L. W. Chang, N. J. Ho. Effect of processing parameters on microstructure and mechanical properties of an Al-Al11Ce3-Al2O3 in situ composite produced by friction stir processing. Metall. Mater. Trans. A 41 (2010) 513-22.
20. C. F. Chen, P. W. Kao, L. W. Chang, N. J. Ho. Mechanical properties of nanometric Al2O3 particulate-reinforced Al-Al11Ce3 composites produced by friction stir processing. Mater. Trans. 51 (2010) 933-38.
21. P. Yu, Z. Mei, S. C. Tjong. Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al2O3 and TiC submicron particles. Mater. Chem. Phys. 93 (2005) 109-16.
22. C. F. Fen and L. Froyen. Formation of Al3Ti and Al2O3 from an Al-TiO2 system for preparing in-situ aluminium matrix composite. Composite A 31 (2000) 385-90.
23. Q. Zhang, B. L. Xiao, W. G. Wang, Z. Y. Ma. Reactive mechanism and mechanical properties of in situ composites fabricated from an Al-TiO2 system by friction stir processing. Acta Mater. 60 (2012) 7090-7103.
24. Q. Zhang, B. L. Xiao, Q. Z. Wang, Z. Y. Ma. In situ Al3Ti and Al2O3 nanoparticles reinforced Al composites produced by friction stir processing in an Al-TiO2 system. Mater. Lett. 65 (2011) 2070-72.
25. G. L. You, N. J. Ho, P. W. Kao. In-situ formation of Al2O3 nanoparticles during friction stir processing of Al-SiO2 composite. Mater. Characterization 80 (2013) 1-8
26. G. L. You, N. J. Ho, P. W. Kao. The microstructure and mechanical properties of an Al-CuO in-situ composite produced using friction stir processing. Mater. Lett. 90 (2013) 26-29.
27. G. L. You, N. J. Ho, P. W. Kao. Aluminum based in situ nanocomposite produced from Al-Mg-CuO powder mixture by using friction stir process. Mater. Lett. 100 (2013) 219-22.
28. R. S. Mishra, Z. Y. Ma. Friction stir welding and processing. Mater. Sci. Eng. R 50 (2005) 1-78.
29. C. N. Cochran, D. L. Belitskus, D. L. Kinosz. Oxidation of aluminum-magnesium melts in air, oxygen, flue gas, and carbon dioxide. Metall. Mater. Trans. B. 8 (1977) 323-32.
30. R. S. Mishra, M. W. Mahoney, S. X. McFadden, N. A. Mara, A. K. Mukherjee. High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr. Mater. 42 (2000) 163-68.
31. W. M. Thomas, E. D. Nicoholas, J. C. Needham, M. G. Church, P. Templesmith and C. J. Dawes, US patent 5460317, October 1995
32. Y. S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, S. Jogan, T. Hashimoto. Microtexture in the friction-stir weld of an aluminum alloy. Metall. Mater. Trans. A 32 (2001) 941-48.
33. S. H. C. Park, Y. S. Sato, H. Kokawa. Basal plane texture and flow pattern in friction stir weld of a magnesium alloy. Metall. Mater. Trans. A 34 (2003) 987-94.
34. D. P. Field, T. W. Nelson, Y. Hovanski, K. V. Jata. Heterogeneity of crystallographic texture in friction stir welds of Aluminum. Metall. Mater. Trans. A 32 (2001) 2869-77
35. K. Colligan. Material flow behavior during friction stir welding of aluminum. Weld J 78 (1999) 229S-37S.
36. T. U. Seidel, A. P. Reynolds. Visualization of material flow in AA2195 friction-stir welds using a marker insert technique. Metall. Mater. Trans. A 32 (2001) 2879-84.
37. Z. Zhang, H.W. Zhang. Numerical studies on controlling of process parameters in friction stir welding. J. Mater. Process. Tech. 209 (2009) 241-70.
38. M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, R. A. Spurling, W. H. Bingle, Properties of friction-stir-welded 7075 T651 aluminum. Metall. Mater. Trans. A 29 (1998) 1955-64.
39. T. Hashimoto, S. Jyogan, K. Nakata, Y. G. Kim, M. Ushio. FSW joints of high strength aluminium alloy. In: Processings of the First International Symposium on Friction Stir Welding, Thousand Oaks, CA, USA, June 14-16, 1999.
40. R. Nandan, T. DebRoy, H. K. D. H. Bhadeshia. Recent advances in friction stir welding-process, weldment structure and properties. Prog. Mater. Sci. 53 (2008) 980-1023.
41. S. Swaminathan, K. Oh-Ishi, A. P. Zhilyaev, C. B. Fuller, B. London, M. W. Mahoney, T. R. McNelley. Peak stir zone temperatures during friction stir processing. Metall. Mater. Trans. A 41 (2010) 631-40.
42. J. Qian, J. Li, F. Sun, J. Xiong, F. Zhang, X. Lin. An analytical model to optimize rotation speed and travel speed of friction stir welding for defect-free joints. Scr. Mater. 68 (2013) 175-78.
43. W. J. Arbegast. Modeling friction stir joining as a metalworking process. Hot Deformation of Aluminum Alloys III, TMS, ed. By Jin Z et al. (2003) 313-27.
44. P. Edwards, M. Ramulu. Effect of process conditions on superplastic forming behavior in Ti-6Al-4V friction stir welds. Sci. Technol. Weld. Joi. 14 (2009) 669-80.
45. D. Yadav, R. Bauri. Effect of friction stir processing on microstructure and mechanical properties of aluminum. Mater. Sci. Eng. A 539 (2012) 85-92.
46. C. G. Rhodes, M. W. Mahoney, W. H. Bingel, M. Calabres. Fine-grain evolution in friction-stir processed 7050 aluminum. Scr. Mater. 48 (2003) 1451-55.
47. J. Q. Su, T. W. Nelson, C. J. Sterling. Friction stir processing of large-area bulk UFG aluminum alloys. Scr. Mater. 52 (2005) 135-40.
48. Y. J. Kwon, N. Saito, I. Shigematsu. Mechanical properties of fine-grained aluminum alloy produced by friction stir process. Scr. Mater. 49 (2003) 785-89.
49. B. Mansoor, A. K. Ghosh. Microstructure and tensile behavior of a friction stir processed magnesium alloy. Acta Mater. 60 (2012) 5079-88.
50. D. Zhang, S. Wang, C. Qiu, W. Zhang. Superplastic tensile behavior of a fine-grained AZ91 magnesium alloy prepared by friction stir processing. Mater. Sci. Eng. A 556 (2012) 100-06.
51. K. Nakata, Y. G. Kim, H. Fujii, T. Tsumura, T. Komazaki. Improvement of mechanical properties of aluminum die casting alloy be multi-pass friction stir processing. Mater. Sci. Eng. A 437 (2006) 274-80.
52. Z. Y. Ma, S. R. Sharma, R. S. Mishra. Effect of friction stir processing on the microstructure of cast A356 aluminum. Mater. Sci. Eng. A 433 (2006) 269-78.
53. M. L. Santella, T. Engstrom, D. Storjohann, T. Y. Pan. Effects of friction stir processing on mechanical properties of the cast aluminum alloy A319 and A356. Scr. Mater. 53 (2005) 201-06.
54. Z. Y. Ma, S. R. Sharma, R. S. Mishra. Effect of multiple-pass friction stir processing on microstructure and tensile properties of a cast aluminum-silicon alloy. Scr. Mater. 54 (2006) 1623-26.
55. F. Y. Tsai, P. W. Kao. Improvement of mechanical properties of a cast Al-Si base alloy by friction stir processing. Mater. Lett. 80 (2012) 40-2.
56. S. Tutunchilar, M. K. Givi, M. Haghpanahi, P. Asadi. Eutectic Al-Si piston alloy surface transformed to modified hypereutectic alloy via FSP. Mater. Sci. Eng. A 534 (2012) 557-67.
57. M. Raaft, T. S. Mahmoud, H. M. Zakzria, T. A. Khalifa. Microstructural, mechanical and wear behavior of A390/graphite and A390/Al2O3 surface composites fabricated using FSP. Mater Sci. Eng. A 528 (2011) 5741-46.
58. A. Shafiei-Zarhani, S. F. Kashani-Bozorg, A. Zarei-Hanzaki. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Mater. Sci. Eng. A 500 (2009) 84-91.
59. K. J. Hodder, H. Izadi, A. G. McDonald, A. P. Gerlich. Fabrication of aluminum-alumina metal matrix composites via cold gas dynamic spraying at low pressure followed by friction stir processing. Mater. Sci. Eng. A 566 (2012) 114-21.
60. C. Maxwell Rejil, I. Dinaharan, S. J. Vijay, N. Murugan. Microstructure and sliding wear behavior of AA6360/(TiC+B4C) hybrid surface composite layer synthesized by friction stir processing on aluminum substrate. Mater. Sci. Eng. A 552 (2012) 336-44.
61. R. A. Prado, L. E. Murr, K. F. Soto, J. C. McClure. Self-optimization in tool wear for friction-stir welding of Al 6061/20% Al2O3 MMC. Mater. Sci. Eng. A 349 (2003) 156-65.
62. P. Cavaliere. Mechanical properties of Friction Stir Processed 2618/Al2O3/20p metal mtrix composite. Composite A 36 (2005) 1657-65.
63. M. J. Starink, P. Wang, I. Sinclair, P. J. Gregson. Microstructure and strengthening of Al-Li-Cu-Mg alloys and MMCs: II modelling of yield strength. Acta Mater. 47 (1999) 3855-68.
64. Z. Zhang, D. L. Chen. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scr. Mater. 54 (2006) 1321-26.
65. J. B. Ferguson, H. Lopez, D. Kongshaug, B. Schultz, P. Rohatgi. Revised Orowan strengthening: effective interpaticle spacing and strain field considerations. Metall. Mater. Trans. A 43 (2012) 2110-11.
66. C. Y. Yu, P. W. Kao, C. P. Chang. Transition of tensile deformation behaviors in ultrafine-grained aluminum. Acta Mater. 53 (2005) 4019-28.
67. S. Srinivasan, S. R. Chen, R. B. Schwarz. Synthesis of Al/Al3Ti two-phase alloys by mechanical alloying. Mater. Sci. Eng. A 153 (1992) 691-95.
68. Y. C. Cheng, S. H. Wang, P. W. Kao, C. P. Chang. Microstructure and mechanical properties of mechanically alloyed Al-Al3Ti alloys. Mater. Sci. Forum 217 (1996) 1891-96.
69. R. A. Varin. Intermetallic-reinforced light-metal matrix in-situ composites. Metall. Mater. Trans. A 33 (2002) 193-201.
70. D. C. Van Aken, P. E. Krajewski, G. M. Vyletel, J. E. Allison, J. W. Jones. Recrystallization and grain growth phenomena in a particle-reinforced aluminum composite. Metall. Mater. Trans. A 26 (1995) 1395-1405.
71. X. C. Tong, H. S. Fang. Al-TiC composite in situ-processed by ingot metallurgy and rapid solidification technology: Part II. Mechanical behavior. Metall. Mater. Trans. A 29 (1998) 893-902.
72. J. Pan, J. H. Li, H. Fukunaka, X. G. Ning, H. Q. Ye, Z. K. Yao, M. Yang. Microstructural study of the interface reaction between titania whiskers and aluminum. Compo. Sci. Technol. 57 (1997) 319-25.
73. L. Takacs. Self-sustaining reaction induced by ball milling. Prog. Mater Sci. 47 (2002) 355-414.
74. P. C. Maity, P. N. Chakraborty, S. C. Panigrahi. Al-Al2O3 in situ particle composites by reaction of CuO particles in molten pure Al. Mater. Lett. 30 (1997) 147-51.
75. J. Mei, R. D. Halldearn, P. Xiao. Mechanisms of the aluminium-iron oxide thermite reaction. Scr. Mater. 41 (1999) 541-48.
76. P. Yu, C. J. Deng, N. G. Ma, M. Y. Yau, D. H. L. Ng. Formation of nanostructured eutectic network in α-Al2O3 reinforced Al-Cu alloy matrix composite. Acta Mater. 51 (2003) 3445-54.
77. Z. J. Huang, B. Y. Hua, J. S. Zhang. Study on the fabrication of Al matrix composites strengthened by combined in-situ alumina particle and in-situ alloying elements. Mater. Sci. Eng. A 351(2003) 15-22.
78. B. S. S. Daniel, V. S. R. Murthy, G. S. Murty. Metal-ceramic composites via in-situ methods. J. Mater. Process. Tech. 68 (1997) 132-55.
79. Hoseini, M. Meratian. Tensile properties of in-situ aluminium-alumina composite. Mater. Lett. 59 (2005) 3414-18.
80. J. P. Blondeau, L. Allam, V. Fleury, P. Simon, I. Gregora. Preparation of silicon nanoaggreagtes by thermal activated reaction. Mater. Sci. Eng. B 100 (2003) 27-34.
81. J. P. Blondeau, C. Orieux, L. Allam. Morphological and fractal studies of silicon nanoaggregates structures prepared by thermal activated reaction. Mater. Sci. Eng. B 122 (2005) 41-8.
82. K. Prabriputaloong, M. R. Piggott. Reduction of SiO2 by molten Al. J. Am. Ceram. Soc. 56 (1973) 184-85.
83. N. J. Chou, J. M. Eldridge. Effects of material and processing parameters on the dielectric strength of thermally grown SiO2 films. J. Electrochem. Soc. 117 (1970) 1287-93.
84. R. Silverman. The effect of moisture on the Aluminum-Silica reaction. J. Electrochem. Soc. 115 (1968) 674-76.
85. R. J. Blattner, A. J. Braundmeier. Solid phase reduction of SiO2 in the presence of an Al layer. J. Vac. Sci. Technol. 20 (1982) 320-23.
86. K. D. Woo and H. B. Lee. Fabrication of Al alloy matrix composite reinforced with subsive-sized Al2O3 particles by the in situ displacement reaction using high-energy ball-milled powder. Mater. Sci. Eng. A 499-451 (2007) 829-32.
87. P. Yu, C. J. Deng, N. G. Ma, D. H. L. Ng. A new method of producing uniformly distributed alumina particles in Al-based metal matrix composite. Mater. Lett. 58 (2004) 679-82.
88. G. H. Fan, Q. W. Wang, L. Geng, G. S. Wang, Y. C. Feng. Preparation and characterization of aluminum matrix composites based on Al-WO3 system. J. Alloys Compd. 545 (2012) 130-34.
89. L. Duraes, B. F. O. Costa, R. Santos, A. Correia, J. Campos, A. Portugal. Fe2O3/aluminum thermite reaction intermediate and final product characterization. Mater. Sci. Eng. A 465 (2007) 199-210.
90. S. Dadbakhsh and L. Hao. In situ formation of particle reinforced Al matrix composite by selective laser melting of Al/Fe2O3 powder mixture. Adv. Eng. Mater. 14 (2012) 45-8.
91. I. S. Lee. Aluminum matrix nanocomposites produced in situ by friction stir processing. PhD thesis. 2011
92. P. Yu, C. K. Kwok, C. Y. To, T. K. Li, D. H. L. Ng. Enhanced precipitation hardening in an alumina reinforced Al-Cu alloy matrix composite. Composite B 39 (2008) 327-31.
93. T. Fan, D. Zhang, G. Yang, T. Shibayanagi, M. Naka. Fabrication of in situ Al2O3/Al composite via remelting. J. Mater. Processing Tech. 142 (2003) 556-61.
94. J. Pike, S. Chan, F. Zhang, X. Wang, J. Hanson. Formation of stable Cu2O from reduction of CuO nanoparticles. Appl. Catal. A-Gen. 303 (2006) 273-277.
95. J.M. Wu, Z.Z. Li. Nanostructure composite obtained by mechanically driven reduction reaction of CuO and Al powder mixture. J. Alloys Compd. 299 (2000) 9-16.
96. R. A. Rapp, A. Ezis, G. J. Yurek. Displacement reactions in the solid state. Mater. Trans. 4 (1973) 1283-92.
97. S. Q. Xi, X. Y. Qu, M. L. Ma, J. G. Zhou, X. L. Zhang, X. T. Wang. Solid-state reaction of Al/CuO couple by high-energy ball milling. J. Alloys Compd. 268 (1998) 211-14.
98. D. Y. Ying, D. L. Zhang. Solid state reactions between CuO and Cu(Al) or Cu9Al4 in mechanically milled composite powders. Mater. Sci. Eng. A 361 (2003) 321-30.
99. H. Arami, A. Simchi, S. M. Reihani. Mechanical induced reaction in Al-CuO system for in-situ fabrication of Al based nanocomposites. J. Alloys Compd. 465 (2008) 151-56.
100. J. Wang, A. Hu, J. Persic, J. Z. Wen, Y. N. Zhou. Thermal stability and reaction properties of passivated Al/CuO nano-thermite. J. Phys. Chem. Solids 72 (2011) 620-25.
101. S. M. Umbrajkar, M. Schoenitz, E. L. Dreizin. Exothermic reactions in Al-CuO nanocomposites. Thermochim. Acta 451 (2006) 34-43.
102. R. A. Young. The Rietveld method. Oxford University Press, 1993.
103. M. A. Trunov, M. Schoenitz, E. L. Dreizin. Effect of polymorphic phase transformations in alumina layer on ignition of aluminum particles. Combust. Theory Model. 10 (2006) 603-23.
104. W. F. Gale, T. C. Totemeier. Smithells metals reference book. (8th ed.) Butterworth-Heinemann Press, 2004.
105. J. M. Reed, M. E. Walter. Observations of serration characteristics and acoustic emission during serrated flow of an Al-Mg alloy. Mater. Sci. Eng. A 359 (2003) 1-10.
106. R. Tromp, G. W. Rubloff, P. Balk, F. K. LeGoues. High-temparture SiO2 decomposition at the SiO2/Si interface. Phys. Rev. Lett. 55 (1985) 2332-35.
107. G. Jian, S. Chowdhury, K. Sullivan, M.R. Zachariah. Nanothermite reactions: Is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition? Combust. Flame 160 (2013) 432-37.
108. H. Wang, G. Li, Y. Zhao, Z. Zhang. Microstructure, billet surface quality and tensile property of (Al2O3+Al3Zr)p/Al composites in situ synthesized with electromagnetic field. J. Alloys Compd. 509 (2011) 5696-5700.
109. H. Wang, G. Li, Y. Zhao, G. Chen. In situ fabrication and microstructure of Al2O3 particles reinforced aluminum matrix composites. Mater. Sci. Eng. A 527 (2010) 2881-85.
110. S. Kleiner, F. Bertocco, F. A. Khalid, O. Beffort. Decomposition of process control agent during mechanical milling and its influence on displacement reactions in the Al-TiO2 system. Mater. Chem. Phys. 89 (2005) 362-66.
111. G. Chen, G. Sun. Study on in situ reaction-processed Al-Zn/α-Al2O3(p) composites. Mater. Sci. Eng. A 244 (1998) 291-95.
112. T. G. Durai, K. Das, S. Das. Synthesis and characterization of Al matrix composites reinforced by in situ alumina particulates. Mater. Sci. Eng. A 445-446 (2007) 100-05.
113. Y. Yang, D. Yan, Y. Dong, L. Wang, X. Chen, J. Zhang, J. He, X. Li. In situ nanostructured ceramic matrix composite coating prepared by reactive plasma spraying micro-sized Al-Fe2O3 composite powders. J. Alloys Compd. 509 (2011) 190-94.
114. H. X. Zhu, R. Abbaschian. In-situ processing of NiAl-alumina composites by thermite reaction. Mater. Sci. Eng. A 282 (2000) 1-7.
115. B. Yang, M. Sun, G. Gan, C. Xu, Z. Huang, H. Zhang, Z. Z. Fang. In situ Al2O3 particle-reinforced Al and Cu matrix composites synthesized by displacement reactions. J. Alloys Compds. 494 (2010) 261-65.
116. B. Dikici, M. Gavali. The effect of sintering time on synthesis of in situ submicron α-Al2O3 particles by the exothermic reactions of CuO particles in molten pure Al. J. Alloys Compd. 551 (2013) 101-07.
117. S. Asavavisithchai, A.R. Kennedy. The effect of Mg addition on the stability of Al- Al2O3 foams made by a powder metallurgy route. Scr. Mater. 54 (2006) 1331-34.
118. N.G. Ma, C.J. Deng, P. Yu, M. Aravind, D.H.L. Ng. Formation of MgO nanorods in the reaction zone of a Mg-CuO powder mixture by in-situ reaction. Philos. Mag. 84 (2004) 69-80.
119. N.G. Ma, G.Z. Wnag, D.H.L. Ng. Configuration of nanostructures reinforced Mg-MgO-Mg2Cu composite. Composite A S 36 (2005) 1222-28.
120. A. Ermoline, M. Schoenitz, E. L. Dreizin. Reactions leading to ignition in fully dense nanocomposite Al-oxide systems. Combust. Flame. 158 (2011) 1076-83.
121. A. Ermoline, D. Stamatis, E. L. Dreizin. Low-temperature exothermic reactions in fully dense Al-CuO nanocomposite powders. Thermochim. Acta 527 (2012) 52-8.
122. J. E. Carsley, A. Fisher, W. W. Milligan, E. C. Aifantis. Mechanical behavior of a bulk nanostructured iron alloy. Metal. Mater. Trans. A 29 (1998) 2661-71.
123. C. Y. Yu, P. L. Sun, P. W. Kao, C. P. Chang. Mechanical properties of submicron-grained aluminum. Scr. Mater. 52 (2005) 359-63.
124. S. Cheng, J. A. Spencer, W. W. Milligan. Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta Mater. 51 (2003) 4505-18.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code