Responsive image
博碩士論文 etd-0514113-192557 詳細資訊
Title page for etd-0514113-192557
論文名稱
Title
利用熱氧法生成氧化亞銅應用於太陽能電池之研製
Fabrication of Cu2O thin films by hot oxidation process for low-cost solar cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-05
繳交日期
Date of Submission
2013-06-15
關鍵字
Keywords
氧化亞銅、薄膜、真空熱氧法、能隙、載子漂移率
band gap, thin films, Cu2O, sputtering, mobility, magnetron, oxidation
統計
Statistics
本論文已被瀏覽 5703 次,被下載 3366
The thesis/dissertation has been browsed 5703 times, has been downloaded 3366 times.
中文摘要
本研究利用真空熱氧法生長薄膜太陽能電池主吸收層-氧化亞銅。以真空腔體通入氧氣對其中置於加熱器上之銅箔進行氧化,經由改變不同氧化溫度及通入氧氣流量的比例來得到不同性質表現之氧化亞銅薄膜。在材質結構方面,我們以低銳角進行X光繞射(XRD)分析,在氧化溫度處於800℃之薄膜可得到單一Cu2O (111)晶格方向。以場發射掃描式電子顯微鏡(FE-SEM)觀察薄膜表面形貌可得氧化溫度800℃/hr薄膜結晶尺寸達到10µm等級而且有良好晶界;在光學與電性方面,我們以紫外光-可見光光譜儀量測氧化亞銅吸收波段,藉以計算氧化亞銅薄膜能隙大小可得氧化溫度600℃~800℃生長薄膜的能隙大小約為2.0eV;以四點探針進行薄膜阻值分析可得氧化亞銅薄膜電阻率為105 Ω-cm;以Hall量測(Hall measurement)來量測薄膜載子漂移率氧化亞銅薄膜載子漂移率最高可達130 cm2/Vs。
本研究之太陽能電池窗口層(Window-layer)是利用射頻磁式濺鍍生長氧化鋅薄膜,以改變不同氧分壓以及濺鍍功率來得到不同性質表現之氧化鋅薄膜。從X光繞射分析可得在濺射功率40W下通以O2:80%流量所得之氧化鋅薄膜為非晶相;氧化鋅薄膜以MIS結構進行CV、IV所得結果顯示此沈積參數之氧化鋅薄膜之品質(4.5x10-8 A/cm2 at 1MV/cm)較其他沈積參數為佳,非常適合當氧化亞銅薄膜太陽能電池的窗口層。
Abstract
In this study, the main absorption layer-Cu2O of thin film solar cells was prepared by vacuum oxidation. By changing the temperatures and oxygen partial pressure during oxidation, we obtain Cu2O thin films with different properties. The structures of Cu2O thin films were characterized by glancing incident angle X-ray diffraction (XRD). Clear crystal orientation at Cu2O (111) plane was observed at 800℃oxidation. The surface morphology of the thin films are observed by field emitter-scanning electron microscope, and then the grain size of the thin film (800℃) is around 10µm. The optical and electrical properties of Cu2O thin films were measured by UV-VIS spectrophotometer, four-point probe system and Hall measurement. The band gap and resistivity of the thin films were about 2.0eV and 105 Ω-cm, respectively. The mobility of the thin films as high as 130 cm2/Vs was obtained.
The window-layer of the solar cells prepared by RF reactive magnetron sputtering using a ZnO target was studied. By changing the oxygen partial pressures and sputtering powers, we obtained the zinc oxide thin films with the different properties. The amorphous thin films at 40W and 80% oxygen partial pressures are characterized by XRD. Leakage current density of the films as low as 4.48x10-8 A/cm2 at 1MV/cm was obtained. Finally, the ZnO-Cu2O thin film solar cells were fabricated and measured.
目次 Table of Contents
目錄
第一章導論 1
1.1 前言 1
1.2 研究目的與動機 5
1.3太陽能電池分類與發展現況 6
1.4 氧化銅與氧化亞銅太陽能電池發展現況 9
第二章 理論基礎與文獻回顧 11
2.1 氧化亞銅晶格結構特性 11
2.2 物理氣相沉積 13
2.3 濺鍍法 15
2.4 射頻反應式磁控濺鍍 21
2.5 真空熱氧法 23
第三章 實驗方法與儀器介紹 25
3.1 實驗流程規劃 25
3.2 氧化亞銅薄膜製程 27
3.3 氧化鋅薄膜製備 29
3.4 薄膜量測儀器介紹 31
3.4-1表面輪廓儀(Surface Profiler) 31
3.4-2四點探針(four-point probe system) 32
3.4-3 場發射型掃描式電子顯微鏡 (Field Emitter-Scanning Electron Microscope) 33
3.4-4 雙晶薄膜X光繞射儀 (X-ray diffractometer, XRD) 35
3.4-5紫外光-可見光光譜(Ultraviolet/Visible Spectrophotometer) 39
3.4-6 霍爾效應分析儀 (Hall Effect Analyzer) 41
3. 4-7半導體元件分析儀 (Semiconductor Device Parameter Analyzer ) 44
3.4-8 太陽模擬光量測系統 (Solar simulator) 45
第四章 量測與分析 46
4.1氧流量對氧化鋅薄膜特性之影響 46
4.2 濺鍍功率對氧化鋅薄膜特性之影響 53
4.3 氧化溫度對氧化亞銅薄膜特性之影響 54
第五章 結論 62
參考文獻 References
[1] M.Y. Li, “Optoelectronic Applications: Solar Cell” NCUT 2009
[2] G. Papadimitropoulos, N. Vourdas, V. Em. Vamvakas and D. Davazoglou, “Optical and structural properties of copper oxide thin films grown by oxidation of
metal layers” Thin Solid films, vol.515 , pp.2428-2432 (2006)
[3] Y. S. Chaudhary, A. Agrawal, R.Shrivastav, V. R. Satsangi and S. Dass, “A study
on the photoelectrochemical properties of copper oxide thin films,” Int. J. Hydrogen Energy, vol.299 , pp.131-134. (2004)
[4] E. M. Alkoy, P. J. Kelly, “The structure and properties of copper oxide and copperaluminium oxide coatings prepared by plused magnetron sputtering of powder targets”, Vacuum, vol.79 , pp.221-230 (2005).
[5] B. Balamurugan, B. R. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation”,Thin Solid Films, vol.396 , pp.90-96 (2001).
[6] M. T. S. Nair, L. Guerrero, O. L. Arenas, P. K. Nair, “Chemically deposited copper oxide thin films:structural, optical and electrical characteristics”, Appl. Surf. Sci. vol.150 , pp.143-151 (1999).
[7] N. Serin, T. Serin S. Horzum and Y. Celik, “Annealing effects on the properties of copper oxide thin films prepared by chemical deposition”Semicond. Sci. Technol., vol.20 , pp.398-401 (2005).
[8] M. Schurr, M. Seidl, A. Brugger and H. Voit “Copper-oxide thin films prepared from Langmuir-Blodgett films”Thin Solid films, vol.342 , pp.266-269 (1999).
[9] L. Armelao, D. Barreac, M. Bertapelle, G. Bottaro, C. Sada and E. Tondello “A sol-gel approach to nanophasic copper oxide thin films”Thin Solid Films, vol.442 , pp.48-52 (2003).
[10]S. B. Ogale, P. G. Bilurkar, N. Mate, N. Parikh and B. Patnaik, “Deposition of copper oxde thin films on different substrates by pulsed excimer laser ablation”
[11] Z. H. Gan, G. Q. Yu, B. K. Tay, C. M. Tan, Z. W. Zhao and Y. Q. Fu “Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc”J. Phys. D:Appl. Phys., vol.37, pp.81-85 (2004).
[12] A. Ogwu, E. Bouquerel, O. Ademosu, S. moh, E Crossan and F. Placido, “The influence of rf power and oxygen flow rate during deposition on the optical transmittance of copper oxide thin film prepared by reactive magnetron sputtering”J. Phys. D:Appl. Phys., vol.38 , pp.266-271 (2005).
[13] H. S. Potdar, N. Pavaskar, A. Mitra and A. P. B. Sinha, “Solar Selective Copper-Black Layers by an Anodic Oxidation Process”, Sol. Energy Mater., vol.4 , pp.291 (1981).
[14] V. Georgieva, M. Ristov, “Electrodeposited cuprous oxide on indium tion oxide for solar application”, Solar Energy Materials&Solar Cells, vol. 73, pp. 67-73, 2002.
[15] S. S. Jeong, A. Mittiga, E. Salza, A. Masci, S. Passerini, “Electrodeposited Zno/Cu2O heterojunction solar cells”, Electrochimica Acta, vol. 53, pp. 2226-2231, 2008.
[16] A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate”, Applied Physics Letters, vol.88, no. 163520, 2006.
[17] H. tanaka, T. Shimakawa, T. Miyata, H. Sato, T. Minami,“Effect of AZO film deposition conditions on the photovoltaic properties of AZO-Cu2O heterojunctions”Applied Surface Science, vol.244, pp. 568-572, 2005.
[18] T. J. Hsueh, C. L. Hsu, S. J. Chang, P. w. Guo, J. H. Hsiehc and I. Chend, “Cu2O/n-ZnO nanowire solar cells on ZnO:Ga/glass templates”, Scripta Materialia, vol. 57, pp. 53-56, 2007.
[19] J. Chen, Y. Zhang, B. J. Skromme, K. Akimoto, S. J. Pachuta, “Properties of the shallow O-Related acceptor level in ZnSe”, Applied Physics, vol. 78, pp. 5109-5119, 1995.
[20] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, Goutam K. Paul, T. Sakurai, “Thin film deposition of Cu2O and application for solar cells”, Solar Energy, vol. 80, pp. 715-722, 2006.
[21] S. Ishizuka, S. Kato, S. Okamoto, Y. Akimoto, K. 2002. “Hydrogen treatment for polycrystalline nitrogen-doped Cu2O thin film”, Journal of Crystal Growth, vol. 237-239, pp. 616-620, 2002.
[22] Sambandam Anandan, Xiaogang Wen , Shihe Yang “Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells” Materials Chemistry and Physics , vol.93 , pp.35–40 (2005).
[23] Phathaitep Raksa, Sanpet Nilphai, Atcharawon Gardchareon, Supab Choopun “Copper oxide thin film and nanowire as a barrier in ZnO dye-sensitized solar cells” Thin Solid Films, vol.517 , pp.4741–4744 (2009).
[24] 楊明航“製備n型氧化鐵與p型氧化銅薄膜應用於雙重能隙太陽能電池之研究”國立臺灣大學 2005.
[25] W. Y. Ching and Yong-Nian Xu“Ground-state and optical properties of Cu2O and CuO crystals”Phy. Rev. B vol.40 , no.11 (1989)
[26] ETAFILM Technology Inc.“Plasma Sputtering”
[27] 高正雄, “超LSI 時代- 電漿化學”, 復漢出版社, 台南市, (1999) 1.
[28] D. M. Mattox, J. Vac. Sci. “Particle bombardment effects on thin-film deposition:A review”, Technol. A7, vol. 1105 (1989).
[29] 巫致瑋“反應性磁控濺鍍沉積氧化銅薄膜光電特性之研究”南台科技大學 2008
[30] 國立中山大學“Physical Vapor Deposition-sputtering”實驗講義.
[31] 利豐非傳統加工科技館“薄膜技術Thin film Technology” 2009.
[32] 溫金瑞 “直流式磁控濺鍍鈷膜於矽基板之結構變化與應用於OME製程之研究”, 國立成功大學, 2002.
[33] 蕭傑穎“封裝材料對於有機發光元件特性與壽命影響之研究”南台科技大學 2004.
[34] UV-Visible Spectroscopy “http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-Vis/uvspec.htm”
[35] 彭永福, “以溶膠凝膠法製備SiO2薄膜作TFT閘極絕緣層材料”國立中山大學, 2009
[36] Institute of physics“Episode 530:x-ray diffraction”
[37] U. S. Geological Survey Open-File Report 01-041 “A Laboratory Manual for X-Ray Powder Diffraction”
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code