Responsive image
博碩士論文 etd-0514117-165128 詳細資訊
Title page for etd-0514117-165128
論文名稱
Title
Cu3Bi(SeO3)2O2Cl之化學摻雜效應及磁性研究
Chemical doping effects on the structural and magnetic properties of Cu3Bi(SeO3)2O2Cl
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-04
繳交日期
Date of Submission
2017-06-15
關鍵字
Keywords
超磁性、自旋翻轉、偽籠紋晶格、多鐵性、Cu3Bi(SeO3)2O2Cl、自旋頓挫態
spin-flip, metamagnetic, pseudo-kagome lattice, multiferroic, spin frustration, Cu3Bi(SeO3)2O2Cl
統計
Statistics
本論文已被瀏覽 5688 次,被下載 300
The thesis/dissertation has been browsed 5688 times, has been downloaded 300 times.
中文摘要
近年來三角晶格、籠紋晶格在自旋頓挫態系統為主要研究方向。這些晶格特有的幾何形狀使內部的自旋相互影響,而產生異常的量子相態(如自旋冰和自旋液體)。同時自旋頓挫的交互作用也是影響鐵磁材料重要關鍵因素。
  由於特殊的磁性及具有自旋頓挫態系統的Cu3Bi(SeO3)2O2Cl受到相當大的關注。由兩個不同位置的自旋1/2之銅離子在ab面形成偽籠紋晶格並沿c軸堆疊,此材料具有各向異性的磁特性。我們利用化學摻雜(鋅、鈷和鎳)對Cu3Bi(SeO3)2O2Cl的自旋翻轉與多鐵性之研究。
  利用固態合成法製備多晶(Cu1-xMx)3Bi(SeO3)2O2Cl (M = Zn, Co, and Ni)。使用X光繞射儀進行晶體結構分析,再利用超導量子干涉儀做磁性量測。研究發現鋅或鈷相對鎳較易被摻雜;同時,在晶格常數中摻雜鋅的材料呈非等向性膨脹,摻雜鈷的材料則是等向性膨脹。隨著鋅和鈷摻雜濃度的增加,聶耳溫度(TN = 25.6 K)變得越低,飽和磁化強度也隨著減少;在臨界磁場(Hc)中,除了摻雜鋅(0 ≤ x ≤ 0.05)變大,其他都變小。研究結果顯示,非磁性鋅摻雜的影響對Cu3Bi(SeO3)2O2Cl的超磁性轉變比磁性鈷摻雜的影響有更顯著的影響。
Abstract
Investigation of spin frustration in triangular and Kagomé lattices has been active research field in the recent years. The unique geometry of these lattice promotes a spin frustration between the nearest neighbor magnetic ions that favors the highly exotic quantum phases such as spin ice, spin liquid, and spin glass phases. Indeed, this geometry induced spin frustration has a strong influence on the magnetic property even for the case of dominant ferromagnetic nearest neighbor interactions.
  The layered spin-frustrated Cu3Bi(SeO3)2O2Cl has received considerable research attention due to its unusual magnetic and multiferroic properties. The two spin 1/2 Cu2+ ions form a layered pseudo-kagome lattice in the ab plane and this layers stacked along c direction. This unique layer structure along with spin frustration anisotropic magnetic and multiferroic properties. The present study focused on understanding the chemical doping (Zn, Co and Ni) influence on the spin-flip and multiferroic behaviors of Cu3Bi(SeO3)2O2Cl.
  Polycrystalline (Cu1-xMx)Bi(SeO3)2O2Cl (M = Zn, Co, and Ni) samples were synthesized using solid-state reaction and characterized by X-ray diffraction (XRD), and magnetic measurements. Our studies show that either Zn or Co doping is easier than Ni doping. Variation of lattice constants with doping shows non-isotropic expansion for Zn and isotropic expansion for Co. The TN, Hc (expect doped Zn 0 ≤ x ≤ 0.05), and Ms are systematically shifted to lower temperature and reduced with Zn and Co doping. Our results suggest that the effect of non-magnetic Zn doping has a more significant influence on the metamagnetic transition of Cu3Bi(SeO3)2O2Cl than the effect of magnetic Co doping.
目次 Table of Contents
致謝 i
論文摘要 ii
Abstract iii
目錄 v
圖目錄 viii
第一章 簡介 1
1-1多鐵性介紹 1
1-2幾何自旋頓挫態系統 6
1-3 Cu3Bi(SeO3)2O2Cl晶體結構與物理特性簡介 9
1-4 研究動機 13
第二章 實驗儀器 16
2-1 X-Ray繞射儀 16
2-2 磁性量測儀器 18
2-2-1 超導量子干涉磁量儀 18
2-2-2 磁性量測方法 24
第三章 實驗結果與討論 27
3-1 Cu3Bi(SeO3)2O2Cl樣品製備 27
3-2 Cu3Bi(SeO3)2O2Cl的X-Ray繞射分析 32
3-3 X-Ray繞射分析 35
3-3-1 (Cu1-xZnx)3Bi(SeO3)2O2Cl的X-Ray繞射分析 35
3-3-2 (Cu1-xCox)3Bi(SeO3)2O2Cl的X-Ray繞射分析 40
3-3-3 (Cu1-xNix)3Bi(SeO3)2O2Cl的X-Ray繞射分析 42
3-4 磁性量測分析 44
3-4-1 (Cu1-xZnx)3Bi(SeO3)2O2Cl磁性量測分析 44
3-4-2 (Cu1-xCox)3Bi(SeO3)2O2Cl磁性量測分析 48
3-4-3 (Cu1-xNix)3Bi(SeO3)2O2Cl磁性量測分析 52
第四章 結論 53
參考文獻 55
參考文獻 References
[1] H. Schmid, “Multi-ferroic magnetoelectrics”, Ferroelectrics 162, 317 (1994).
[2] J. P. Velev, S. S. Jaswal, and E. Y. Tsymbal, “Multi-ferroic and magnetoelectric materials and interfaces”, Phil. Trans. R. Soc. A 369, 3069 (2010).
[3] Nicola A. Spaldin and Manfred Fiebig, “The renaissance of magnetoelectric multiferroics”, Science 309, 391 (2005).
[4] Y. Tokura, “Multiferroics-toward strong coupling between magnetization and polarization in a solid”, J. Magn. Magn. Mater. 310, 1145 (2007).
[5] E. K. H. Salje, “Ferroelastic materials”, Annu. Rev. Mater. Res. 42, 265 (2012).
[6] R. S. Freitas, J. F. Mitchell, and P. Schiffer, “Magnetodielectric consequences of phase separation in the colossal magnetoresistance manganite Pr0.7Ca0.3MnO3”, Phys. Rev. B 72, 144429 (2005).
[7] J. P. Rivera, “A short review of the magnetodielectric effect and related experimental techniques on single phase (multi-) ferroics”, Eur. Phys. J. B 71, 299 (2009).
[8] B. Lorenz, Y. Q. Wang, Y. Y. Sun, and C. W. Chu, “Large magnetodielectric effects in orthorhombic HoMnO3 and YMnO3”, Phys. Rev. B 70, 212412 (2004).
[9] S. Mukherjee, C. H. Chen, C. C. Chou, K. F. Tseng, B. K. Chaudhuri, and H. D. Yang, “Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix”, Phys. Rev. B 82, 104107 (2010).
[10] D. Hreniak, L. Marciniak, W. Strek, F. Piccinelli, A. Speghini, and M. Bettinelli, “Comment on “colossal dielectric and magnetodielectric effect in Er2O¬3 nanoparticles embedded in a SiO2 glass matrix””, Phys. Rev. B 84, 056102 (2011).
[11] S. Mukherjee, C. H. Chen, C. C. Chou, K. F. Tseng, B. K. Chaudhuri, and H. D. Yang, “Reply to “comment on ‘colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix’””, Phys. Rev. B 84, 056103 (2011).
[12] D. Khomskii, “Classifying multiferroics : mechanisms and effects”, Physics 2, 20 (2009).
[13] Jeroen van den Brink, and Daniel I Khomskii, “Multiferroicity due to charge ordering”, J. Phys.: Condens. Matter 20, 434217 (2008).
[14] D. V. Efremov, J. van den Brink, and D. I. Khomskii, “Bond- versus site-centred ordering and possible ferroelectricity in manganites”, Nat. Mater 3, 853(2004).
[15] C. Jardon, F. Rivadulla, L. E. Hueso, A. Fondado, M. A. Lopez-Quintela, J. Rivas, R. Zysler, M. T. Causa, and R. D. Sanchez, “Experimental study of charge ordering transition in Pr0.67Ca0.33MnO3”, J. Magn. Magn. Mater 196, 475 (1999).
[16] S. Mercone, A. Wahl, A. Pautrat, M. Pollet and C. Simon, “Anomaly in the dielectric response at the charge-orbital-ordering transition of Pr0.67Ca0.33MnO3”, Phys. Rev. B 69, 174433 (2004).
[17] G.T. Rado and J.M. Ferrari, “Electric field dependence of the magnetic anisotropy energy in magnetite (Fe3O4)”, Phys. Rev. B 12, 5166 (1975).
[18] G.T. Rado and J.M. Ferrari, “Linear and bilinear magnetoelectric effects in magnetically biased magnetite (Fe3O4)”, Phys. Rev. B 15, 290 (1977).
[19] Y. Miyamoto and S. Chikazumi, “Crystal symmetry of magnetite in low temperature phase deduced from magnetoelectric measurements”, J. Phys. Soc. Jpn. 57, 2040 (1988).
[20] Y. Miyamoto and M. Shindo, “Magnetoelectric measurement of magnetite (Fe3O4) at low temperatures and direct evidence for nonexistence of ac mirror plane”, J. Phys. Soc. Jpn. 62, 1423 (1993).
[21] Y. Miyamoto, S. Ishihara, T. Hirano, M. Takada, and N. Suzuki, Solid state commun. 89, 51 (1994).
[22] N. Ikeda, K. Kohn, N. Myouga, E. Takahashi, H. Kitoh, and S. Takekawa, “Charge frustration and dielectric dispersion in LuFe2O4”, J. Phys. Soc. Jpn. 69 1526 (2000).
[23] N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guba, and S-W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields”, Nature 429, 392 (2004).
[24] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, “Magnetic control of ferroelectric polarization”, Nature 426, 55 (2003).
[25] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S.-W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields”, Nature 429, 392 (2004).
[26] S.-W. Cheong and M. Mostovoy,“Multiferroics:a magnetic twist for ferroelectricity”, Nat. Mater 6, 13 (2007).
[27] Y.J. Choi, H.T. Yi, S. Lee, Q. Huang, V. Kiryukhin, and S-W. Cheong, “Ferroelectricity in an ising chain magnet”, Phys. Rev. Lett 100, 047601 (2008).
[28] W. Eerenstein, N. D. Mathur, and J. F. Scoot, “Mulitiferroic and magnetoelectric materials”, Nature (London) 442, 17 (2006).
[29] G. H. Wannier, “Antiferromagnetism. The triangular ising net”, Phys. Rev. 79(2) 357 (1950).
[30] J. Vannimenus and G. Toulouse, “Theory of the frustration effect. II. Ising spins on a square lattice”, J. Phys. C 10, L537 (1977).
[31] S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas, C. Broholm, H. Tsunetsugu, Y. Qiu, and Y. Maeno, “Spin disorder on a triangular lattice”, Science 309, 1697 (2005).
[32] I. Terasaki, Y. Sasago, and K. Uchinokura, “Large thermoelectric power in NaCo2O4 single crystals”, Phys. Rev. B 56, R12685 (1997).
[33] Leon Balents, “Spin liquids in frustrated magnets”, Nature 464, 199-208 (2010).
[34] M. J. R. Hoch, P. L. Kuhns, S. Yuan, T. Besara, J. B. Whalen, T. Siegrist, A. P. Reyes, J. S. Brooks, H. Zheng, and J. F. Mitchell, “Evidence for an internal-field-induced spin-flop configuration in the extended kagome YBaCo4O7”, Phys. Rev. B 87, 064419 (2013)
[35] D. Grohol, K. Matan, J.-H. Cho, S.-H. Lee, J. W. Lynn, D. G. Nocera, and Y. S. Lee, “Spin chirality on a two dimensional frustrated lattice”, Nat. Mater 4, 323 (2005).
[36] Daniel G. Nocera, Bart M. Bartlett, Daniel Grohol, Dimitris Papoutsakis, and Matthew P. Shores, “Spin frustration in 2D kagomÿ lattices : a problem for inorganic synthetic chemistry”, Chem. Eur. J. 10, 3850-3859 (2004).
[37] B. P. Uberuaga, D. Bacorisen, R. Smith, J A. Ball, R. W. Grimes, A. F. Voter, and K. E. Sickafus, “Defect kinetics in spinels: long-time simulations of MgAl2O4, MgGa2O4 and MgIn2O4”, Phys. Rev. B 75, 104116 (2007).
[38] W. Y. Ching, S. Aryal, P. Rulis, and W. Schnick, “Electronic structure and physical properties of the spinel-type phase of BeP2N4 from all-electron density functional calculations”, Phys. Rev. B 83, 155109 (2011).
[39] A. N. Yaresko, “Electronic band structure and exchange coupling constants in ACr2X4 spinels”, Phys. Rev. B 77, 115106 (2008).
[40] T. M. McQueen, D. V. West, B. Muegge, Q. Huang, K. Noble, H. W. Zandbergen, and R. J. Cava, “Frustrated ferroelectricity in niobate pyrochlores”, J. Phys.: Condens. Matter 20, 235210 (2008).
[41] K. Matsuhira, M. Tokunaga, M. Wakeshima, Y. Hinatsu, and S. Takagi, “Giant magnetoresistance effect in the metal-insulator transition of pyrochlore oxide Nd2Ir2O7”, J. Phys. Soc. Jpn. 82, 023706 (2013).
[42] Gia-Wei Chern, Saurabh Maiti, Rafael M. Fernandes, and Peter Wölfle, “Electronic transport in the coulomb phase of the pyrochlore spin ice”, Phys. Rev. Lett. 110, 146602 (2012).
[43] P. Millet, B. Bastide, V. Pashchenko, S. Gnatchenko, V. Gapon, Y. Ksari, and A. Stepanov, “Syntheses, crystal structures and magnetic properties of francisite compounds Cu3Bi(SeO3)2O2X (X = Cl, Br, and I)”, J. Mater. Chem. 11, 1152–1157 (2001).
[44] H. C. Wu, K. Devi Chandrasekhar, J. K. Yuan, J. R. Huang, J.-Y. Lin, H. Berger, and H. D. Yang, “Anisotropic spin-flip-induced multiferroic behavior in kagome Cu3Bi(SeO3)2O2Cl”, Phys. Rev. B 95, 125121 (2017).
[45] V. Gnezdilov, Yu. Pashkevich, V. Kurnosov, P. Lemmens, E. Kuznetsova, P. Berdonosov, V. Dolgikh, K. Zakharov, and A. Vasiliev, “Longitudinal magnon, inversion breaking and magnetic instabilities in the pseudo-Kagome francisites Cu3Bi(SeO3)2O2X with X=Br, Cl”, arXiv:1604.04249.
[46] K. H. Miller, P. W. Stephens, C. Martin, E. Constable, R. A. Lewis, H. Berger, G. L. Carr, and D. B. Tanner, “Infrared phonon anomaly and magnetic excitations in single-crystal Cu3Bi(SeO3)2O2Cl”, Phys. Rev. B 86, 174104 (2012).
[47] Z. Wang, N. Qureshi, S. Yasin, A. Mukhin, E. Ressouche, S. Zherlitsyn, Y. Skourski, J. Geshev, V. Ivanov, M. Gospodinov, and V. Skumryev, “Magnetoelectric effect and phase transitions in CuO in external magnetic fields”, Nat. Commun. 7, 10295 (2016).
[48] Y. Tokunaga, S. Iguchi, T. Arima, and Y. Tokura, “Magnetic-field-induced ferroelectric state in DyFeO3”, Phys. Rev. Lett. 101, 097205 (2008).
[49] J. Hwang, E. S. Choi, H. D. Zhou, J. Lu, and P. Schlottmann, “Magnetoelectric effect in NdCrTiO5” , Phys. Rev. B 85, 024415 (2012).
[50] 楊鴻昌,“最敏感的感測元件SQUID及前瞻性應用”, 物理雙月刊 24, 652 (2002).
[51] H. M. Rietveld, “A profile refinement method for nuclear and magnetic structure”, J. Appl. Crystallogr. 2, 65 (1969).
[52] R. J. Hill and I. C. Madsen, “Data collection strategies for constant wavelength rietveld analysis”, Powder Diffr. 2, 146 (1987).
[53] R. J. Hill and C. J. Howard, “Peak shape variation in fixed-wavelength neutron powder diffraction and its effect on structural parameters obtained by Rietveld analysis”, J. Appl. Crystallogr. 18, 173 (1985).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code