Responsive image
博碩士論文 etd-0514118-163255 詳細資訊
Title page for etd-0514118-163255
論文名稱
Title
在螺旋相位調制共振腔中利用同調合併多次馳返幾何模態産生連續式渦旋雷射光
Continuous wave optical vortices by coherent superposition of off-axis multiple-pass geometric mode in optical resonator with an intra-cavity spiral phase plate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-16
繳交日期
Date of Submission
2018-07-25
關鍵字
Keywords
multi-pass transverse模態、偏斜的V型傳播軌跡、光學漩渦、螺旋相位板、軌道角動量、相位鎖模
multi-pass transverse mode, phase-locked, optical vortex, orbital angular momentum, spiral phase plate, skewed V-shaped trajectories
統計
Statistics
本論文已被瀏覽 5674 次,被下載 468
The thesis/dissertation has been browsed 5674 times, has been downloaded 468 times.
中文摘要
光學漩渦(Optical vortex)在中心具有相位基點,有著環形結構,光束內部光子還帶有軌道角動量(Orbital angular momentum)。在近年來雷射應用與物理研究有備受矚目,在生醫、顯微鏡、顆粒處理、天文學與光通訊上有應用的方面。有許多方式建構光學漩渦,可簡單分為腔內或腔外激發出光束,利用π ⁄ 2 轉換器、全相片、q-plate、螺旋相位板等等來激發出光學漩渦,但至今仍沒有一個有效轉換光束的方法。
本研究將提出 2-fold 簡併型渦流雷射,架構為接近半球型共振腔(near hemi-spherical resonator)直接由腔內產生高階OV。首先在沒有腔內SPP的情況下,可以利用泵浦光束故意偏離腔軸的方式激發雷射晶體,產生拉蓋爾高斯模式的OV,其拓撲電荷(TC)為1且符號(正或負)為隨機出現,並且容易跳動。此外,我們利用錐狀透鏡對泵浦光束進行整形,則可以產生簡併態的高階LG光束。然而其相位結構為不穩定。當引入腔內SPP時,單次馳返的拉蓋爾高斯模式無法存在於這樣的共振腔中。共振腔支持的模態為經兩次馳返並通過SPP調製的V形軌道的光束,此模態為一多次馳返橫向模式(MPT模式)。OV光束在本渦流諧振器中產生的是鎖相MPT模式的疊加而不是LG模式,且OV的拓撲電荷與SPP的拓撲電荷(TC)相同。產生鎖相的原因為這些MPT模態在雷射晶體中具有高度重疊並且發生強烈的耦合,經過受激發射過程,可以使共振的光束之間的相位關系固定,其相位關係相位結構遵循Kuramoto模型。在實驗中當腔內SPP拓撲電荷是正1時,產生的渦旋光束前方正形成之拓撲電荷為正1,而在向後方的拓撲電荷是0。改置入拓撲電荷為正2的SPP,則激光器渦旋光束前方正形成之拓撲電荷為正1,而在向後方的拓撲電荷是負1,雖然未如預期產生拓撲電荷為正2的光學漩渦,這些OV具有穩定的相位結構。推測是由於拓撲電荷為正2的光學漩渦不符合最低能量條件。
Abstract
Optical vortex (OV) is more than a beam of donut-shaped intensity profile. With phase singularities in the center, OVs thus carry orbital angular momentum (OAM) in the photons within which distinguishes OV beams from vector beams of radail or azimuthal polarizations. The unique property of OV beam have attracted growing attentions due to the wide range of promising applications including biomedical Science, microscopy, particle manipulation, astronomy and cosmology and optical communications. Although a number of techniques are devised to generate OV with helical wavefront by beam conversion, such as π ⁄ 2 conversion, holograms, anisotropic media (q-plate), spiral phase plate, but not one of these approaches achieve a satisfactory conversion efficiency and beam quality. This work proposes to use a near hemi-spherical resonator of 2-fold degeneracy for the direct generation of high order OV without and with intracavity spiral phase element, for example SPP(charges), for direct high azimuthal order OV excitation.
Without intra-cavity SPP, OV in the form of Laguerre Gaussian mode of topological charge (TC) with undetermined sign can be generated as the pumping beam is deliberately off-set from the cavity axis. Moreover, by shaping the pump beam with an axicon lens, degenerate high order LG beams are experimentally demonstrated with unstable phase structure.
When an intra-cavity SPP is introduced, single pass transverse verse mode such as LG modes are forbiden. In such a cavity any one of the beamlets inside retraces itself twice to complete a closed orbital following a V-shaped trajectories, and beamlet is modulated in by the SPP. This cavity therefore support the oscillation of multi-pass transverse mode (MPT mode). The OV beam created in the proposed vortex resonator is the superposition of phase-locked MPT modes instead of LG modes and will thus mimic the topological charge (TC) of the SPP. For the MPT modes following the closed v-shaped orbitals, they overlap and are strongly coupled in the laser crystal as a result of stimulated emission process. When the intra-cavity SPP is of a positive unit TC, the generated vortex beam carries the positive unit TC in the forward direction while zero TC in the backward direction. Replacing the SPP of TC number of 2, the laser emits vortex beam of a positive unit TC in the forward direction and a negative unit TC in the backward direction. It is believed the phase structure of the OV beam follows the Kuramoto model with the minimum energy criterion.
目次 Table of Contents
中文論文審定書 i
英文論文審定書 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xiv
第一章 緒論 1
1-1 光學漩渦簡介 1
1-2 文獻回顧 4
1-2-1 Hermite-Gauss轉換至Laguerre-Gaussian 4
1-2-2 q-plate 產生高階Poincaré sphere 光束 6
1-2-3空間光調變器置入共振腔調變光場 8
1-2-4內部環形共振腔產生渦流光束 10
1-2-5晶體為增益介質輸出環形光場 12
1-2-6螺旋相位元件產生渦流光束 15
1-3 研究動機 19
1-4論文架構 22
第二章、簡易簡併行雷射共振腔 23
2-1光線追跡法分析共振腔與Laguerre-Gaussian分析 23
2-2產生渦流雷射材料介紹 28
2-2-1泵浦光源 28
2-2-2準直聚焦透鏡組與錐狀透鏡 30
2-2-3增益介質之晶體特性 32
2-2-4螺旋相位調變元件 37
2-3簡併型共振腔介紹與激發出高斯光束 39
2-3-1螺旋相位板放置腔外調變之干涉分析 40
2-4結果與討論 42
2-4-1簡併型共振腔實驗架構 42
2-4-1-1、光場相位干涉特性分析 43
2-4-2環形泵浦之簡併型共振腔實驗架構 45
2-4-2-1光場分佈之分析 46
2-4-2-2相位干涉特性分析 47
2-2-4-3光束發散特性分析 49
第三章、2-fold高拓樸電荷數簡併型渦流雷射 50
3-1簡併型共振腔內放置螺旋相位板之光束傳波模型 50
3-2簡併型共振腔在腔內放置調變元件架構圖 51
3-2-1驗證渦流共振腔光束傳播軌跡 52
3-2-1-1光束間的同調性驗證之分析 54
3-2-2相位干涉與光譜的分析 56
3-2-3光束發散特性 58
3-2-4高拓樸電荷數之渦流雷射輸出結果 59
3-2-5光場穩定度測試 60
3-3L型共振腔設計圖並驗證高拓樸電荷數之光學漩渦 64
3-3-1前後端輸出光場進行相位干涉分析 66
3-3-3遮蔽軌跡光束觀察相位分析與相位穩定度 68
3-3-3光束發散特性分析 70
3-3-4不同拓樸電荷數產生渦流光束輸出結果 70
3-4結果分析與討論 72
3-4-1不同腔長在腔內調變光學漩渦 72
3-4-2相位干涉之分析 73
3-4-3光束發散特性 74
第四章、結論與未來展望 75
4-1結論 75
4-2未來展望 76
參考文獻 77
參考文獻 References
[1] Nye, J. F., & Berry, M. V.(1974, January). Dislocations in wave trains. InProceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1974, vol.336, no.1605 , pp.165-190.
[2] Tamm, C., & Weiss, C. O.(1990). Bistability and optical switching of spatial patterns in a laser. JOSA B, vol. 7, no.6,pp. 1034-1038,1990.
[3] Bazhenov, V.Y., Vasnetov, M.V., & Soskin,M.S.(1990). Laser beams with screw dislocations in their wavefronts. Jet Lett, vol. 52, no.8, pp. 429-431,1990.
[4] Allen, L., Beijersbergen, M.W., Spreeuw,R.J.C,&Woerdman, J.P.(1992). Orbital angular momentum of light and the transformation of Laguerrre-Gaussian laser modes. Physical Review A, vol.45, no. 11.p. 8185,1992.
[5] Qiwen, Z.(2009).Cylindrical vector beams: from mathematical concepts to applications. Advances in optics and Photonics, vol. 1,no.1,pp.1-57.2009.
[6] Beijersbergen, M. W., Allen, L.,Van der Veen, H. E. L. O.,& Woerdman, J. P.(1993).Astigmatic laser mode converters and transfer of orbital angular momentum. Optics communications, vol. 96, no.11, p. 8185. 1992.
[7] Vickers, J., Burch, M., Vyas, R., & Singh. S.(2008).Phase and interference properties of optical vortex beams. JOSA A, vol.25,no.3,pp.823-827.
[8] Naidoo, D., Roux, F.S., Dudley, A., Litvin, I., Piccirillo, B., Marrucci, L.,& Forbes, A.(2016).Controlled generation of higher-order Poincaré sphere beams from a laser. Nature Photonics, vol. 10, no. 5,pp.327-332.
[9] Ngcobo, S., Litvin, I., Burger, L.,& Forbers, A. (2013). A digital laser for on-demand laser modes. nature communications, vol. 4,2013.
[10] Siegman, A. E.(1973). An antiresonant ring interferometer for coupled laser cavities, laser output coupling, mode locking, and cavity dumping. IEEE J. Quant. Electron.9(2).
[11] Kerridge, W. R., & Damzen, M. J. (2017). Vortex mode generation from coupled anti-resonant ring lasers. Laser Congress(ASSL,LAC). ATu1A.
[12] Kim, J.& Clarkson, W. (2013). Selective generation of Laguerre–Gaussian (LG0n) mode output in a diode-laser pumped Nd:YAG laser. Optics letters, vol. 39, no.13, pp.3903-3906.
[13] Lin, D., Clarkson, W. (2014). Controlling the handedness of directly excited Laguerre–Gaussian modes in a solid-state laser. Optics letters, vol. 39, no.13, pp.3903-3906, 2014.
[14] Kim, D., & Kim, J.(2015). Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser .Optics letters, vol.40, no.3,pp.399-402.
[15] Oron, R., Danziger, Y., Davidson, N., Friesem, A. A., & Hasman, E.(1999).Laser mode discrimination with intra-cavity spiral phase elements. Optics communications, vol.169, no. 1, pp.115-121, 1999.
[16] Oron, R., Davidson, N., Friesem, A. A., & Hasman, E.(2000) Efficient formation of pure helical laser beams. Optics communications, vol.182, no.1 , pp.205-208.
[17] Ishikawa-Ankerhold, H.C., Ankerhold, R., & Drummen, G. P.(2012). Advanced -fluorescence microscopy techniques—Frap, Flip,Flap, Fret and flim. Molecules, vol.17, no. 4, pp.4047-4132.
[18] Askin, A., Dziedic, J. M., Bjorlholm, J. E., & Chu, S. (1986). Observation of a single-beam gradient force optical trap for dielectric particles. Optics letters, vol.11, no.5, pp.288-290.
[19] Foo, G., Palacios, D.M., &Swartzlander, G.a.(2005). Optical vortex coronagraph. Optics letters, vol.30, no.24, pp.3308-3310.
[20] Boffi, P., Martelli, P., Gatto, A., & Martinelli, M. (2013). Mode-division multiplexing in fibre-optic communications based on orbital angular momentum. Journal of Optics, vol.15, no.7, p.075403.
[21] Wright, F. J. (1979). Wavefront dislocations and their analysis using catastrophe theory. Structural stability in physics(pp.141-156). Springer Berlin Heidelberg.
[22] Malik, M., O’Sullivan, M., Rodenburg, B., Mirhosseini, M., Leach, J., Lavery, M. P., ... & Boyd, R. W. (2012). Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Optics Express, vol.20, no.12, pp.13195-13200.
[23] Huang., H., Xie., G., Yan., Y., Ahmed, N., Ren, Y. Yue, Y. Rogawski., D., Willner., M. J., Erkmen., B. I. Birnbaum., K. M., Dolinar., S. J. Lavery., M. P. J. Padgett, M. J. Tur, M. …& Willner., A. E.(2014) 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Optics & Photonics Topics, vol.39, Issue2, pp.197-200.
[24] Ramsay, I., & Degnan, J.(1970). A ray analysis of optical resonators formed by two spherical mirrors. Applied optics, vol.9 , no.2 ,pp.385-398.
[25] Chen., Y. F., Jiang., C. H., Lan., Y. P., & Huang., K. F. (2004). Wave representation of geometrical laser beam trajectories in a hemiconfocal cavity. Phys. Rev. A. vol.69.053807.
[26] Abramowitz, M., & Stegun, I.(1972). Handbook of Mathematical Functions (New York). NY: Dover publication.
[27]葉嘉祺”在具有腔內螺旋相位調制元件之簡併型雷射共振腔中產生高品質連續是渦流光束”國立中山大學光電工程學系,碩士論文 2017年7月。
[28] Geusic, J. E., Marcos, H. M., Van. Uitert., & L. G.(1964) .Laser oscillations in nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets. Applied Physics Letters, vol.4 no.10, p182.
[29] Beijersbergen, M., Coerwinkel, R., Kristensen. M.,& Woerdman., J.(1994). Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications, vol.112, no.5-6, pp.321-327.
[30] Nixon, M., Ronen, A., Friesem, A., & Davidson, N.(2013). Observing geometric frustration with thousands of coupled lasers. Physical review letters, vol.110 , no.18, p.184102.
[31] Lin., Y. Y., Yeh., C.C., Lee., H.C. Yang., S.L., Tu., J. H., & Tang., C. P. (2018). Optical vortex lasers by the coherent superposition of off-axis multiple-pass transverse modes in an azimuthal symmetry breaking laser resonator. Journal of Optics, vol.20.no.7, p.075203
[32] Eggleston, M., Godat, T., Munro, E., Alonso, M., A., Shi, H. & Bhattacharya, M.,(2013). Ray transfer matrix for a spiral phase plate. JOSA A, vol.30, no. 12, pp.2526-2530.
[33] Nixon, M., Ronen, E., Friesem, A., A.,& Davidson., N.(2013). Observing geometric frustration with thousands of coupled lasers. Physical review letters, vol.110, no. 18, p.184102.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code