Responsive image
博碩士論文 etd-0515113-115816 詳細資訊
Title page for etd-0515113-115816
論文名稱
Title
具懸浮橋式結構之高效能微型熱電發電/致冷元件開發
Development of High Performance Micro Thermoelectric Generator/Cooler with Suspending Bridge-type Structure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-05-18
繳交日期
Date of Submission
2013-06-15
關鍵字
Keywords
熱電偶、懸浮橋式結構之微型熱電發電元件、微機電製程技術、面型微加工技術、懸浮橋式結構之微型熱電發致冷元件
Surface micromachining technique, Suspending bridge type micro thermoelectric generator (μ-TEG), Thermocouple, bridge type micro thermoelectric cooler (μ-TECs), serial/parallel-connected thermocouple
統計
Statistics
本論文已被瀏覽 5753 次,被下載 0
The thesis/dissertation has been browsed 5753 times, has been downloaded 0 times.
中文摘要
近年來可攜式電子產品在隨著半導體製程技術日新月異的進步下,不斷地追求更多工的性能與更輕薄短小的外觀設計,然而在功能增加與體積縮小的同時,也產生了高功率的消耗與容易過熱的問題。而微型熱電元件可利用溫差發電以及直流電致冷等兩種功能,除了具有體積小、無污染、低噪音與高可靠性等優點,且由於元件構造簡單,可藉著微機電製程技術將其微小化以進而應用於各種電子產品中,作為可攜式電源或者局部散熱器等之用。
微型熱電元件是由數以千計的熱電偶(thermocouple)所組成,有發電與致冷兩種功能;而熱電偶一般是由P型與N型熱電材料作為熱電腳(thermolegs),並以金屬作為連接P/N型熱電腳之兩端電極。當在熱電腳兩端電極分別施加冷熱溫差時,元件便可利用熱電效應將此溫差轉換成可用之電源,稱為熱電發電元件;或者在元件正負端施加電壓使電流流經此元件,便可使其上下兩端電極產生吸熱和散熱之效果,稱為熱電致冷元件。
若依熱點腳的結構來劃分,傳統的微型熱電元件可分為垂直式結構與水平式結構兩種,平面式結構之微型熱電元件是利用薄膜製程於基板上沉積微米厚度之熱電薄膜,並以黃光微影/蝕刻製程技術將其定義成所需尺寸規格之熱電腳,其優點為熱電腳可經由光罩設計而輕易達到所需之長度,以避免因熱回流現象造成兩端溫差達成熱平衡而導致元件發電或致冷能力下降的問題,但缺點是熱流不僅會流經熱電偶結構也會藉由基板而散逸,造成不必要的能量損失並降低元件的熱電轉換效率。而垂直式結構之微型熱電元件其熱電腳是以電鍍之方式於基板上垂直成長柱狀結構之熱電腳,故熱能僅透過熱電偶作傳遞,其熱能量損失較小;但缺點是若要提升熱溫差值則必須增加熱電腳之高度,但同時也增加了製程上的難度,且製程也難以和傳統IC製程相符合。
有鑑於此,本論文利用微機電製程技術中之面型微加工技術,以二氧化矽薄膜作為元件之犧牲層結構,並以低壓化學氣相沉積技術(Low Pressure Chemical Vapor Deposition, CVD)沉積低應力之多晶矽薄膜於二氧化矽犧牲層上,以離子擴散佈值(Ion implantation)技術將多晶矽薄膜定義為N/P型高優質熱電薄膜,最後再由濕式蝕刻方式蝕刻犧牲層來釋放元件結構,製作出創新式懸浮橋式結構之微型熱電元件,可讓熱電偶僅靠兩端接觸基板部位作為支撐,成功讓熱腳與上端金屬懸浮於基版上,如此一來熱能便可直接流經懸浮之橋式熱電偶結構,而不至於流失至基板當中;此外本研究可精確控制熱電腳懸浮長度於100~200微米而不至於塌陷或黏附基板,因此不僅同時擁有平面式與垂直式之微型熱電轉換元件之優點,也一併改善兩者之缺點。本論文所開發之懸浮橋式結構之熱電元件與基板間之懸浮高度為2.5μm,包含2,160 ~ 16,128對之熱電偶;在實驗室的製造環境下,其製程良率高達75%,而主要的製程步驟一共包含七次薄膜沉積與五次黃光微影/蝕刻製程。
經由本研究自行開發之量測系統以及商用高放大倍率熱像儀之量測顯示,本論文所提出之微型熱電發電元件在基板與空氣溫度為10°C的環境下,其冷端與熱端的溫差為4.11°C,每平方公分最大的開路電壓值可達到2.99 V,並產生1.21mW之輸出功率;而在微型熱電致冷器元件散熱效果方面,在驅動電壓為9伏特的情況下,其上下金屬電極最大溫差值可增加0.81°C。根據此熱電特性,本論文所開發之微型熱電發電元件可應用於可攜式電子產品之中,將元件冷熱兩端之溫差轉換成可用之電能輸出,可提供一部分之行動能源;另外所開發之微型致冷元件也非常適合應用於微型電子元件或光電元件中作為局部散熱器之功用,可以解決器材因高熱而衍生的種種問題。
Abstract
This dissertation describes the development of two novel suspension bridge-type micro thermoelectric devices: micro thermoelectric generator (μ-TEG) and micro thermoelectric cooler (μ-TECs) using surface micromachining techniques. The presented micro thermoelectric devices are combined by suspension bridge-type thermocouple; each thermocouple is constructed by a pair of n/p bridge-type polysilicon thin-film thermolegs and a pair of cold- and hot-side Cr/Au metal plane. In addition, a novel serial/parallel-connected thermocouple is designed to enhance the temperature difference and can gain a large output power and cooling performance. The main fabrication processes adopted in this research are including seven thin-film deposition processes and five photolithography processes. The implemented suspension bridge type thermopile has a 2.5 μm-height air-gap separation from substrate and having 2,160 ~ 16,128 thermocouples in one centimeter square chip area.
The measured maximum temperature difference between the cold/hot sides of the proposed μ-TEG is about 4.11 °C, a maximum open-circuit voltage of 2.99 V/cm2 and output power of 1.21 mW/cm2 can be obtained. Furthermore, a 0.81 °C maximum increase temperature difference can be achieved in the bridge-typeμ-TEC with serial/parallel-connected thermocouples under 9 V driving voltage.
For thermoelectric generator application, by integrating the tens of thousands of micro-thermocouple in a centimeter square area, the temperature difference between the hot plane and cold plane of the presented μ-TEG can be converted into a useful electrical power. The thermoelectrically transferred output electrical power is suitable for recharging various mobile communication products. For thermoelectric cooler application, the bridge-type the cross-section area to length (A/L) of polysilicon thin-bridges was minimized to reduce its thermal conductance, can achieve a large temperature difference between hot/cold-side and are suitable for localized hot-spot cooling applications.
目次 Table of Contents
論文審定書 I
誌謝 III
中文摘要 V
Abstract VII
Contents IX
List of Figures XII
List of Tables XVIII
Chapter 1 INTRODUCTION 1
1.1 Review of Micro Thermoelectric Generators 1
(a) Vertical-Type Thermocouple 6
(b) Lateral-Type Thermocouple 9
1.2 Review of Micro Thermoelectric Coolers 15
1.3 Motivations and Objectives 21
1.4 Overview of Dissertation 22
Chapter 2 THEORY DESCRIPTION 23
2.1 Thermoelectric effect 23
2.1.1 Seebeck Effect 24
2.1.2 Peltier Effect 25
2.1.3 Thomson Effect 28
2.2 Thin-film Thermoelectric Material 29
2.3 Thermoelectric properties 33
2.3.1 Thermoelectric Generation and the figure-of-Merit 35
2.3.2 Thermoelectric Refrigeration and the Coefficient of Performance 39
2.3.3 Basic Unit of Thermoelectric Devices 40
Chapter 3 DEVELOPMENT OF MICRO THERMOELECTRIC GENERATORS WITH BRIDGE-TYPE THERMOCOUPLE 42
3.1 Theoretical Formulation of Thermocouple 42
3.2 Optimization of the Suspending-Bridge Type Thermocouple 47
3.3 Fabrication of µ-TEG with Bridge-Type Thermoelectric Generator/Cooler 50
3.4 Measurement System 55
Chapter 4 RESULTS AND DISCUSSION 57
4.1 Thermoelectric Characteristic of Polysilicon Thin-film 57
4.2 Microstructural Inspection by SEM 58
4.3 Thermoelectric Performances of Bridge-Type μ-TEG Device 62
4.3.1 Environment Conditions of Measurement System 62
4.3.2 Conversion Performance of Bridge-Type μ-TEG Device 70
4.3 Thermoelectric Performances of Bridge-Type μ-TEC Device 75
Chapter 5 CONCLUSION AND FUTURE WORK 83
5.2 Future Works 85
Reference 86
參考文獻 References
[1] K. Itoigawa, H. Ueno, M. Shiozaki, T. Toriyama, and S. Sugiyama, "Fabrication of flexible thermopile generator", J. Micromech. Microeng. 15, 233-238 (2005).
[2] G. J. Snyder, J. R. Lim, C. K. Huang, and J. P. Fleurial, "Thermoelectric microdevice fabricated by a MEMS-like electrochemical process," Nature Mater. 2, 528-531 (2003).
[3] M. Strasser, R. Aigner, C. Lauterbach, T. F. Sturm, M. Franosch, and G. Wachutka, "Micromachined CMOS thermoelectric generators as on-chip power supply," Sens. Actuators A 14, 62-370 (2004).
[4] H. Glosch, M. Ashauer, U. Pfeiffer, and W. Lang, “A thermoelectric converter for energy supply,” Sens. Actuators A 74, 246-250 (1999).
[5] D. D. L. Wijngaards, E. Cretu, S. H. Kong, and R. F. Wolffenbuttel, “Modeling of integrated Peltier elements,” Proc. Modeling and Simulation of Microsystems 2000, 652-655 (2000).
[6] T. Toriyama, M. Yajima, and S. Sugiyama, “Thermoelectric micro power generator utilizing self-standing polysilicon-metal thermopile,” Tech Dig. MEMS 2001, 562-565 (2001).
[7] W. Wang, F. Jla, J. Zhu, and J. Zhang, “A new type of micro-thermoelectric power generator fabricated by nanowire array thermoelectric material,” Tech Dig. Thermoelectrics 2003, 682-684 (2003).
[8] T. Huesgen, P. Woias, and N. Kockmann, “Design and fabrication of MEMS thermoelectric generators with high temperature efficiency,” Sens. Actuators A 145/146(1/2), 423-429 (2008).
[9] H. Böttner, J. Nurnus, A. Gavrikov, G. Kühner, M. Jägle, C. Künzel, D. Eberhard, G. Plescher, A. Schubert, and K. H. Schlereth, “New thermoelectric components using microsystem technologies,” J. Microelectromech. Syst. 13(3), 414-420 (2004).
[10] S. Hasebe, J. Ogawa, M. Shiozaki, T. Toriyama, and S. Sugiyama, “Polymer based smart flexible thermopile for power generation,” Tech Dig. MEMS 2001, 689-692 (2004).
[11] N. Sato, H. Ishii, M. Urano, T. Sakata, J. Terada, H. Morimura, S. Shigematsu, K. Kudou, T. Kamei, and K. Machida, “Novel MEMS power generator with integrated thermoelectric and vibrational devices,” Tech Dig. Transducers 05, 295-298 (2005).
[12] W. Glatz, S. Muntwyler, and C. Hierold, “Optimization and fabrication of thick flexible polymer based micro thermoelectric generator,” Sens. Actuators A 132, 337-345 (2006).
[13] M. Shiozaki, S. Sugiyama, N. Watanabe, H. Ueno, and K. Itoigawa, “Flexible thin-film BiTe thermopile for room temperature power generation temperature power generation,” Tech Dig. MEMS 2006, 946-949 (2006).
[14] Z. Wang, V. Leonov, P. Fiorini, and C. Van Hoof, “Micromachined polycrystalline SiGe-based thermopiles for micropower generation on human body,” Tech Dig. DTIP 2007, 911-914 (2007).
[15] W. Glatz and C. Hierold, “Flexible micro thermoelectric generator,” Tech Dig. MEMS 2007, 89-92 (2007).
[16] E. Schwyter, W. Glatz, L. Durrer, and C. Hierold, “Flexible micro thermoelectric generator based on electroplated Bi2+xTe3-x,” Tech Dig. DTIP 2008, 46-48 (2008).
[17] W. Glatz, E. Schwyter, L. Durrer, and C. Hierold, “Bi2Te3-based flexible micro thermoelectric generator with optimized design,” J. Microelectromech. Syst. 18(3), 763-772 (2009).
[18] V. Leonov, P. Fiorini, S. Sedky, T. Torfs, and C. Van Hoof, “Thermoelectric MEMS generators as a power supply for a body area network,” Tech Dig. Transducers 05, 291-294 (2005).
[19] J. Xie and C. Lee, “Design and modeling of vacuum packaged MEMS thermoelectric power generator using heat dissipation path,” Tech Dig. ICSET 2008, 542-545 (2008).
[20] C. Lee and J. Xie, “Development of vacuum packaged CMOS thermoelectric energy harvester,” Proc. NEMS 2009, 803-807 (2009).
[21] J. Xie, C. Lee, and H. Feng, “Design, fabrication, and characterization of CMOS MEMS-based thermoelectric power generators,” J. Microelectromech. Syst. 19(2), 317-324 (2010).
[22] P. H. Kao, P. J. Shih, C. L. Dai and M. C. Liu, “Fabrication and characterization of CMOS-MEMS thermoelectric micro generators,” Sensors 10, 1315-1325 (2010).
[23] T. Starner, J. A. Paradiso, and T. Starner, “Low Power Electronics Design,” CRC Press Inc., Switzerland, 215-218 (2004).
[24] R.G. Egbert, M.R. Harvey, and B.P. Otis, “Microscale Silicon Thermoelectric Generator with Low Impedance for Energy Harvesting,” Proc. ETC 2007, 219-221 (2007).
[25] R. Marlow, and E. Burke, “Module design and fabrication in CRC Handbook of Thermoelectrics,” CRC Press Inc., Switzerland, 597-598 (1995).
[26] D. M. Rowe, G. Min, and F. Vo¨lklein, "A high performance thin film thermoelectric cooler," Proc. IECEC, 24-26 (1998).
[27] F. Vo¨lklein, G. Min, and D. M., “Modelling of a microelectromechanical thermoelectric cooler,” Sens. Actuators A 75, 95-101 (1999).
[28] D. J. Yao, C. J. Kim, G. Chen, J. P. Fleurial, and H. B. Lyon, “Spot Cooling Using Thermoelectric,” Proc. ICT 75, 95-101 (2001).
[29] D. J. Yao, “In-plane MEMS thermoelectric microcooler,” Ph.D. dissertation of UCLA, USA (2001).
[30] L. W. da Silva, , M. Kaviany, , A. DeHennis, , and J. S. Dyck, “Thermoelectric Characteristics of the Thermopile Sensors with Variations of the Width and the Thickness of the Electrodeposited Bismuth-Telluride and Antimony-Telluride Thin Films,” Proc. ICT., 665-673 (2003).
[31] J. R. Lim, G. J. Snyder, C. K. Huang, J. A. Herman, M. A. Ryan, and J. P. Fleurial, “Interfaces in Bulk Thermoelectric Materials,” Proc. ICT., 535-538 (2002)
[32] S. Diliberto, S. Michel, C. Boulanger, J. M. Lecuire, M. Jägle, S. Drost, and H. Böttner, “A technology for a device prototyping based on electrodeposited thermoelectric V-VI layers,” Proc. ICT., 661-664 (2003)
[33] H. Bottner, “Thermoelectric micro devices: current state, recent developments and future aspects for technological progress and applications,” Proc. ICT., 511-518 (2002).
[34] S. Dilhaire, Y. Ezzahri, S. Grauby, W. Claeys, J. Christofferson, Y. Zhang and A. Shakouri, “Thermal and Thermomechanical Study of Micro-refrigerators on a Chip based on Semiconductor Heterostructures”, Proc. ICT., France, 17-21 (2003).
[35] A. Jacquot, W. L. Liu, G. Chen, J.P. Fleurial, “Improvements of on-membrane method for thin-film thermal conductivity and emissivity measurements,” Proc. ICT. 353-356 (2002).
[36] M. Strasser, R. Aigner, C. Lauterbach, T. F. Sturm, M. Franosch, and G. Wachutka, “Micromachined CMOS thermoelectric generators as on-chip power supply,” Proc. Transducers ’03, Boston, 45-48 (2003).
[37] P. D. Mitcheson, E. M. Yeatman, G. K. Rao, “Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices,” Proc. IEEE., 1457-1486 (2008)
[38] Starner, T., Paradiso, J.A., and Starner, T. "Human Generated Power for Mobile Electronics,” CRC Press Inc., Boca Raton (2004).
[39] H. Bo¨ttner, “Thermoelectric micro devices: Current state, recent developments and future aspects for technological progress and applications,” Proc. 21st Int., 511-518 (2002).
[40] G.J. Snyder, J.R. Lim, C.K. Huang, and J.P. Fleurial, “Thermoelectric microdevice fabricated by a MEMS-like electrochemical process,” Nature Mater. Lett. 2, 528-531 (2003).
[41] L.W. da Silva, M. Kaviany, “Fabrication and measured performance of a first-generation microthermoelectric cooler,” J. Microelectromech. Syst. 14, 1110-1117 (2005).
[42] Y. Zhang, J. Christofferson, A. Shakouri, G. Zeng, J.E. Bowers, and E.T. Croke, “On-chip high speed localized cooling using superlattice microrefrigerators,” IEEE Trans. 29, 395-401 (2006).
[43] I. Y. Huang, J. C. Lin, K. D. She, M. C. Li, J. H. Chen, and J. S. Kuo, “Development of low-cost micro-thermoelectric coolers utilizing MEMS technology,” Sens. Actuators A 148, 176-185 (2008).
[44] D. M. Rowe, “Thermoelectrics Handbook, Macro to Nano,” CRC Press Inc., (2005).
[45] B. S. Schaevitz, “A MEMS Thermoelectric Generator,” Master thesis of Massachusetts Institute of Technology, (2000)
[46] Thermo Life Energy Corp. [Online]. Available: www.PowerByThermoLife.com.
[47] V. Leonov, T. Torfs, P. Fiorini, and C. V. Hoof, “Thermoelectric converters of human warmth for self-powered wireless sensor nodes,” IEEE Sensors J. 5, 650-657 (2007)
[48] H. Bottner, J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle, C. Kunzel, D. Eberhard, G. Plescher, A. Schuber, and K. H. Schlerth, “New thermoelectric components using microsystem technologies,” J. Microelectromech. Syst., 13, 414-420 (2004).
[49] P. M. Chaikin, V. Z. Kresin and W. A. Little, “An Introduction to Thermopower for those who might want to use it to study Organic Conductors and Superconductors," Organic Superconductivity ed, New York, (1990).
[50] R. C. Yu, L. Chiang, R. Upasani, and P. M. Chaikin, “Magnetothermopower of (TMTSF)2ClO4 and a New High Field Phase," Phys. Rev. Lett. 65, 2458 (1990).
[51] D.K.C Mac Donald, “An Introduction to Principles,” John Wiley & Sons, New York (1962).
[52] A. F. Ioffe, “Semiconductor Thermoelements and Thermoelectric Cooling,” Infosearch, London (1957).
[53] G. Min and D. M. Rowe, “Optimization of thermoelectric module geometry for waste heat electric power generation,” J. Power Sources 38, 253-259 (1992).
[54] G. Min and D. M. Rowe, “Modified model for calculating the power output of thermoelectric generator,” Proc. YS, China, 130-133 (1992).
[55] G. Min and D. M. Rowe, “Peltier device as a generators in CRC Handbook of Thermoelectric,” CRC Press Inc., 479-488 (1995).
[56] D. M. Rowe, G. Min, and S. G. K. Williams, “Improving the power output and conversion efficiency of Peltier modules when used as generators,” Proc. ICT., 291-294 (1995).
[57] D. M. Rowe and G. Min, “Design theory of thermoelectric modules for electrical power generation,” IEE Proc.-Sci. Meas. Technol 143(6), 351-356 (1996)
[58] D. M. Rowe and G. Min, “Evaluation of thermoelectric modules for power generation,” J. Power Sources 73, 193-198 (1998).
[59] G. Min and D. M. Rowe, “Symbiotic application of thermoelectric conversion for fluid preheating/power generation, Energy Convers,” Manage., 43, 221-228 (2002).
[60] G. Min, D. M. Rowe, O. Assis, and S. G. K. Williams, “Determining the electrical and thermal contact resistances of a thermoelectric module,” 11th Proc. ICT, 210-212 (1992).
[61] G. Min and D. M. Rowe, “Recent concepts in thermoelectric power generation,” 14th Proc. ICT, Long Beach, 365-374 (2002).
[62] I. Y. Huang, G. M. Chen and T. Y. Wu, “Development of Micro Thermoelectric Generators Using Integrated Suspending Bridge Type Polysilicon Thin-film Thermopiles,” J. Micro/Nanolith. MEMS MOEMS. 12(1), 1-10 (2013)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.226.187.199
論文開放下載的時間是 校外不公開

Your IP address is 18.226.187.199
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code