Responsive image
博碩士論文 etd-0515115-151115 詳細資訊
Title page for etd-0515115-151115
論文名稱
Title
以分子動力學預測四代聚醯胺-胺樹枝狀高分子封裝金奈米粒子之熱穩定性及於不同pH環境下之結構
Prediction of Thermal Stability and the Configurations of Fourth Generation Polyamidoamine Dendrimer-Encapsulated Gold Nanoparticles under Different pH Conditions by Molecular Dynamics Simulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-10
繳交日期
Date of Submission
2015-07-23
關鍵字
Keywords
熱穩定性、擴散係數、金奈米粒子、聚醯胺-胺樹枝狀高分子、分子動力學
thermal stability, diffusion coefficient, Au nanoparticle, PAMAM dendrimer, Molecular dynamics
統計
Statistics
本論文已被瀏覽 5654 次,被下載 383
The thesis/dissertation has been browsed 5654 times, has been downloaded 383 times.
中文摘要
本研究利用分子動力學預測四代聚醯胺-胺樹枝狀高分子封裝不同尺寸金奈米粒子於乾燥及水溶液環境下之結構。為確保模擬之準確性,本研究建立一套混合勢能系統以完整描述高分子及金屬之作用能量。於乾燥環境下,我們將探討四代聚醯胺-胺樹枝狀高分子與金奈米粒子之複合結構及熱穩定性。研究結果顯示四代聚醯胺-胺樹枝狀高分子於乾燥環境下主要透過其支鏈與內部空腔結構封裝金奈米粒子,且被封裝後之金奈米粒子將具有較高的熔點。為模擬生物條件,本研究亦考慮溶劑之影響,將該複合物置於中性 (pH ~7) 及酸性 (pH ~5) 環境之水溶液中,分析其結構與擴散行為。由結果得知當四代聚醯胺-胺樹枝狀高分子於中性環境下封裝金奈米粒子時,結構將大幅收縮;於酸性條件下其結構則保持著擴張狀態。除此之外,我們也發現於中性環境下,其複合物之擴散係數較酸性環境高,具備較佳的擴散能力。透過本研究之模擬方法即可深入觀察四代聚醯胺-胺樹枝狀高分子與金奈米粒子複合物之內部結構與特性,結果可作為未來相關催化劑、生物傳感器及藥物載體之設計依據。
Abstract
Molecular dynamics (MD) simulation was carried out to investigate the structural evolutions of fourth generation polyamidoamine (G4 PAMAM) dendrimer encapsulating different size Au nanoparticles (AuNPs) in both dry and aqueous environments. To ensure the accuracy of the simulation model, a hybrid potential system was applied to describe the interactions between polymers and metals. The conformations and the thermal stability of G4 PAMAM dendrimer covering AuNPs were investigated under a dry environment. We determined that the AuNPs are covered by branched structures and the internal cavities of the G4 PAMAM dendrimers. Moreover, the melting points of the dendrimer-encapsulated AuNPs increase significantly when compared to non-encapulated nanoparticles. To simulate the biological conditions, the conformations and the diffusion behavior of G4 PAMAM encapsulated AuNPs under neutral and low pH conditions (pH ~7 and pH ~5, respectively) were also investigated for studying the effects of solution. The results show that the conformations of dendrimers become more compact when covering the AuNPs at neutral pH; however, when at low pH, the extended conformations can be observed. We also obtained the higher diffusion coefficients of these composites at neutral pH. This study helps clarify the internal conformations and characteristics of PAMAM-AuNP composites, as well as contributing to the designs of catalysts, biosensors and drug carriers.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
圖次 vii
表次 ix
符號說明 x
第一章 緒論 1
1.1 研究動機與目的 1
1.2 聚醯胺-胺樹枝狀高分子與金奈米粒子簡介 3
1.2.1 聚醯胺-胺樹枝狀高分子 (PAMAM dendrimer) 3
1.2.2 金奈米粒子 (Au nanoparticle, AuNP) 4
1.3樹枝狀高分子封裝金奈米粒子屬之文獻回顧 5
1.3.1實驗文獻 5
1.3.2模擬文獻 8
1.4 本文架構 9
第二章 模擬方法與理論介紹 10
2.1 分子動力學 10
2.1.1 CVFF力場 11
2.1.2金屬元素優化CVFF力場 13
2.1.3 Tight-Binding勢能 14
2.1.4 運動方程式 15
2.1.5 積分法則 16
2.1.6 系綜 17
2.1.7 諾斯-胡佛恆溫法 18
第三章 數值模擬方法 19
3.1 週期性邊界 19
3.2 鄰近原子表列法 20
3.2.1 截斷半徑法 20
3.2.2 維理表列法 21
3.2.3 巢室表列法 22
3.2.4 維理表列法結合巢室表列法 23
3.3 分子動力學流程圖 24
3.4 統計之參數計算 25
3.4.1 迴轉半徑 (Radius of gyration) 25
3.4.2 非球面參數 (Asphericity parameter) 26
3.4.3 徑向密度分布 (Radial density profile) 26
3.4.4 分形維度 (Fractal dimension) 27
3.4.5 平方位移 (Square displacement) 27
3.4.6 平均平方位移 (Mean square displacement) 28
3.4.7 擴散係數 (Diffusion coefficient) 28
3.4.8 斯托克斯-愛因斯坦關係 (Stokes–Einstein relation) 29
第四章 結果分析與討論 30
4.1 聚醯胺-胺樹枝狀高分子封裝金奈米粒子之物理模型 30
4.1.1 乾燥系統物理模型 30
4.1.2 水溶液系統物理模型 33
4.2 乾燥環境性質分析 39
4.2.1 平衡結構之迴轉半徑 39
4.2.2 平衡結構之非球面參數 40
4.2.3 平衡結構之徑向密度分佈 41
4.2.4 結構表面之分形維度 43
4.2.5 複合物之熱穩定性 46
4.3 水溶液環境性質分析 52
4.3.1 平衡結構之迴轉半徑 52
4.3.2 平衡結構之徑向密度分佈 54
4.3.3 聚醯胺-胺樹枝狀高分子對金奈米粒子之作用能量 61
4.3.4 複合物之擴散係數 62
第五章 結論與未來展望 65
5.1 結論 65
5.1.1 G4 PAMAM/AuNP複合物於乾燥環境下之結論 65
5.1.2 G4 PAMAM/AuNP複合物於水溶液環境下之結論 66
5.2 未來展望 67
參考文獻 68
參考文獻 References
[1] W. Z. Li, C. H. Liang, W. J. Zhou, J. S. Qiu, Z. H. Zhou, G. Q. Sun, et al., "Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells," Journal of Physical Chemistry B, vol. 107, pp. 6292-6299, 2003.
[2] X. Liu, A. Wang, X. Wang, C.-Y. Mou, and T. Zhang, "Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation," Chemical Communications, pp. 3187-3189, 2008.
[3] Z. H. Lu, G. J. Liu, H. Phillips, J. M. Hill, J. Chang, and R. A. Kydd, "Palladium nanoparticle catalyst prepared in poly(acrylic acid)-lined channels of diblock copolymer microspheres," Nano Letters, vol. 1, pp. 683-687, 2001.
[4] L. Tang, Y. Zhu, L. Xu, X. Yang, and C. Li, "Properties of dendrimer-encapsulated pt nanoparticles doped polypyrrole composite films and their electrocatalytic activity for glucose oxidation," Electroanalysis, vol. 19, pp. 1677-1682, 2007.
[5] H. Jiang, K.-S. Moon, F. Hua, and C. P. Wong, "Synthesis and thermal and wetting properties of Tin/Silver alloy nanoparticles for low melting point lead-free solders," Chemistry of Materials, vol. 19, pp. 4482-4485, 2007.
[6] Y. Cheng, A. C. Samia, J. D. Meyers, I. Panagopoulos, B. Fei, and C. Burda, "Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer," Journal of the American Chemical Society, vol. 130, pp. 10643-10647, 2008.
[7] J. Wang, D. K. Xu, A. N. Kawde, and R. Polsky, "Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization," Analytical Chemistry, vol. 73, pp. 5576-5581, 2001.
[8] P. Cherukuri, E. S. Glazer, and S. A. Curley, "Targeted hyperthermia using metal nanoparticles," Advanced Drug Delivery Reviews, vol. 62, pp. 339-345, 2010.
[9] V. S. Myers, M. G. Weir, E. V. Carino, D. F. Yancey, S. Pande, and R. M. Crooks, "Dendrimer-encapsulated nanoparticles: New synthetic and characterization methods and catalytic applications," Chemical Science, vol. 2, pp. 1632-1646, 2011.
[10] R. McCaffrey, H. Long, Y. Jin, A. Sanders, W. Park, and W. Zhang, "Template Synthesis of Gold Nanoparticles with an Organic Molecular Cage," Journal of the American Chemical Society, vol. 136, pp. 1782-1785, 2014.
[11] R. Esfand and D. A. Tomalia, "Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications," Drug Discovery Today, vol. 6, pp. 427-436, 2001.
[12] K. Esumi, R. Isono, and T. Yoshimura, "Preparation of PAMAM- and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol," Langmuir, vol. 20, pp. 237-243, 2004.
[13] T. Endo, T. Yoshimura, and K. Esumi, "Synthesis and catalytic activity of gold-silver binary nanoparticles stabilized by PAMAM dendrimer," Journal of Colloid and Interface Science, vol. 286, pp. 602-609, 2005.
[14] Y. M. Chung and H. K. Rhee, "Pt-Pd bimetallic nanoparticles encapsulated in dendrimer nanoreactor," Catalysis Letters, vol. 85, pp. 159-164, 2003.
[15] B. Hvolbaek, T. V. W. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen, and J. K. Norskov, "Catalytic activity of Au nanoparticles," Nano Today, vol. 2, pp. 14-18, 2007.
[16] K. Esumi, K. Miyamoto, and T. Yoshimura, "Comparison of PAMAM-Au and PPI-Au nanocomposites and their catalytic activity for reduction of 4-nitrophenol," Journal of Colloid and Interface Science, vol. 254, pp. 402-405, 2002.
[17] H. Li, Z. Zheng, M. Cao, and R. Cao, "Stable gold nanoparticle encapsulated in silica-dendrimers organic-inorganic hybrid composite as recyclable catalyst for oxidation of alcohol," Microporous and Mesoporous Materials, vol. 136, pp. 42-49, 2010.
[18] X. Wang, X. Cai, J. Hu, N. Shao, F. Wang, Q. Zhang, et al., "Glutathione-Triggered "Off-On" Release of Anticancer Drugs from Dendrimer-Encapsulated Gold Nanoparticles," Journal of the American Chemical Society, vol. 135, pp. 9805-9810, 2013.
[19] K. Ye, J. Qin, Z. Peng, X. Yang, L. Huang, F. Yuan, et al., "Polyethylene glycol-modified dendrimer-entrapped gold nanoparticles enhance CT imaging of blood pool in atherosclerotic mice," Nanoscale Research Letters, vol. 9, 2014.
[20] H. Liu, H. Wang, Y. Xu, M. Shen, J. Zhao, G. Zhang, et al., "Synthesis of PEGylated low generation dendrimer-entrapped gold nanoparticles for CT imaging applications," Nanoscale, vol. 6, pp. 4521-4526, 2014.
[21] T. I. N. G. Li, R. Sknepnek, R. J. Macfarlane, C. A. Mirkin, and M. O. de la Cruz, "Modeling the Crystallization of Spherical Nucleic Acid Nanoparticle Conjugates with Molecular Dynamics Simulations," Nano Letters, vol. 12, pp. 2509-2514, 2012.
[22] J. M. D. Lane and G. S. Grest, "Assembly of responsive-shape coated nanoparticles at water surfaces," Nanoscale, vol. 6, pp. 5132-5137, 2014.
[23] T. Mandal, M. V. S. Kumar, and P. K. Maiti, "DNA Assisted Self-Assembly of PAMAM Dendrimers," Journal of Physical Chemistry B, vol. 118, pp. 11805-11815, 2014.
[24] T. Mandal, C. Dasgupta, and P. K. Maiti, "Engineering Gold Nanoparticle Interaction by PAMAM Dendrimer," Journal of Physical Chemistry C, vol. 117, pp. 13627-13636, 2013.
[25] E. Buhleier, W. Wehner, and F. Vogtle, "CASCADE-CHAIN-LIKE AND NONSKID-CHAIN-LIKE SYNTHESES OF MOLECULAR CAVITY TOPOLOGIES," Synthesis-Stuttgart, pp. 155-158, 1978.
[26] D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, et al., "A NEW CLASS OF POLYMERS - STARBURST-DENDRITIC MACROMOLECULES," Polymer Journal, vol. 17, pp. 117-132, 1985.
[27] G. R. Newkome, Z. Q. Yao, G. R. Baker, and V. K. Gupta, "MICELLES .1. CASCADE MOLECULES - A NEW APPROACH TO MICELLES - A 27 -ARBOROL," Journal of Organic Chemistry, vol. 50, pp. 2003-2004, 1985.
[28] C. J. Hawker and J. M. J. Frechet, "PREPARATION OF POLYMERS WITH CONTROLLED MOLECULAR ARCHITECTURE - A NEW CONVERGENT APPROACH TO DENDRITIC MACROMOLECULES," Journal of the American Chemical Society, vol. 112, pp. 7638-7647, 1990.
[29] M. H. Kleinman, J. H. Flory, D. A. Tomalia, and N. J. Turro, "Effect of protonation and PAMAM dendrimer size on the complexation and dynamic mobility of 2-naphthol," Journal of Physical Chemistry B, vol. 104, pp. 11472-11479, 2000.
[30] Y. H. Niu, L. Sun, and R. A. Crooks, "Determination of the intrinsic proton binding constants for poly(amidoamine) dendrimers via potentiometric pH titration," Macromolecules, vol. 36, pp. 5725-5731, 2003.
[31] B. Devarakonda, R. A. Hill, and M. M. de Villiers, "The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine," International Journal of Pharmaceutics, vol. 284, pp. 133-140, 2004.
[32] W.-R. Chen, L. Porcar, Y. Liu, P. D. Butler, and L. J. Magid, "Small angle neutron scattering studies of the counterion effects on the molecular conformation and structure of charged g4 PAMAM dendrimers in aqueous solutions," Macromolecules, vol. 40, pp. 5887-5898, 2007.
[33] G. Schmid and B. Corain, "Nanoparticulated gold: Syntheses, structures, electronics, and reactivities," European Journal of Inorganic Chemistry, pp. 3081-3098, 2003.
[34] W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, "Determination of size and concentration of gold nanoparticles from UV-Vis spectra," Analytical Chemistry, vol. 79, pp. 4215-4221, 2007.
[35] Y. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, et al., "Gold Nanocages: From Synthesis to Theranostic Applications," Accounts of Chemical Research, vol. 44, pp. 914-924, 2011.
[36] M. C. Daniel and D. Astruc, "Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology," Chemical Reviews, vol. 104, pp. 293-346, 2004.
[37] M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, et al., "Gold nanostructures: engineering their plasmonic properties for biomedical applications," Chemical Society Reviews, vol. 35, pp. 1084-1094, 2006.
[38] J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, et al., "Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells," Nano Letters, vol. 7, pp. 1318-1322, 2007.
[39] C. T. Campbell, J. C. Sharp, Y. X. Yao, E. M. Karp, and T. L. Silbaugh, "Insights into catalysis by gold nanoparticles and their support effects through surface science studies of model catalysts," Faraday Discussions, vol. 152, pp. 227-239, 2011.
[40] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, "Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system," Journal of the Chemical Society, Chemical Communications, pp. 801-802, 1994.
[41] Z. V. Feng, J. L. Lyon, J. S. Croley, R. M. Crooks, D. A. V. Bout, and K. J. Stevenson, "Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles An Undergraduate Experiment Exploring Catalytic Nanomaterials," Journal of Chemical Education, vol. 86, pp. 368-372, 2009.
[42] J. C. Garcia-Martinez, R. Lezutekong, and R. M. Crooks, "Dendrimer-encapsulated Pd nanoparticles as aqueous, room-temperature catalysts for the Stille reaction," Journal of the American Chemical Society, vol. 127, pp. 5097-5103, 2005.
[43] K. Aranishi, A. K. Singh, and Q. Xu, "Dendrimer-Encapsulated Bimetallic Pt-Ni Nanoparticles as Highly Efficient Catalysts for Hydrogen Generation from Chemical Hydrogen Storage Materials," Chemcatchem, vol. 5, pp. 2248-2252, 2013.
[44] M. Kuhn, J. Jeschke, S. Schulze, M. Hietschold, H. Lang, and T. Schwarz, "Dendrimer-stabilized bimetallic Pd/Au nanoparticles: Preparation, characterization and application to vinyl acetate synthesis," Catalysis Communications, vol. 57, pp. 78-82, 2014.
[45] R. W. J. Scott, O. M. Wilson, and R. M. Crooks, "Titania-supported Au and Pd composites synthesized from dendrimer-encapsulated metal nanoparticle precursors," Chemistry of Materials, vol. 16, pp. 5682-5688, 2004.
[46] M. Stofik, Z. Stryhal, and J. Maly, "Dendrimer-encapsulated silver nanoparticles as a novel electrochemical label for sensitive immunosensors," Biosensors & Bioelectronics, vol. 24, pp. 1918-1923, 2009.
[47] X. Pei, Z. Xu, J. Zhang, Z. Liu, and J. Tian, "Electroactive dendrimer-encapsulated silver nanoparticles for sensing low-abundance proteins with signal amplification," Analytical Methods, vol. 5, pp. 3235-3241, 2013.
[48] L. W. Hoffman, G. G. Andersson, A. Sharma, S. R. Clarke, and N. H. Voelcker, "New Insights into the Structure of PAMAM Dendrimer/Gold Nanoparticle Nanocomposites," Langmuir, vol. 27, pp. 6759-6767, 2011.
[49] P.-G. Su and W.-H. Tzou, "Low-humidity sensing properties of PAMAM dendrimer and PAMAM-Au nanoparticles measured by a quartz-crystal microbalance," Sensors and Actuators a-Physical, vol. 179, pp. 44-49, 2012.
[50] X. Shi, S. Wang, S. Meshinchi, M. E. Van Antwerp, X. Bi, I. Lee, et al., "Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and Imaging," Small, vol. 3, pp. 1245-1252, 2007.
[51] Y. Liu, V. S. Bryantsev, M. S. Diallo, and W. A. Goddard, III, "PAMAM Dendrimers Undergo pH Responsive Conformational Changes without Swelling," Journal of the American Chemical Society, vol. 131, pp. 2798-+, 2009.
[52] P. Carbone and F. Mueller-Plathe, "Molecular dynamics simulations of polyaminoamide (PAMAM) dendrimer aggregates: molecular shape, hydrogen bonds and local dynamics," Soft Matter, vol. 5, pp. 2638-2647, 2009.
[53] V. Maingi, M. V. S. Kumar, and P. K. Maiti, "PAMAM Dendrimer-Drug Interactions: Effect of pH on the Binding and Release Pattern," Journal of Physical Chemistry B, vol. 116, pp. 4370-4376, 2012.
[54] P. K. Maiti and R. Messina, "Counterion distribution and zeta-potential in PAMAM dendrimer," Macromolecules, vol. 41, pp. 5002-5006, 2008.
[55] H. Lee, J. S. Choi, and R. G. Larson, "Molecular Dynamics Studies of the Size and Internal Structure of the PAMAM Dendrimer Grafted with Arginine and Histidine," Macromolecules, vol. 44, pp. 8681-8686, 2011.
[56] D. Ouyang, H. Zhang, H. S. Parekh, and S. C. Smith, "The effect of pH on PAMAM dendrimer-siRNA complexation - Endosomal considerations as determined by molecular dynamics simulation," Biophysical Chemistry, vol. 158, pp. 126-133, 2011.
[57] J. H. Irving and J. G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics," The Journal of Chemical Physics, vol. 18, pp. 817-829, 1950.
[58] A. T. Hagler, S. Lifson, and P. Dauber, "CONSISTENT FORCE-FIELD STUDIES OF INTER-MOLECULAR FORCES IN HYDROGEN-BONDED CRYSTALS .2. BENCHMARK FOR THE OBJECTIVE COMPARISON OF ALTERNATIVE FORCE-FIELDS," Journal of the American Chemical Society, vol. 101, pp. 5122-5130, 1979.
[59] H. Heinz, R. A. Vaia, B. L. Farmer, and R. R. Naik, "Accurate Simulation of Surfaces and Interfaces of Face-Centered Cubic Metals Using 12-6 and 9-6 Lennard-Jones Potentials," Journal of Physical Chemistry C, vol. 112, pp. 17281-17290, 2008.
[60] V. Rosato, M. Guillope, and B. Legrand, "THERMODYNAMICAL AND STRUCTURAL-PROPERTIES OF FCC TRANSITION-METALS USING A SIMPLE TIGHT-BINDING MODEL," Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, vol. 59, pp. 321-336, 1989.
[61] C. Goyhenex and H. Bulou, "Theoretical insight in the energetics of Co adsorption on a reconstructed Au(111) substrate," Physical Review B, vol. 63, 2001.
[62] A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, et al., "All-atom empirical potential for molecular modeling and dynamics studies of proteins," Journal of Physical Chemistry B, vol. 102, pp. 3586-3616, 1998.
[63] W. G. Hoover, "CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS," Physical Review A, vol. 31, pp. 1695-1697, 1985.
[64] D. C. Rapaport, The Art of Molecular Dynamics Simulation: Cambridge University Press, 1996.
[65] M. P. Allen and D. J. Tildesley, Computer simulation of liquids: Clarendon Press, 1989.
[66] D. Frenkel and B. Smit, Understanding Molecular Simulation: Academic Press, Inc., 2001.
[67] G. Rudnick and G. Gaspari, "The aspherity of random walks," Journal of Physics A: Mathematical and General, vol. 19, L191-L193, 1986.
[68] C. Wu, "pH response of conformation of poly(propylene imine) dendrimer in water: a molecular simulation study," Molecular Simulation, vol. 36, pp. 1164-1172, 2010.
[69] M. L. Connolly, "ANALYTICAL MOLECULAR-SURFACE CALCULATION," Journal of Applied Crystallography, vol. 16, pp. 548-558, 1983.
[70] C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, et al., "Lipid rafts reconstituted in model membranes," Biophysical Journal, vol. 80, pp. 1417-1428, 2001.
[71] M. Meunier, "Diffusion coefficients of small gas molecules in amorphous cis-1,4-polybutadiene estimated by molecular dynamics simulations," Journal of Chemical Physics, vol. 123, 2005.
[72] H.-L. Chen, S.-P. Ju, T.-Y. Wu, J.-Y. Hsieh, and S.-H. Liu, "Investigation of Zr and Si diffusion behaviors during reactive diffusion - a molecular dynamics study," Rsc Advances, vol. 5, pp. 26316-26320, 2015.
[73] J. S. Rowlinson, "DIFFUSION IN LIQUIDS, A THEORETICAL AND EXPERIMENTAL-STUDY, 2ND EDITION - TYRRELL,HJV, HARRIS,KR," Chemistry in Britain, vol. 20, pp. 1027-1027, 1984 1984.
[74] B. Fritzinger and U. Scheler, "Scaling behaviour of PAMAM dendrimers determined by diffusion NMR," Macromolecular Chemistry and Physics, vol. 206, pp. 1288-1291, Jul 5 2005.
[75] K. Koynov, G. Mihov, M. Mondeshki, C. Moon, H. W. Spiess, K. Muellen, et al., "Diffusion and conformation of peptide-functionalized polyphenylene dendrimers studied by fluorescence correlation and C-13 NMR spectroscopy," Biomacromolecules, vol. 8, pp. 1745-1750, May 2007.
[76] S. Wong, D. Appelhans, B. Voit, and U. Scheler, "Effect of branching on the scaling behavior of poly(ether amide) dendrons and dendrimers," Macromolecules, vol. 34, pp. 678-680, Feb 13 2001.
[77] J. Liu, D. Cao, and L. Zhang, "Molecular dynamics study on nanoparticle diffusion in polymer melts: A test of the Stokes-Einstein law," Journal of Physical Chemistry C, vol. 112, pp. 6653-6661, May 1 2008.
[78] H. Lee, "Effects of salt on the size and internal structure of PAMAM dendrimers at different pH," Molecular Simulation, vol. 38, pp. 589-594, 2012.
[79] D. Marson, V. Dal Col, P. Posocco, E. Laurini, M. Fermeglia, and S. Pricl, "Genes within Bottles. Synergism Between Simulation and Experiment in Designing Nanovectors for DNA/RNA Delivery," Chemical and Biochemical Engineering Quarterly, vol. 26, pp. 447-465, 2012.
[80] I. Lee, B. D. Athey, A. W. Wetzel, W. Meixner, and J. R. Baker, "Structural molecular dynamics studies on polyamidoamine dendrimers for a therapeutic application: Effects of pH and generation," Macromolecules, vol. 35, pp. 4510-4520, 2002.
[81] J. J. Freire, A. Ahmadi, and C. McBride, "Molecular Dynamics Simulations of the Protonated G4 PAMAM Dendrimer in an Ionic Liquid System," Journal of Physical Chemistry B, vol. 117, pp. 15157-15164, 2013.
[82] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, "COMPARISON OF SIMPLE POTENTIAL FUNCTIONS FOR SIMULATING LIQUID WATER," Journal of Chemical Physics, vol. 79, pp. 926-935, 1983.
[83] P. K. Maiti, Y. Li, T. Cagin, and W. A. Goddard, III, "Structure of polyamidoamide dendrimers up to limiting generations: A mesoscale description," Journal of Chemical Physics, vol. 130, 2009.
[84] P. K. Maiti, T. Cagin, G. F. Wang, and W. A. Goddard, "Structure of PAMAM dendrimers: Generations 1 through 11," Macromolecules, vol. 37, pp. 6236-6254, 2004.
[85] T. Zhong, P. Ai, and J. Zhou, "Structures and properties of PAMAM dendrimer: A multi-scale simulation study," Fluid Phase Equilibria, vol. 302, pp. 43-47, 2011.
[86] M. Reich, S. Utsunomiya, S. E. Kesler, L. Wang, R. C. Ewing, and U. Becker, "Thermal behavior of metal nanoparticles in geologic materials," Geology, vol. 34, pp. 1033-1036, 2006.
[87] N. Wang, S. I. Rokhlin, and D. F. Farson, "Nonhomogeneous surface premelting of Au nanoparticles," Nanotechnology, vol. 19, 2008.
[88] B. Fadhel, M. Hearn, and A. Chaffee, "CO2 adsorption by PAMAM dendrimers: Significant effect of impregnation into SBA-15," Microporous and Mesoporous Materials, vol. 123, pp. 140-149, 2009.
[89] B. F. Pan, F. Gao, and H. C. Gu, "Dendrimer modified magnetite nanoparticles for protein immobilization," Journal of Colloid and Interface Science, vol. 284, pp. 1-6, 2005.
[90] B. F. Pan, D. X. Cui, F. Gao, and R. He, "Growth of multi-amine terminated poly(amidoamine) dendrimerson the surface of carbon nanotubes," Nanotechnology, vol. 17, pp. 2483-2489, 2006.
[91] Y. Cheng, T. Xu, and P. H. he, "Polyamidoamine dendrimers as curing agents: The optimum polyamidoamine concentration selected by dynamic torsional vibration method and thermogravimetric analyses," Journal of Applied Polymer Science, vol. 103, pp. 1430-1434, 2007.
[92] F. Shimizu, S. Ogata, and J. Li, "Theory of shear banding in metallic glasses and molecular dynamics calculations," Materials Transactions, vol. 48, pp. 2923-2927, 2007.
[93] P. K. Maiti and B. Bagchi, "Diffusion of flexible, charged, nanoscopic molecules in solution: Size and pH dependence for PAMAM dendrimer," Journal of Chemical Physics, vol. 131, 2009.
[94] B. M. Tande, N. J. Wagner, M. E. Mackay, C. J. Hawker, and M. Jeong, "Viscosimetric, hydrodynamic, and conformational properties of dendrimers and dendrons," Macromolecules, vol. 34, pp. 8580-8585, Nov 20 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code