Responsive image
博碩士論文 etd-0515115-155729 詳細資訊
Title page for etd-0515115-155729
論文名稱
Title
採用線性穩壓及溫度調變控制全彩發光二極體驅動晶 片設計和研究
Design of Full-Color LED Driver Control Circuit by Low Dropout (LDO) Liner Regulator and Temperature Modulator
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-06
繳交日期
Date of Submission
2015-06-16
關鍵字
Keywords
發光二極體調光控制電路、發光二極體驅動電路、恆定電流驅動、線性穩壓電路、溫度補償電路
Manual control, LDO, TPC, Constant-Current Drive, OTP, LED Drive
統計
Statistics
本論文已被瀏覽 5705 次,被下載 64
The thesis/dissertation has been browsed 5705 times, has been downloaded 64 times.
中文摘要
隨著政府近年來大力推進節能減碳政策的實施,現代人環保意識提高,使人們更加認識到節能的重要性與迫切性。各類照明佔總用電量的三分之一,因此如何從照明方面節約能源,已成為地球村所關心的議題。傳統的白熾燈因使用壽命短、發光效率低,不符合環保提倡之訴求,近年來利用發光二極體 (Light Emitting Diode- LED),來當作替換白熾燈、鹵素燈已成為時代的潮流。因 LED 具有壽命長、體積小、亮暗反應速度快、環保無使用汞和水銀材料,發光效率高等優點,但由於 LED 的亮度取決於順向導通電流,因此供應一恆定電流為 LED 驅動電路首要的課題。 一般家用調光型燈具的光源以燈泡為大宗,只需要搭配調光器即可。而日光燈源包含省電燈泡則無法調光,如果不考慮成本做出搭配的調光器,其調光範圍只有 20%,不敷日常生活所需;調光型 LED 燈具可以利用 RGB 的方式設計出不但可調光,同時也可以調色的應用,這是完全不同於傳統燈具的新式應用,此外LED 可調光源不僅僅適用在居家照明,更可以用在醫療方面;光線治療為藉由調整不同波長的光源照明以達到醫療的效果,此方法在西方國家已被廣泛的運用在改善睡眠及情緒的問題。本研究之 LED 驅動和調光控制 IC,電源電壓為 3.3V,輸出電流在溫度-25 ℃ 至100 ℃ 之間時,其輸出電流值隨溫度偏移率不超過3%,調光控制端;自動控制藉由溫度感測器傳送電流,以控制輸出電流隨溫度變化而調整光源,使光源在不同溫度下皆讓人感受舒適,手動控制端藉由抗雜訊電路使電路能依照個人喜好調整光源,滿足客製化的需求,使用 CIC 所提供之 TSMC 0.35μm 2P4M 3.3/5V CMOS 製程,晶片面積為 1.1 × 1.1 mm 2 ,其總消耗功率為 0.48W。
Abstract
Nowadays, people raise the conscious of environmental protection in recent years. As a third of the total electricity consumption of all kinds of lighting, it’s a bigger problem that we needs to save energy. In recent years, the use of light-emitting diode (Light Emitting Diode- LED) have replaced the incandescent lamps and halogen lamps because the traditional incandescent bulb has short life of its usage and low luminous efficiency which do not meet the needs of energy saving policy. LED is environmental friendly without mercury materials and luminous efficiency. But the brightness of LED depends on the forward current, thus, the supplication of constant current becomes the most important topic of LED driving circuit. Normally the household light of dimming mainly use the bulbs and it only need to match the dimmer. However, it is not the fluorescent lamp. The dimmable LED can also adjust color via RGB lighting. Furthermore, LED extensively use in household lighting and medical usage. In the research, the power supply Vdd is 3.3V, the change of output current lower 3% when the temperature is -25 ℃ to 100 ℃. In the dimming control; the auto control can deliver the current via temperature sensor so as to control the output current which make people feel comfortable. Manual control can adjust the light by the users via low dropout liner regulator to meet the customers’ needs. It is fabricated with CIC provided by TSMC 0.35μm 2P4M 3.3V/5V CMOS process in an active area of 1.1 × 1.1 mm 2 . The total power dissipation is 0.48W.
目次 Table of Contents
目錄
論文審定書 .................................................................................................... i
誌謝 ............................................................................................................... ii
摘要 .............................................................................................................. iii
Abstract ........................................................................................................ iv
目錄 ............................................................................................................... v
圖目錄 ........................................................................................................ viii
表目錄 .......................................................................................................... xi
第一章 緒論 ................................................................................................. 1
1.1 研究背景 .................................................................................. 1
1.2 LED 驅動 IC 發展 ................................................................... 2
1.3 LED 調光 IC 發展 ................................................................. 18
1.4 研究動機 ................................................................................ 24
1.5 論文大綱 ................................................................................ 25
第二章 LED 之發光原理與整體架構簡介 .............................................. 26
2.1 LED 發光二極體 ................................................................... 26
2.1.1 概述 ................................................................................. 26
2.1.2 LED 的演變 ..................................................................... 27
2.1.3 LED 動作原理 ................................................................. 28
2.2 光與色彩 ................................................................................ 30
2.2.1 光之簡介 ......................................................................... 30
2.2.2 CIE 色度座標圖 .............................................................. 31
2.3 LED 之陣列結構 ................................................................... 32
2.3.1 LED 並聯陣列 ................................................................. 32
2.3.2 LED 串聯陣列 ................................................................. 33
2.3.3 LED 混聯陣列 ................................................................. 34
2.3.4 LED 交叉陣列 ................................................................. 34
2.4 LED 調光原理 ....................................................................... 35
2.4.1 調光器調光 ..................................................................... 35
2.4.2 類比調光 ......................................................................... 36
2.4.3 脈波寬度調變 ................................................................. 36
2.5 LED 驅動電路分析 ............................................................... 37
2.5.1 LED 驅動電路之基本需求 ............................................ 37
2.5.2 LED 驅動電路之分類及簡介 ........................................ 37
2.5.3 LED 驅動電路特性介紹和比較 .................................... 43
2.6 LED 驅動及調光 IC 架構理論 ............................................. 46
2.6.1 本研究之電路架構簡介 ................................................. 46
第三章 電路設計架構 ............................................................................... 48
3.1 溫度補償電路 (Temperature Compensation Circuit) ........... 48
3.2 電壓轉換電流調節電路 (V to I converters) ........................ 52
3.3 手動調變電路 (Manual control - LDO) ............................... 53
3.4 自動調變電路 (Auto control) ............................................... 58
3.5 過熱保護電路 (Overheat Protection Circuit - OTP) ............ 59
第四章 模擬結果與討論 ........................................................................... 61
4.1 溫度補償電路 (TPC) ............................................................ 61
4.2 電壓轉換電流調節電路 (V to I) .......................................... 63
4.3 手動調變電路 (Manual control - LDO) ............................... 65
4.4 自動調變電路 (Auto control) ............................................... 68
4.5 過熱保護電路 (OTP) ............................................................ 70
4.6 本研究之電路驗證結果和相關參考文獻比較 .................... 71
第五章 結果討論與未來展望 ................................................................... 73
5.1 結果討論 ................................................................................ 73
5.2 未來展望 ................................................................................ 74
參考文獻 ..................................................................................................... 75
Published ..................................................................................................... 81
參考文獻 References
參考文獻
[1] 點晶科技取自網頁資料:http://www.siti.com.tw/info/info1.html
[2] 晶綺科技取自網頁資料:http://www.starchips.com.tw
[3] 聚積科技取自網頁資料:http://www.mblock.com.tw/tw
[4] Y. Wang, M. Gao, and D. Guo, “Design of 16-bits constant-current LED driver,”
International Conference on IEEE, Anti-Counterfeiting Security and Identification
in Communication, pp. 53-56, Jul. 2010.
[5] J. Lu, and X. Wu, “A PWM Controller IC for LED driver used to multiple DC-DC
topologies,” Asia-Pacific Power and Energy Engineering Conference, pp. 1-4, Mar.
2009.
[6] X. Zou, K. Yu, Z. Zheng, X. Chen, Z. Zou, and D. Liao, “Dynamic current
limitation circuit for white LED driver,” IEEE Asia Pacific Conference on Circuits
and Systems, pp. 898-901, Dec. 2008.
[7] J. Qiu, and L. He, “A LED driver IC with constant current and temperature
compensation,” IEEE International Conference on Computer Science and
Information Technology, pp. 162-164, Jul. 2010.
[8] J.-T. Hwang, K. Cho, D. Kim, M. Jung, G. Cho, and S. Yang, “A simple LED lamp
driver IC with intelligent power-factor correction,” International on Solid-State
Circuits Conference Digest of Technical Papers, pp. 236-238, Feb. 2011.
[9] Z.-Y. Huang, J.-S. Chiang, W.-B. Yang, and C.-H. Wang, “A new temperature
independent current controlled oscillator,” International Symposium on IEEE,
Intelligent Signal Processing and Communications Systems, pp. 1-4, Dec. 2011.
[10] Omron 取自網頁資料:http://www.omron.com
[11] Marvel 取自網頁資料:http://www.marvell.com
[12] J. Hasan, and S. S. Ang, “A high-efficiency digitally controlled RGB driver for
LED pixels,” IEEE Transactions on Industry Applications, vol. 47, no. 6, Nov.
2011.
[13] G.-M. Sung, S.-K. Peng, and Y.-T. Chang, “A white LED backlight driving IC with
3-bit dimming controller,” IEEE Asia Symposium on Quality Electronic Design, pp.
79-84, Jul. 2011.
[14] M. G. V. Bautista, W.-R. Liou, and M.-L. Yeh, “Dimmable multi-channel RGB
LED driver,” IEEE Asia Downunder on Energy Conversion Congress and
Exposition, pp. 1259-1262, Jun. 2013.
[15] J. Hasan, D. H. Nguyen, and S. S. Ang, “A RGB-driver for LED display panels,”
IEEE Applied Power Electronics Conference and Exposition, pp. 750-754, Feb.
2010.
[16] Y.-K. Lo, K.-H. Wu, K.-J. Pai, and H.-J. Chiu, “Design and implementation of
RGB LED drivers for LCD backlight modules,” IEEE Transactions on Industrial
Electronics, Vol. 56, no. 12, Dec. 2009.
[17] Z.-M. Jiang, “A study on influence of various types spectral characteristics of
artificial lighting for human responses,” National Cheng Kung University, Jun.
2008.
[18] V. Thrivikrammaru, “CMOS voltage divider based current mirror,” IEEE
Information and Communication Technologies, pp. 291-295, Dec. 2011.
[19] A. K. Gupta, J. W. Haslett, and F. N. Trofimenkoff, “A wide dynamic range
continuously adjustable CMOS current mirror,” IEEE Journal of Solid-State
Circuits, vol. 31, no. 8, Aug. 1996.
[20] S. C. Moon, G.-B. Koo, and G.-W. Moon, “Dimming-feedback control method for
TRIAC dimmable LED drivers,” IEEE Transactions on Industrial Electronics, vol.
62, no. 2, Feb. 2015.
[21] B. Razavi, “Design of analog CMOS integrated circuits,” Boston: McGraw-Hill,
2000.
[22] S. S. Prasad, and P. Mandal, “A CMOS beta multiplier voltage reference with
improved temperature performance and silicon tenability,” IEEE International
Conference on VLSI Design, pp.551-556, 2004.
[23] M. K. Adimulam, and K. K. MovvaA, “Low power CMOS current mode bandgap
reference circuit with low temperature coefficient of output voltage,” IEEE Asia
Pacific Conference on Postgraduate Research in Microelectronics and Electronics,
pp. 144-149, Dec. 2012.
[24] N. L. Mayer, O. Valorge, Y. Blaquiere, and M. Sawan, “A low-power, small-area
voltage reference array for a wafer-scale prototyping platform,” IEEE International
NEW Circuit and Systems Conference, pp. 189-192, Jun. 2010.
[25] R. Dehghani, and S. M. Atarodi, “A new low voltage precision CMOS current
reference with no external components,” IEEE Transactions on Circuits and
Systems-Analog and Digital Signal Processing, pp. 928-932, Dec. 2003.
[26] G. Kapur, C. M. Markan, and V. P. Pyara, “On-chip tunable wide ranged multiple
output voltage reference,” IEEE Southeaston, pp. 1-4, Mar. 2012.
[27] T.-C. Lu, H.-W. Zan, and M.-D. Ker, “Temperature coefficient of poly-silicon TFT
and its application on voltage reference circuit with temperature compensation in
LTPS process,” IEEE Transaction on Electron Devices, pp. 2583-2589, Oct. 2008.
[28] S. Liu, and R. J. Baker, “Process and temperature performance of a CMOS
beta-multiplier voltage reference,” IEEE Midwest Symposium on Circuits and
Systems, pp. 33-36, Aug. 1998.
[29] Y.-Y. Chen, S.-A. Zhong, and H. Dang, “Design of Bandgap Current Reference
with Wide Range of Output Voltage in a 0.18μm Bi-CMOS Process,” IEEE WRI
World Congress on Computer Science and Information Engineering, pp. 384-386,
Apr. 2009.
[30] C. Azcona, B. Calvo, S. Celma, N. Medrano, and P. A. Martinez, “Low-voltage
low-power CMOS rail-to-rail voltage-to-current converters,” IEEE Transactions
on Circuits and Systems Circuits and Systems-Regular Papers, pp. 2333-2342, Sep.
2013.
[31] W. Surakampontorn, V. Riewruja, K. Kumwachara, C. Surawatpunya, and K.
Anuntahirunrat, “Temperature-insensitive voltage-to-current converter and its
applications,” IEEE Transactions on Instrumentation and Measurement, pp.
1270-1277, Dec. 1999.
[32] Q. A. Khan, S. K. Wadhwa, and K. Misri, “A low voltage switched-capacitor
current reference circuit with low dependence on process, voltage and temperature,”
IEEE International Conference on VLSI Design Proceedings, pp. 504-506, Jan.
2003.
[33] B. Fotouhi, “All-MOS voltage-to-current converter,” IEEE Journal of solid-state
circuits, vol. 36, no. 1, Jan. 2001.
[34] Y. Shao, Y. Wang, Z. Ning, and L. He, “Analysis and design of high power supply
rejection LDO,” IEEE International Conference on Application-specific integrated
circuit, pp. 324-327, Oct. 2009.
[35] Q. Zhou, S. Guo, Q. Li, Z. Li, J. Song, and Y. Chang, “A fully on-chip LDO
regulator with a novel PSRR boosting circuit,” IEEE International Conference on
Solid-State and Integrated Circuit Technology, pp. 1-3, Oct. 2012.
[36] A. P. Patel, and G. A. R. Mora, “High power-supply-rejection (PSR) current-mode
low-dropout (LDO) regulator,” IEEE Transactions on Circuits and
Systems-Express Brieds, vol. 57, no. 11, Nov. 2010.
[37] J. Choi, J. Park, W. Jeong, J. Lee, S. Lee, J. Yoon, J. Kim, and J. Choi, “Design of
LDO linear regulator with ultra low-output impedance buffer,” IEEE International.
System on Chip Design Conference, pp. 420-423, Nov. 2009.
[38] M. A.-Shyoukh, H. Lee, and R. Perez, “A transient-enhanced low-quiescent current
low-dropout regulator with buffer impedance attenuation,” IEEE Journal of
Solid-State Circuits, vol. 42, no. 8, Aug. 2007.
[39] E. N. Y. Ho and P. K. T. Mok, “A capacitor-less CMOS active feedback
low-dropout regulator with slew-rate enhancement for portable on-chip
application,” IEEE Transactions on Circuits and Systems-Express Briefs, vol. 57,
no. 2, Feb. 2010.
[40] M. A.-Shyoukh, and H. Lee, “A compact ramp-based soft-start circuit for voltage
regulators,” IEEE Transactions on Circuits and Systems-Express Briefs, vol. 56, no.
7, Jul. 2009.
[41] X. Ming, Z.-K. Zhou, and B. Zhang, “A low-power ultra-fast capacitor-less LDO
with advanced dynamic push-pull techniques,” IEEE International Conference on
Very Large Scale Integration and System-on-Chip, pp. 54-59, Oct. 2011.
[42] Y. Sun, Y. S. WANG, and F. C. Lai, “Low power high speed switched current
comparator,” IEEE International Conference on Mixed Design of Integrated
Circuits and Systems, pp. 305-308, Jun. 2007.
[43] H. Gao, P. Baltus, and Q. Meng, “Low voltage comparator for high speed ADC,”
IEEE International Symposium on Signals Systems and Electronics, pp. 1-4, Sep.
2010.
[44]Y. Sun, Y. Ye, and F. Lai, “Power efficient high speed switched current comparator,”
IEEE International Symposium on Application Specific Integrated Circuit, pp.
581-584, Oct. 2007.
[45] B. Goll, and H. Zimmermann, “A comparator with reduced delay time in 65-nm
CMOS for supply voltages down to 0.65 V,” IEEE Transactions on Circuits and
Systems-Express Briefs, vol. 56, no. 11, Nov. 2009.
[46] K. I. Hwu, and W. C. Tu, “LED dimming with efficiency considered,” IEEE
Institution of Engineering and Technology on Electronics Letters, pp. 457-759, Mar.
2011.
[47] C.-S. Moo, Y.-J. Chen, and W.-C. Yang, “An efficient driver for dimmable LED
lighting,” IEEE Transactions on Power Electronics, vol. 27, no. 11, Nov. 2012.
[48] 李農、楊燕譯,2012,LED 照明手冊(第二版),全華圖書。
[49] 陳隆建編著,2012,LED 元件與產業概況,五南圖書。
[50] 周志敏、周紀海、紀愛華編注,2008,LED 驅動電路設計與應用(初版),五南
圖書。
[51] 劉博文編注,2007,光電元件導論(第二版),全威圖書。
[52] 黃日鋒、詹文鑫、陳鴻興、胡國瑞、徐道義、孫沛立、羅梅君編注,2011,
顯示色彩工程學(第二版),全華圖書。
[53] 德基力科技取自網頁資料:http://www.dgl-tech.com.tw
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code