Responsive image
博碩士論文 etd-0515115-182916 詳細資訊
Title page for etd-0515115-182916
論文名稱
Title
以電化學方式電解高定向熱解石墨製備氧化石墨烯材料應用於電子場發射元件
Graphene oxide material producted by highly oriented pyrolytic graphite with electrochemical exfoliation applied on field emission device
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-06
繳交日期
Date of Submission
2015-06-16
關鍵字
Keywords
高定向熱解石墨、場發射、氫氧化鉀、電化學剝離
highly oriented pyrolytic graphite, potassium hydroxide, electrochemical exfoliation, field emission
統計
Statistics
本論文已被瀏覽 5696 次,被下載 86
The thesis/dissertation has been browsed 5696 times, has been downloaded 86 times.
中文摘要
2004年,石墨烯被證明可單獨存在後,其相關研究及產品如雨後春筍般的蓬勃發展。氧化石墨烯材料擁有許多獨特的物理機制,例:電子遷移率和導熱系數極高、光穿透率高和其強健的韌性等。以上特殊的材料、物理特性使其在新世代奈米材料中具有強大的競爭力。氧化石墨烯材料在近年被大量使用於奈米電子、感測器、電化學系統及儲能元件等。
本論文分為兩部分,在不同製備條件下以電化學剝離方式製作氧化石墨烯材料及其材料特性的分析和探討、以氧化石墨烯材料作為發射源的電子場發射元件之電子場發射量測。
本實驗以高定向熱解石墨 (highly oriented pyrolytic graphite) 為材料,利用快速、簡單的電化學剝離方式製備氧化石墨烯。調整電解溶液濃度及嵌入電壓,以求氧化石墨烯品質的優化。製備完成後的石墨烯氧化物會以拉曼光譜儀、X光繞射儀和X光電子能譜儀進行材料分析,拉曼光譜可迅速分析碳材料之缺陷和結構且不破壞材料晶體結構,X光繞射儀和X光電子能譜儀則分別檢測材料的晶格結構及化學鍵結、成分,以確認製備出之氧化還原石墨烯品質。
進行場發射量測前透過電子顯微鏡觀測各樣品的表面形態,發現以較高嵌入電壓製備之樣品有較明顯奈米結構,而加入氫氧化鉀樣品的深寬比 (aspect ratio) 、表面皺褶更為顯眼。最終發現以高嵌入電壓配合低硫酸比重並參入較多氫氧化鉀 溶液製備的樣品有最佳的場發射特性,其起始電場和場增強因β分別為2.03 V⁄μm及 8377。此場發射元件之光通量和光照度分別為4.21流明、140.3勒克斯。
Abstract
When grahene proofed can exist independently in 2004, the research and product about it develop in prosperity. Graphene oxide have a lot of unique physical properties, such as high electron mobility, high thermal conductivity, high transmittance and robust strong tenacity, etc. It is very competitively in new nano-material field through these special physic and material properties. Graphene oxide is used in nanoelectronics, sensors, electrochemical system and energy storage device, etc.
This thesis is divided into two parts. First, producting grapheme oxide in different experimental factors and its material analysis. Second, taking it as cathode to conduct electron field emission experiment.
In experiment, highly oriented pyrolytic graphite is taken to produce graphene oxide with electrochemical exfoliation and adjusting electrolysis solution’s concentration, insert voltage to chase quality optimization. All of the finished outcome is analyzed with Raman spectroscopy, XRD and XPS. Raman spectroscopy can detect the defect and structure without damage. XRD, XPS are examining lattice structure and chemical bondings, respectively. All of them are making quality confirmation.
Before conducting field emission experiment, all samples are observed with SEM. The samples made with higher insert voltage have more obvious nano-structure. Moreover, the samples manufactured with potassium hydroxide have most obvious wrinkle structure, highest aspect ratio. At last, the sample prepared with higher insert voltage, lower sulphuric acid ratiio and more potassium hydroxide solution has the best field emission efficacy. The turn-on field and field emission enhance factor are 2.03 V⁄μm and 8377 separately. The light flux and illumination of this field emission device are 4.21lumens , 140.3 luxes.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
第 1 章 緒論 1
1.1 文獻回顧 1
1.1.1 碳材料簡介及石墨烯的特殊性質 1
1.1.2 石墨烯製備方法 3
1.1.3 場發射元件上石墨烯材料的應用 12
1.2 研究動機 17
1.3 研究方式及論文架構 18
第 2 章 原理 19
2.1 石墨烯物理特性理論 19
2.1.1 單層石墨烯基礎理論 19
2.1.2 石墨烯電子特性 21
2.2 石墨烯光穿透率 22
2.2.1 石墨烯的雙層、多層結構 23
2.3 真空電子發射理論 25
2.3.1 真空狀態下電子發射型態 25
2.3.2 Fowler-Nordheim theory 25
2.4 儀器原理 27
2.4.1 製程儀器 27
2.4.2 量測儀器 31
第 3 章 實驗流程 39
3.1 石墨烯氧化物製備 39
3.1.1 玻璃基板清洗 39
3.1.2 電化學製備氧化石墨烯材料 40
3.1.3 拉曼光譜量測 43
3.1.4 X光繞射儀量測 43
3.1.5 X 光電子能譜儀 44
3.2 元件製作流程 45
3.2.1 上板製作流程 (電子接收端) 45
3.2.2 下板製作流程 (電子發射端) 46
3.3 電子場發射元件特性量測 47
3.3.1 元件電性測量 47
3.3.2 元件光性測量 47
第 4 章 實驗結果 48
4.1 材料分析 48
4.1.1 拉曼光譜分析 48
4.1.2 X光電子能譜儀分析(XPS) 51
4.1.3 X光繞射儀分析(XRD) 56
4.1.4 場放射式電子顯微鏡分析(SEM) 58
4.2 場發射實驗 60
4.3 場發射發光照度與光譜量測 68
第 5 章 結論 70
參考文獻 71
Published 78
參考文獻 References
[1] A. K. Geim , K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, pp. 183-191, 2007.
[2] H. P. Boehm, A. Clauss, G. O. Fischer and U. Hofmann, “Das Adsorptionsverhalten sehr dünner Kohlenstoff-Folien,” Zeitschrift für anorganische und allgemeine Chemie, vol. 316, pp. 119-127, Jul. 1962.
[3] Alexander A. Balandin, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao and Chun Ning Lau, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett, vol. 8, pp. 902-907, Feb. 2008.
[4] K. I. Bolotin, K. J. Sikes, Z. Jianga, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Communications, vol. 146, pp. 351–355, Jun. 2008.
[5] T. Nishimura, K. Kita and A. Toriumi K. Nagashio, “Contact resistivity and current flow path at metal/graphene contact,” Appl. Phys. Lett, vol. 97, p. 143514, Oct. 2010.
[6] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science, vol. 320, p. 1308, Apr. 2008.
[7] J. Moser, A. Barreiro and A. Bachtold, “Current-induced cleaning of graphene,” Appl. Phys. Lett, vol. 91, p. 163513, Sep. 2007.
[8] Dan Li and Richard B. Kaner, “Graphene-Based Materials,” Science, vol. 30, pp. 1170-1171, May. 2008.
[9] Wonbong Choi, Indranil Lahiri, Raghunandan Seelaboyina, Yong Soo Kang, “Synthesis of Graphene and Its Applications: A Review,” Critical Reviews in Solid State and Materials Sciences, vol. 35, pp. 52-71, Feb. 2010.
[10] Virendra Singh, Daeha Joung, Lei Zhai, Soumen Das, Saiful I. Khondaker, Sudipta Seal, “Graphene based materials: Past, present and future,” Progress in Materials Science, vol. 56, pp. 1178-1271, Oct. 2011.
[11] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666 - 669, Jul. 2004.
[12] Sasha Stankovich, Dmitriy A. Dikin, Geoffrey H. B. Dommett, Kevin M. Kohlhaas, Eric J. Zimney,Eric A. Stach, Richard D. Piner, SonBinh T. Nguyen, Rodney S. Ruoff, “Graphene-based composite materials,” Nature, vol. 442, pp. 282-286, Jul. 2006.
[13] Sungjin Park, Rodney S. Ruoff, “Chemical methods for the production of graphenes,” nature nanotechnology, vol. 4, pp. 217 - 224, Mar. 2009.
[14] Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong-Hyun Ahn, Philip Kim, Jae-Young Choi and Byung Hee Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, vol. 5, pp. 706-710, Feb. 2009.
[15] A.N. Obraztsov, E.A. Obraztsova, A.V. Tyurnina, A.A. Zolotukhin, “Chemical vapor deposition of thin graphite films of nanometer thickness,” Carbon, vol. 45, pp. 2017–2021, Jun. 2007.
[16] Qingkai Yu, Jie Lian, Sujitra Siriponglert, Hao Li, Yong P. Chen and Shin-Shem Pei, “Graphene segregated on Ni surfaces and transferred to insulators,” Appl. Phys. Lett., vol. 93, p. 113103, Sep. 2008.
[17] Guoxiu Wang, Bei Wang, Jinsoo Park, Ying Wang, Bing Sun, Jane Yao, “Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation,” Carbon, vol. 47, pp. 3242–3246, Nov. 2009.
[18] Ching-Yuan Su, Ang-Yu Lu, Yanping Xu, Fu-Rong Chen, Andrei N. Khlobystov, Lain-Jong Li, “High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation,” ACS NANO, vol. 5, pp. 2332-2339, Nov. 2011.
[19] C.T.J. Low, F.C. Walsh, M.H. Chakrabarti, M.A. Hashim, M.A. Hussain, “Electrochemical approaches to the production of graphene flakes and their potential applications,” CARBON, vol. 54, pp. 1–21, Apr. 2013.
[20] Richard E. Offeman William S. Hummers Jr., “Preparation of Graphitic Oxide,” J. Am. Chem. Soc, vol. 80, p. 1339, Mar. 1958.
[21] Yuanbo Zhang, Joshua P. Small, William V. Pontius, and Philip Kim, “Fabrication and electric-field-dependent transport measurements of,” Appl. Phys. Lett., vol. 86, p. 073104, Feb. 2005.
[22] Y. Qi, S. H. Rhim, G. F. Sun, M. Weinert, and L. Li, “Epitaxial Graphene on SiC(0001): More than Just Honeycombs,” Phys. Rev. Lett, vol. 105, p. 085502, Aug. 2010.
[23] Sivudu KS, Mahajan YR., “Challenges and opportunities for the mass production of high quality graphene: an analysis of worldwide patents.,” Nanotech Insights, vol. 3, pp. 6-19, 2013.
[24] Sigen Wang, Jianjun Wang, Peter Miraldo, Mingyao Zhu, Ronald Outlaw et al., “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices,” Appl. Phys. Lett., vol. 89, p. 183103, Oct. 2006.
[25] Zhong-Shuai Wu, Songfeng Pei, Wencai Ren, Daiming Tang, Libo Gao, Bilu Liu, Feng Li, Chang Liu and Hui-Ming Cheng, “Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition,” Advanced Materials, vol. 21, pp. 1756-1760, May 2009.
[26] Zhiming Xiao, Juncong She, Shaozhi Deng, Zikang Tang, Zhibing Li, Jianming Lu and Ningsheng Xu, “Field Electron Emission Characteristics and Physical Mechanism of Individual Single-Layer Graphene,” ACS Nano, vol. 4, pp. 6332-6336, Oct. 2010.
[27] Dexian Ye, Sherif Moussa, Josephus D. Ferguson, Alison A. Baski, and M. Samy El-Shall, “Highly Efficient Electron Field Emission from Graphene Oxide Sheets Supported by Nickel Nanotip Arrays,” Nano Lett, vol. 12, pp. 1265–1268, Jan. 2012.
[28] Cheng-Kuang Huang, Yongxi Ou, Yaqing Bie, Qing Zhao and Dapeng Yu, “Well-aligned graphene arrays for field emission displays,” Appl. Phys. Lett., vol. 98, p. 263104, Jun. 2011.
[29] Zhicheng Yang, Qing Zhao, Yongxi Ou, Wei Wang, Heng Li et al., “Enhanced field emission from large scale uniform monolayer graphene supported by well-aligned ZnO nanowire arrays,” Appl. Phys. Lett., vol. 101, p. 173107, Oct. 2012.
[30] Xianlong Wei , Yoshio Bando and Dmitri Golberg, “Electron Emission from Individual Graphene Nanoribbons Driven by Internal Electric Field,” ACS Nano, vol. 6, pp. 705-711, Nov. 2012.
[31] Xianlong Wei, Qing Chen and Lianmao Peng, “Electron emission from a two-dimensional crystal with atomic thickness,” AIP Advances, vol. 3, p. 042130, Apr. 2013.
[32] Alexander Malesevic, Raymond Kemps, Annick Vanhulsel, Manish Pal Chowdhury, Alexander Volodin et al., “Field emission from vertically aligned few-layer graphene,” J. Appl. Phys., vol. 104, p. 084301, Oct. 2008.
[33] Mohd Zamri Yusop, Golap Kalita, Yazid Yaakob, Chisato Takahashi and Masaki Tanemura, “Field emission properties of chemical vapor deposited individual graphene,” Applied Physics Letters, vol. 104, p. 093501, Mar. 2014.
[34] Dexian Ye, Sherif Moussa, Josephus D. Ferguson, Alison A. Baski and M. Samy El-Shall, “Highly Efficient Electron Field Emission from Graphene Oxide Sheets Supported by Nickel Nanotip Arrays,” Nano Lett, vol. 12, pp. 1265–1268, Jan. 2012.
[35] Navneet Soin, Susanta Sinha Roy, Soumyendu Roy, Kiran Shankar Hazra, Devi S. Misra, Teck H. Lim, Crispin J. Hetherington and James A. McLaughlin, “Enhanced and Stable Field Emission from in Situ Nitrogen-Doped Few-Layered Graphene Nanoflakes,” J. Phys. Chem. C, vol. 115, pp. 5366-5372, Mar. 2011.
[36] Chi Li, Xiaoxia Yang, Shuyi Ding, Qing Dai, Xiaohui Qiu, Wei Lei, Xiaobing Zhang and Baoping Wang, “Field Emission Properties of Triode-Type Graphene Mesh Emitter Arrays,” IEEE ELECTRON DEVICE LETTERS, vol. 35, pp. 786-788, Jun. 2014.
[37] Jiangtao Chen, Linfan Cui, Dongfei Sun, Bingjun Yang, Juan Yang and Xingbin Yan, “Enhanced field emission properties from aligned graphenes fabricated on micro-hole patterned stainless steel,” Appl. Phys. Lett, vol. 105, p. 213111, Nov. 2014.
[38] S. Santandrea, F. Giubileo, V. Grossi, S. Santucci, M. Passacantando et al., “Field emission from single and few-layer graphene flakes,” Appl. Phys. Lett., vol. 98, p. 163109, Apr. 2011.
[39] R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. R. Soc. Lond. A, vol. 119, pp. 173-181, May 1928.
[40] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, “The electronic properties of graphene,” REVIEWS OF MODERN PHYSICS, vol. 81, pp. 109-162, Jan. 2009.
[41] L. G. Cançado, A. Reina,J. Kong and M. S. Dresselhaus, “Geometrical approach for the study of G'band in the Raman spectrum of monolayer graphene,bilayer graphene, and bulk graphite,” PHYSICAL REVIEW B, vol. 77, p. 245408, Jun. 2008.
[42] N.M.R. Peres, “The electronic properties of graphene and its bilayer,” Vacuum, vol. 83, pp. 1248-1252, Jun. 2009.
[43] F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photonics, vol. 4, pp. 611-622, Aug. 2010.
[44] Sylvain Latil and Luc Henrard, “Charge Carriers in Few-Layer Graphene Films,” PRL, vol. 97, p. 036803, Jul. 2006.
[45] Mauricio Terrones, Andrés R. Botello-Méndez, Jessica Campos-Delgado, Florentino López-Urías, Yadira I. Vega-Cantú, Fernando J. Rodríguez-Macías, Ana Laura Elías, Emilio Mu˜noz-Sandoval, Abraham G. Cano-Márquez, Jean-Christophe Charlier, Humberto Terrones, “Graphene and graphite nanoribbons: Morphology,properties, synthesis, defects and applications,” Nano Today, vol. 5, pp. 351-372, Aug. 2010.
[46] 蕭宏, 半導體製程技術導論.: 歐亞書局, 2001.
[47] Zhenhua Ni, Yingying Wang, Ting Yu, and Zexiang Shen, “Raman Spectroscopy and Imaging of Graphene,” Nano Res, vol. 1, pp. 273-291, Aug. 2008.
[48] lan R.Lewis, Howell G.M. Edwards, Handbook of Raman Spectroscopy.: Taylor & Francis, 2001.
[49] Krishnan K. S. Raman C. V, “A new type of secondary radiation,” Nature, vol. 128, pp. 501-502, Mar. 1928.
[50] Andrea C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Communications, vol. 143, pp. 45-57, Apr. 2007.
[51] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Canc¸ado, A. Jorio and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Physical Chemistry Chemical Physics, vol. 9, pp. 1276-1290, Jan. 2007.
[52] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett., vol. 97, p. 187401, Oct. 2006.
[53] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, “Raman spectroscopy in graphene,” Physics Reports, vol. 473, pp. 51-87, Apr. 2009.
[54] Michele R. Derrick, Eric F. Doehne, Andrew E. Parker and Dusan C. Stulik, “Some New Analytical Techniques for Use in Conservation,” Journal of the American Institute for Conservation, vol. 33, pp. 171-184, May. 1994.
[55] Wenyu Zhang, Yi Zeng, Ni Xiao, Huey Hoon Hng and Qingyu Yan, “One-step electrochemical preparation of graphene-based heterostructures for Li storage,” J. Mater. Chem, vol. 22, pp. 8455-8461, Mar. 2012.
[56] Yanzhong Hong, Zhiyong Wang and Xianbo Jin, “Sulfuric Acid Intercalated Graphite Oxide for Graphene Preparation,” Scientific Reports, vol. 3, p. 3439, Dec. 2013.
[57] Zhen Hua Ni, Hao Min Wang, Yun Ma, Johnson Kasim, Yi Hong Wu and Ze Xiang Shen, “Tunable stress and controlled thickness modification in graphene by annealing,” ACS Nano, vol. 2, pp. 1033–1039, May. 2008.
[58] Hui-Lin Guo, Xian-Fei Wang, Qing-Yun Qian, Feng-Bin Wang and Xing-Hua Xia, “A Green Approach to the Synthesis of Graphene Nanosheets,” ACS Nano, vol. 3, pp. 2653–2659, Aug. 2009.
[59] Ariel Ismach, Clara Druzgalski, Samuel Penwell, Adam Schwartzberg, Maxwell Zheng, Ali Javey, Jeffrey Bokor and Yuegang Zhang, “Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces,” Nano Lett, vol. 10, pp. 1542–1548, Apr. 2010.
[60] C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim and A. C. Ferrari, “Raman fingerprint of charged impurities in graphene,” Appl. Phys. Lett, vol. 91, p. 233108, Dec. 2007.
[61] Yueming Li, Marshall van Zijll, Shirley Chiang, Ning Pana, “KOH modified graphene nanosheets for supercapacitor electrodes,” Journal of Power Sources, vol. 196, pp. 6003-6006, Jul. 2011.
[62] L. G. Cançado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies,” Nano Lett, vol. 11, pp. 3190–3196, Jun. 2011.
[63] Jun Yan, Tong Wei, Bo Shao, Fuqiu Ma, Zhuangjun Fan, Milin Zhang, Chao Zheng, Yongchen Shang, Weizhong Qian, Fei Wei, “Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors,” Carbon, vol. 48, pp. 1731–1737, May. 2010.
[64] Bin Xu, Shufang Yue, Zhuyin Sui, Xuetong Zhang, Shanshan Hou, Gaoping Cao and Yusheng Yang, “What is the choice for supercapacitors: graphene or graphene oxide?,” Energy Environ. Sci, vol. 4, pp. 2826-2830, Jun. 2011.
[65] C.D.Wagner, W.M.Riggs, L.E.Davis, J.F.Moulder, and G.E.Mullenberg, Handbook of X-ray Photoelectron Spectroscopy. Minnesota, USA: Perkin-Elmer Corp Eden Prairie, 1979.
[66] Hisato Yamaguchi et al, “Field Emission from Atomically Thin Edges of Reduced Graphene Oxide,” ACS Nano, vol. 5, pp. 4945–4952, May. 2011.
[67] Tessy Theres Baby and Sundara Ramaprabhu, “Cold field emission from hydrogen exfoliated graphene composites,” Appl. Phys. Lett, vol. 98, p. 183111, May. 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code