Responsive image
博碩士論文 etd-0516102-233902 詳細資訊
Title page for etd-0516102-233902
論文名稱
Title
氮化鋁酸鹼離子場效電晶體感測特性之研究
Study on the pH-Sensing Characteristics of ISFET with Aluminum Nitride Membrane
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-04-26
繳交日期
Date of Submission
2002-05-16
關鍵字
Keywords
酸鹼離子場效電晶體、靈敏度、溫度效應、氮化鋁、時漂、遲滯
Hysteresis, Aluminum Nitride, Temperature effect, Sensitivity, Drift, ISFET
統計
Statistics
本論文已被瀏覽 5771 次,被下載 2664
The thesis/dissertation has been browsed 5771 times, has been downloaded 2664 times.
中文摘要
本論文係利用射頻(Radio Frequency)濺鍍方式備製氮化鋁(Aluminum Nitride, AlN)薄膜於參考電極(Reference Electrode)/電解質(Electrolyte)/氮化鋁(AlN)薄膜/二氧化矽(SiO2)/矽晶片(p-type)/鋁(Al)結構中,並利用其具有類似MOS電容之特性,將其置於不同的酸鹼緩衝溶液(pH Buffer Solution)中偵測離子敏感度,並藉由量測電容-電壓的特性曲線來探討其感測膜表面電位(Surface Potential)之特性。同時亦將氮化鋁薄膜備製於雙層閘極結構之AlN/SiO2 Gate ISFET元件,進行元件之電流-電壓特性曲線之量測,以求出元件在待測溶液中起始電位(Threshold Voltage)的變化情形,進而計算其感測靈敏度。另外,對於元件存在的響應特性,諸如:溫度效應(Temperature Effect)、時漂(Drift)及遲滯(Hysteresis)等現象,亦將一併進行量測、分析與比較。
實驗結果顯示,以氮化鋁薄膜作為酸鹼離子感測層,在濃度為pH=1~11範圍,量測溫度為25℃,其感測度範圍分佈於50~58 mV/pH之間,時漂量與遲滯寬度則與氫離子濃度相關,其中時漂量隨著pH值的增加而增大,而遲滯量則與測量時間及測量路徑有關。當測量時間為960、1920、3840秒,經由pH=7®3®7®11®7的量測路徑所獲得之遲滯寬度分別為1.0、1.5、4.5 mV。另外,在溫度效應量測中,元件可操作於5~65 ℃的環境溫度範圍,且感測度與量測時的溫度有關,其感測度隨溫度變化之係數約為0.13 mV/pH℃。另外,可藉由恆壓恆流讀出電路量取AlN pH-ISFET元件的閘極輸出電位,對於線性度、穩定性與重現性之量測皆有良好的輸出表現,深具實用價值。

Abstract
In this thesis, the aluminum nitride (AlN) thin film was selected as a sensing membrane for the H+ ion-sensitive field-effect transistor (ISFET). The AlN thin films were prepared by a rf sputtering technology on the reference electrode/electrolyte /AlN /SiO2/p-Si/Al structure. The capacitance-voltage (C-V) measurement was used to detect the H+ ion concentration and the C-V characteristic curves were obtained in the different pH buffer solutions. On the other hand, AlN thin films were also prepared on the double layer structure of AlN/SiO2 gate ISFET devices. After packaging, the current-voltage (I-V) measurement with a PID temperature controller was utilized to measure a series of the I-V characteristic curves. The threshold voltage can be obtained to evaluate the pH sensitivity in the different pH buffer solutions. Additionally, the effects of non-ideal factors, such as temperature effect, drift and hysteresis phenomenon on the characteristics of the ISFET are also measured, analyzed and compared with other sensing materials.
According to the experimental results, it can be found that the ISFET based on aluminum nitride thin film has a superior high pH sensitivity of approximately 50~58 mV/pH at 25℃. The drift and hysteresis are dependent on the H+ ion concentration in pH=1~11, in which the drift rate increases with the pH value increased and the hysteresis magnitude depends on the measuring time and route. It is found that the hysteresis widths measured in pH=7®3®7®11®7 cycle at 960s, 1920s and 3840s loop time are 1.0, 1.5 and 4.5 mV, respectively. When the temperature effect was considered, it was found that the ISFET could be operated at 5~65℃, in which, the pH sensitivity increased as the ambient temperature increased with the temperature coefficient of sensitivity of about 0.13 mV/pH℃. In addition, the output voltage of AlN pH-ISFET can be obtained by a constant current constant voltage (CCCV) read out circuit with a fairly linear response, stability and reproducibility in the pH measuring cycle. From the characteristics mentioned above, the AlN thin film can be as a sensing membrane for pH-ISFET applications.

目次 Table of Contents
Contents

Page
Chapter 1. Introduction…………………………………………………………………… 1
Chapter 2. Theory Description and Simulation……..…………………………………… 5
2.1. Introduction………………………………………………………………………….5
2.2. Site-Binding Model…………………………………………………………………. 5
2.3. EIS Structure……………………………………………………………………… 9
2.4. pH-ISFET Operation Mechanism…………………………………………………. 10
2.5. Simulation…………………………………………………………………………. 12
Chapter 3. Experiment…..……..………………………………………………………… 18
3.1. Introduction……………………………………………………………………….. 18
3.2. AlN Thin Films Preparation………………………………………………………. 18
3.3. EIS and MIS Structures Preparation……………………………………………… 19
3.4. pH-ISFET Fabrication……………………………………………………………. 19
3.5. Packaging Processes………………………………………………………………. 20
3.6. X-Ray Diffraction Analysis………………………………………………………. 21
3.7. Scanning Electron Microscope (SEM) Analysis…………………………………. 21
3.8. Capacitance-Voltage (C-V) Measurement Set-Up………………………………… 22
3.9. Current-Voltage (I-V) Measurement Set-Up………………………………………. 22
3.10. Drift and Hysteresis Measurement Set-Up………………………………………. 23
3.11. Light Exposure Measurement Set-Up……………………………………………. 24
3.12. Effects of Annealing Treatment on ISFET………………………………………. 25
Chapter 4. Results and Discussion..……………………………………………………… 26
4.1. Introduction……………………………………………………………………….. 26
4.2. Surface Structure Analysis………………………………………………………… 27
4.3. Capacitance Voltage Characteristics………………………………………………. 28
4.3.1. MIS Structure………………………………………………………………….. 28
4.3.2. EIS Structure…………………………………………………………………… 28
4.3.3. Permittivity Estimation………………………………………………………. 30
4.4. ISFET Characteristics…………………………………………………………….. 30
4.4.1. pH Sensitivity…………………………………………………………………… 31
4.4.2. Extraction of the Surface Potential and pHpzc (Point of Zero Charge)………… 33
4.4.3. Time Dependence of pH Response……………………………………………. 35
4.4.4. Reproducibility and Stability……………………………………………………. 36
4.4.5. Drift and Hysteresis Phenomenon……………………………………………. 36
4.5. Temperature and Photoelectric Characteristics…………………………………… 40
4.5.1. Temperature Characteristics of pH-ISFET……………………………………. 40
4.5.1.1. Temperature coefficients of the reference electrode (T.C.R) …………….. 41
4.5.1.2. Test solutions (T.C.S)…………………………………….……………….. 41
4.5.1.3. pH sensing film/electrolyte interface (T.C.I)…………….……………….. 42
4.5.1.4. Field-effect transistor (T.C.F)………………………….………………….. 42
4.5.1.5. Temperature coefficients of the ISFET device (T.C.T)…..……………….. 43
4.5.1.6. Extraction of temperature coefficients of AlN pH-ISFET……………….. 44
4.5.2. Light Induced Behaviour…………………………………………………….. 45
4.6. Annealing Treatment Analysis…………………………………………………….. 47
4.7. Comparison with Other Sensing Materials……….……………………………….. 49
4.8. Measurement System of a Read Out Circuit…………………………………… 51
4.8.1. Experiment and Measurement………………………………………………. 51
4.8.2. Results and Discussion……………………………………….……………… 52
Chapter 5. Conclusion…………………………………………………………………… 53
References…………………………………………………………………………………… 56


List of Figures

Page
Fig. 1-1 Schematic cross-section of an ISFET structure………………………………… 66
Fig. 2-1 Schematic representation of the site-binding model……………………………. 67
Fig. 2-2 Basic and multi-phase diagram of EIS structure……………………………….. 67
Fig. 2-3 Typical C-V curves for the electrolyte-SiO2-Si EIS structure. Oxide thickness is 560 Å on a 〈100〉10 Ω-cm p-type substrate. Curve: 1, pH 4.4; 2, pH 6.0; 3, pH 7.2; 4, pH 8.3; 5, pH 9.9; 6, pH 11.2. (Adapted from Luc Bousse [21] ).…………………………………………………………………………… 68
Fig. 2-4 Relationship between pKa, pKb and sensitivity……………………….………… 69
Fig. 2-5 Surface potential curves with different Ns……………………….……………… 69
Fig. 2-6 Surface potential curves with different Kb/Ka ratios…………….……………… 70
Fig. 2-7 Surface potential curves with constant Ka and variable of Kb…….…………….. 70
Fig. 2-8 Simulation of the C-V curves for the EIS structure…………….………………. 71
Fig. 2-9 Simulation of the IDS-VDS curves of the AlN/SiO2 gate ISFET.………………… 71
Fig. 2-10 Simulation of the IDS-VGS curves of the AlN/SiO2 gate ISFET………………… 72
Fig. 2-11 Simulation of the temperature characteristics of the AlN/SiO2 gate ISFET……. 72
Fig. 3-1 Schematic diagram of the r.f. sputtering system…………………………….. 73
Fig. 3-2 AlN thin films prepared on different structures, (a) EIS structure; (b) MIS structure………………………………………………………………………… 73
Fig. 3-3 Photo-masks of the ISFET……………………………..………………………. 74
Fig. 3-4 A flow chart for packaging processes………………………………………….. 75
Fig. 3-5 Diagrammatic sketch of the ISFET, (a) sensor head; (b) ISFET device………… 76
Fig. 3-6 C-V measurement system with a PID temperature controller………………….. 77
Fig. 3-7 I-V measurement system for the ISFET with a PID temperature controller….... 77
Fig. 3-8 Drift and hysteresis measurement system………………………………………. 78
Fig. 3-9 Constant current constant voltage read out circuit……………………………… 78
Fig. 3-10 Measurement system for light-induced characteristic variations.………………. 79
Fig. 4-1 X-ray diffraction pattern of the AlN thin film………………..………………… 80
Fig. 4-2 SEM photograph of the AlN film deposited at 90%Ar-10%N2 with a sputtering pressure of 30 mTorr, substrate temperature of 150℃ and rf power of 65 W, (a) cross-section of the AlN / p-Si structure; (b) surface morphology of the AlN film……………………………………………………………………………… 81
Fig. 4-3 Capacitance - voltage curves of the AlN MIS structure………………………… 82
Fig. 4-4 Capacitance - voltage curves for the AlN/SiO2 sensing structure……………… 82
Fig. 4-5 IDS versus VGS curves for the AlN pH-ISFET………………………………….. 83
Fig. 4-6 IDS versus VDS curves for the AlN pH-ISFET………………………………….. 83
Fig. 4-7 IDS versus VGS curves for the ISFET and MOSFET……………………………. 84
Fig. 4-8 Surface potential of the AlN pH-ISFET……………………..…………………. 84
Fig. 4-9 Time dependence of the pH sensitivity for the AlN pH-ISFET……………..…. 85
Fig. 4-10 Response time of the AlN pH-ISFET…………………………………………… 85
Fig. 4-11 Reproducibility of the AlN pH-ISFET in the pH=1 solution, tested two times during 30 min…………………………………………………………………… 86
Fig. 4-12 Relationship between the threshold voltage and pH value extracted from the first testing and after a month……………………………………………………….. 87
Fig. 4-13 Relationship between pH sensitivity and time…………….…………………… 88
Fig. 4-14 pH sensitivities extracted by CCCV circuit…………………………..………… 88
Fig. 4-15 Drift response of the AlN pH-ISFET in the pH=7 buffer solution……………… 89
Fig. 4-16 Relationship between the drift rate and the pH value of the AlN pH-ISFET…… 89
Fig. 4-17 Residual plot of hysteresis curves for AlN pH-ISFET at various loop time….… 90
Fig. 4-18 IDS-VGS curves of the AlN pH-ISFET measured at the ambient temperature between 5℃ and 65℃ (step 10℃) in the pH=1 buffer solution……………… 90
Fig. 4-19 Isothermal points of the AlN pH-ISFET for various pH values……………….. 91
Fig. 4-20 pH sensitivity of the AlN pH-ISFET measured at 5, 15, 25, 35, 45, 55 and 65℃, respectively…………………………………………………………………….. 91
Fig. 4-21 Relationship between pH sensitivity and ambient temperature………………… 92
Fig. 4-22 Comparison of the sensitivities obtained by I-V measurement and CCCV circuit…………………………………………………………………………… 92
Fig. 4-23 Relationship between the gate voltage and drain current under different light intensities……………………………………………………………………….. 93
Fig. 4-24 Relationship between the drain voltage and drain current under different light intensities………………………………………………………………………. 94
Fig. 4-25 Relationship between the light intensity and drain current…………………….. 95
Fig. 4-26 Relationship between the light intensity and sensitivity……………………….. 95
Fig. 4-27 XRD pattern of AlN film with and without annealing treatment……………………………………………………………………….. 96
Fig. 4-28 SEM photograph of the AlN film with annealing treatment, (a) 200℃; (b) 300℃; (c) 400℃; (d) 500℃; (e) 600℃………………………………………………... 97
Fig. 4-29 Gate voltage of the AlN pH-ISFET with and without annealing treatment……………………………………………………………………….. 98
Fig. 4-30 IDS-VGS curves of the AlN pH-ISFET with and without annealing treatment……………………………………………………………………….. 98
Fig. 4-31 IDS-VDS curves of the AlN pH-ISFET with and without annealing treatment……………………………………………………………………….. 99
Fig. 4-32 pH sensitivity curves for various sensing membranes………………………… 100
Fig. 4-33 Relationship between sensitivity and temperature for various sensing film….. 100
Fig. 4-34 Block diagram of an ISFET-based pH meter…………………………………. 101
Fig. 4-35 Schematic of an analog circuit………………………………………………… 101
Fig. 4-36 Schematic of a digital circuit………………………………………………….. 102
Fig. 4-37 Schematic of a pH meter system………………………………………………. 102


List of Tables

Page
Table 2-1 Simulation parameters of the AlN thin film…………………………………… 103
Table 3-1 Preparation conditions of the AlN thin film…………………………..………. 104
Table 3-2 Scanning parameters for the X-ray diffraction analysis………………….…… 104
Table 4-1 JCPDS datas of the AlN powder……..……….………………………………. 105
Table 4-2 Sensitivity and percentage of the Nernstian response for different exposure time……………………………………………………………………………. 106
Table 4-3 Temperature coefficients and composition of the different buffer solutions… 107
Table 4-4 Comparison of sensitivities for different sensing membranes………………… 108
Table 4-5 Comparison of drift rate in pH=7 for various pH sensing materials………….. 108
Table 4-6 Comparison of the hysteresis of various sensing gate materials……………… 109
Table 4-7 Comparison of the temperature coefficient of sensitivity for various sensing materials……………………………………………………………………….. 110
Table 4-8 Comparison of the read-out values of AlN pH-ISFET pH meter and commercial pH meter with glass electrode at 25℃………………………………………… 111
Table 4-9 Comparison of the operation conditions for different sensitive gate ISFETs….. 112
參考文獻 References
References

1. P. Bergveld, Development of an ion sensitive solid state device for neurophysiological measurements, IEEE Trans. on Biomed. Eng., BME-17 (1970) 70-71.
2. T. Matsuo and M. Esashi, Methods of ISFET fabrication, Sens. & Actuat. 1 (1981) 77-96.
3. B. D. Liu, Y. K. Su and S. C. Chen, Ion sensitive field effect transistor with silicon nitride gate for pH sensing, Int. J. Electronics, 67 (1989) 59-63.
4. V. Rocher, S. Poyard, N. Jaffrezic-Renault, C. Ajoux, M. Lemiti and A. Sibai, Photo-CVD silicon nitride thin layers as pH-ISFET sensitive membrane, Sens. & Actuat. B, 18-19 (1994) 342-347.
5. L. Bousse, H. H. V. D. Vlekkert and N. F. D. Rooij, Hysteresis in Al2O3 gate ISFETs, Sens. & Actuat. B, 2 (1990) 103-110.
6. M. J. Schöning, D. Tsarouchas, L. Beckers, J. Schubert, W. Zander, P. Kordoŝ, H. Lüth, A highly long-term stable silicon-based pH sensor fabricated by pulsed laser deposition technique, Sens. & Actuat. B, 35 (1996) 228-233.
7. A. S. Poghossian, The super-nernstian pH sensitivity of Ta2O5-gate ISFETs, Sens. & Actuat. B, (1992) 367-370.
8. H. Hara, T. Ohta, Dynamic response of a Ta2O5-gate pH-sensitive field-effect transistor, Sens. & Actuat. B, 32 (1996) 115-119.
9. P. Bergveld, Development, operation, and application of the ion sensitive field effect transistor as a tool for electrophysiology, IEEE Trans. Biomed. Enq., BME-19 (1972) 342-352.
10. H. Abe, M. Esashi and T. Matsuo, ISFETs using inorganic gate thin-films, IEEE Trans. Electron. Devices, ED-26 (1979) 1939-1944.
11. M.N. Niu, X.F. Ding and Q.Y. Tong, Effect of two types of surface sites on the characteristics of Si3N4-gate pH-ISFETs, Sens. & Actuat. B, 37 (1996) 13-17.
12. L. Bousse, S. Mostarshed, B. V. D. Schoot and N. F. D. Rooij, Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators, Sens. & Actuat. B, 17 (1994) 157-164.
13. H. V. D. Vlekkert, L. Bousse and N. D. Rooij, The temperature dependence of the surface potential at the Al2O3/electrolyte interface, J. of Colloid and Interface Science, 122 (1988) 336-345.
14. K. Tsukada, Y. Miyahara and H. Miyagi, Platinum-platinum oxide gate pH ISFET, Jpn. J. Appl. Phys., 28 (1989) 2450-2453.
15. H. K. Liao, Study of tin oxide as a sensing film for ISFET applications, Dissertation of Ph.D., Chung Yuan Christian University, September, 1998.
16. J. L. Chiang, Y. C. Chen and J. C. Chou, Simulation and experimental study of the pH sensing for AlN thin films, Jpn. J. Appl. Phys., 40 (2001) 5900-5904.
17. S. D. Moss, C. C. Johnson, Hydrogen, calcium, and potassium ion sensitive FET transistors a preliminary report, IEEE Trans. on Biomed. Eng., BME-25 (1978) 49-54.
18. P. Gimmel, B. Gompf, D. Schmeiosser, H. D. Weimhofer, W. Gopel and M. Klein, Ta2O5 gates of pH sensitive devices comparative spectroscopic and electrical studies, Sens. & Actuat. B, 17 (1989) 195-202.
19. A. Garde, J. Alderman and W. Lane, Development of a pH-sensitive ISFET suitable for fabrication in a volume production environment, Sens. & Actuat. B, 26-27 (1995) 341-344.
20. W.M. Siu and R.S.C. Cobbold, Basic properties of the electrolyte-SiO2-Si system: physical and theoretical aspects, IEEE Trans. Electron Devices, Vol. ED-26 (1979) 1805-1815.
21. L. Bousse, The Chemical sensitivity of electrolyte/interface/silicon structures, Dissertation of Ph.D., Twente University of Technology, Enschede, 1982.
22. P. Bergveld and A. Sibbald, Analytical and biomedical applications of ion-sensitive field-effect transistors, Elsevier Science Publishing Company Inc., New York, 1988.
23. S. Caras and J. Janata, Field effect transistor sensitive to penicillin, Anal. Chem., 52 (1980) 1935-1937.
24. M. Esashi and T. Matsuo, Integrated micro multi ion sensor using field effect of semiconductor, IEEE Trans. Biomed. Eng., BME-25 (1978) 184-192.
25. T. Kuriyama, J. Kimura and Y. Kawana, An integrated SOS/FET biosensor, Proc. 16th International Conference on Solid State Devices and Materials, Japan, (1984) 66-67.
26. Y. J. Yong and J. Y. Lee, Characteristics of hydrogenated aluminum nitride films prepared by radio frequency reactive sputtering and their application to surface acoustic wave devices, J. Vac. Sci. Technol. A , 15 (1997) 390-393.
27. D. Manova, V. Dimitrova, W. Fukarek and D. Karpuzov, Investigation of d.c.-reactive magnetron-sputtered AlN thin films by electron microprobe analysis, X-ray photoelectron spectroscopy and polarised infra-red reflection, Surface and Coatings Technol., 106 (1998) 205-208.
28. E. A. Chowdhury, J. Kolodzey, J. O. Olowolafe, G. Qiu, G. Katulka, D. Hits, M. Dashiell and D. van der Weide, Thermal oxidized AlN thin films for device insulators, Appl. Phys. Lett., 70 (1997) 2732-2734.
29. Y. Ito, Long-term drift mechanism of Ta2O5 gate pH-ISFETs, Sens. & Actuat. B, 64 (2000) 152-155.
30. J. C. Chou and Y. F. Wang, Temperature characteristics of a-Si:H gate ISFET, Materials Chem. and Phys., 70 (2001) 107-111.
31. H. K. Liao, E. S. Yang, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, Temperature and optical characteristics of tin oxide membrane gate ISFET, IEEE Trans. on Electron Devices, 46 (1999) 2278-2281.
32. K. I. Tang, Study on temperature effect of ISFET devices, Master Thesis, Institute of Electrical Engineering, Hua Fan University, July, 1997.
33. G. H. Wang, D. Yu and Y. L. Wang, ISFET temperature characteristics, Sens. & Actuat., 11 (1987) 221-237.
34. Y. A. Tarantov and A. S. Kartashev , Optical and thermal sensitivity of pH-ISFET with Ta2O5 membrane, Sens. & Actuat. A, 28 (1991) 197-202.
35. P. Gimmel, K. D. Schierbaum and W. Gopel, Reduced light sensitivity in optimized Ta2O5-ISFET structures, Sens. & Actuat. B, 4 (1991) 135-140.
36. J. A. Voorthuyzen and P. Bergveld, Photoelectric effects in Ta2O5-SiO2-Si structures, Sens. & Actuat., B1 (1990) 350-353.
37. D. E. Yates, S. Levine and T. W. Healy, Site-binding model of the electrical double layer at the oxide/wafer interface, J. Chem. Soc. Faraday Trans. I, (1974) 1807-1818.
38. C. D. Fung, P. W. Cheung and W. H. Ko, A generalized theory of an electrolyte-insulator-semiconductor field effect transistor, IEEE Trans. on Electron Devices, ED-33 (1986) 8-18.
39. L. K. Meixner and S. Koch, Simulation of ISFET operation based on the site-binding model, Sens. & Actuat. B, 6 (1992) 315-318.
40. J. L. Diot, J. Joseph, J. R. Martin and P. Clechet, pH dependence of the Si/SiO interface state density for EOS system, J. Electroanal. Chem, 193 (1985) 75-88.
41. A. S. H. Wong, Theoretical and experimental studies of CVD aluminum oxide as a pH sensitive dielectric for the back contacts ISFET sensor, Ph.D. Dissertation, Department of Biomedical Engineering, Case Western Reserve University, May, 1985.
42. P. Bergveld, The operation of an ISFET as an electronic device, Sens. & Actuat. 1 (1981) 17-29.
43. M. Grattarola, G. Massobrio, and S. Martinoia, Modeling H+-sensitive FET’s with SPICE, IEEE Trans. Electron Devices, ED-39 (1992) 813-819.
44. A. A. Poghossian, Determination of the pHpzc of insulators surface from capacitance-voltage characteristics of MIS and EIS structure, Sens. & Actuat. B, 44 (1997) 551-553.
45. L. Bousse, S. M., B. V. D. Shoot, Zeta potential measurements of Ta2O5 and SiO2 thin films”, J. Colloid Interface Sci., 147 (1991) 23-32.
46. J.C. van Kerkhof, J.C.T. Eijkel and P. Bergveld, ISFET responses on a stepwise change in electrolyte concentration at constant pH, Sens. & Actuat. B, (1994) 56-59.
47. T. Akiyama, Y. Ujihira, Y. Okabe, T. Sugano, and E. Niki, Ion-sensitive field-effect transistors with inorganic gate oxide for pH sensing, IEEE Trans. Electron Devices, ED-29, (1982) 1936-1941.
48. J. C. Chou, Y. S. Li and J. L. Chiang, Letter to the editor on - Simulation of Ta2O5-gate ISFET temperature characteristics, Sens. & Actuat. B, 80 (2001) 290-291.
49. L. Bousse, N. F. de Rooji, and P. Bergveld, Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface, IEEE Trans. Electron Device, ED-30 (1983) 1263-1270.
50. Y. Someno, M. Sasaki and T. Hirai, Effect of Ar gas addition on AlN film formation by microwave plasma chemical vapor deposition, Jpn. J. Appl. Phys., 30 (1991) 790-795.
51. F. Hasegawa, T. Takahashi, K. Kubo and Y. Nannichi, Plasma CVD of amorphous AlN from metalorganic Al source and properties of the deposited films, Jpn. J. Appl. Phys., 26 (1987) 1555-1560.
52. M. Miyauchi, Y. Ishikawa and N. Shibata, Growth of aluminum nitride films on silicon by electron-cyclotron-resonance-assisted molecular beam epitaxy, Jpn. J. Appl. Phys., 31 (1992) L1714-L1717.
53. J. C. Chou and J. L. Chiang, Ion sensitive field effect transistor with amorphous tungsten trioxide gate for pH sensing, Sens. & Actuat. B, 62 (2000) 81-87
54. Y. Zhong, S. Ohao and T. Lin, Drift characteristics of pH-ISFET output, Chinese Journal of Semiconductors, 12 (1994) 838-843.
55. D. H. Kwon, B. W. Cho, C. S. Kim and B. K. Sohn, Effect of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET, Sens. & Actuat. B, 34 (1996) 441-445.
56. K. S. Kao, C. C. Cheng and Y. C. Chen, Synthesis of C-axis-oriented aluminum nitride films by reactive rf magnetron sputtering for surface acoustic wave, Jpn. J. Appl. Phys., 40 (2001) 4969-4973.
57. A. Fog and R. P. Buck, Electronic semiconducting oxides as pH sensors, Sens. & Actuat., 5 (1984) 137-146.
58. J. L. Chiang, S. S. Jan, Y. C. Chen and J. C. Chou, Sensing characteristics of ISFET based on AlN thin film, Proc. of SPIE Vol. 4078, Taipei, Taiwan, July 26-28, 2000, pp. 689-696.
59. T. Adam, J. Kolodzey, C. P. Swann, M. W. Tsao and J. F. Rabolt, The electrical properties of MIS capacitors with AlN gate dielectrics, Appl. Surface Sci., 175-176 (2001) 428-435.
60. D. Liufu and K. C. Kao, Piezoelectric, dielectric, and interfacial properties of aluminum nitride films, J. Vac. Sci. Technol., A 16(4) (1998) 2360-2366.
61. V. Dimitrova, D. Manova and R. Djulgerova, Element composition and electrochemical behaviour of polycrystalline AlN thin films, Surface & Coati. Technol., 123 (2000) 12-16.
62. S. M. SZE, Physics of semiconductor devices, John Wiley & Sons, New York, 1985, 2nd edition.
63. H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, Study of amorphous tin oxide thin films for ISFET applications, Sens. & Actuat. B, 50 (1998) 104-109.
64. P. R. Barabash, R. S. C. Cobbold, and W. B. Wlodarski, Analysis of the threshold voltage and its temperature dependence in electrolyte-insulator-semiconductor field-effect transistor (EISFET’s), IEEE Trans. Electron Devices, ED-34 (1987) 1271-1282.
65. D. A. Neamen, Semiconductor physics and devices, 1996, 2nd Edition, Chapter 8, IRWIN Book Company.
66. D. Yu, Y. D. Wei and G. H. Wang, Time-dependent response characteristics of pH-sensitive ISFET, Sens. & Actuat. B 3 (1991) 279-285.
67. L. Bousse, D. Hafeman and N. Tran, Time-dependent of the chemical response of silicon nitride surfaces, Sens. & Actuat. B, 1 (1990) 361-367.
68. P. Woias, L. Meixner, P. Frostl, Slow pH response effects of silicon nitride ISFET sensors, Sens. & Actuat. B, 48 (1998) 501-504.
69. P. Hein and P. Egger, Drift behavior of ISFETs with Si3N4-SiO2 gate insulator, Sens. & Actuat. B, 13-14 (1993) 655-656.
70. S. Jamasb, S. D. Collins, and R. L. Smith, A physical model for drift in pH ISFETs, Sens. &Actuat. B, 49 (1998) 146-155.
71. S. Jamasb, S. D. Collins, and R. L. Smith, A physical model for threshold voltage instability in Si3N4-gate H+-sensitive FET’s (pH ISFET’s), IEEE Trans. Electron Devices, 45 (1998) 1239-1245.
72. J. L. Chiang, Y. C. Chen, J. C. Chou and C. C. Cheng, Temperature effect on AlN/SiO2 gate pH-ion-sensitive field-effect transistor devices, Jpn. J. Appl. Phys., 41 (2002) 541-545.
73. J. C. Chou, Y. S. Li and J. L. Chiang, Simulation of Ta2O5-gate ISFET temperature characteristics, Sens. & Actuat. B, 71 (2000) 73-76.
74. S. Martinoia, L. Lorenzelli, G. Massobrio, P. Conci and A. Lui, Temperature effects on the ISFET behaviour : simulations and measurements, Sens. & Actuat. B, (1998) 60-68.
75. W. Wlodarski, P. Bergveld and J. A. Voorthuyzen, Threshold voltage variations in N-channel MOS transistors and MOSFET-based sensors due to optical radiation, Sens. & Actuat., 9 (1986) 313-321.
76. R. S .C. Cobbold, Transducers for biomedical measurements: Principles and applications. New York: Wiley, 1974.
77. R. Gomer and G. Tryson, An experimental determination of absolute half-cell EMF’s and single ion free energies of solvation, J. Chem. Phys., 66 (1977) 4413-4424.
78. W. N. Hansen and D. M. Kolb, The work function of immersed electrodes, J. Electroanal. Chem., 100 (1979) 493-500.
79. B. K. Jones, P. C. Russell, Temperature dependence of the MOS mobility degradation, IEEE Proc. 135 (4) (1998) 94-96.
80. S. Cheng, P. Manos, Effects of operating temperature on electrical parameters in an analog process, IEEE Circuits and Devices Magazine, July (1989) 31-38.
81. J. L. Chiang, S. S. Jan, J. C. Chou and Y. C. Chen, Study on the Temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide, Sens. & Actuat. B, 76 (2001) 624-628.
82. Y. C. Chen, J. L. Chiang, J. C. Chou and C. C. Cheng, Photoelectric characteristics of pH-ISFET based on AlN/SiO2 insulator gate”, Proceedings of the 5th East Asian Conference on Chemical Sensors (EACCS’01), Dec. 4-7, 2001, Huis Ten Bosch, Sasebo-shi, Nagasaki, Japan, PP. 327-329.
83. E. S. Yang: Microelectronic devices, McGraw-Hill Book Company, Singapore, chapter 8, 1988.
84. J. C. Chou, H. M. Tsai and Y. F. Wang, Study on the temperature dependence of the hysteresis for the a-Si:H gate pH-ISFET, Proc. of SPIE Vol. 4078 –The International Symposium on Optoelectronic Materials and Devices II, Taipei, Taiwan, 809-816, 2000.
85. J. C. Chou and K. Y. Huang, Study on the drift and hysteresis of pH-ISFETs with amorphous tantalum pentoxide gate insulator, Conference on Chinese Medicine and Pharamacy, Engineering Technology and Applications to Chinese and Western Medicine, China Medical College, Taichung, Taiwan, 101-102, 1999.
86. J. C. Chou and Y. N. Tseng, Study on the hysteresis effect of pH-ISFET based on BeckmanΦTM 110 (Si3N4 gate pH-ISFET), Proc. of SPIE Vol. 4078 –The International Symposium on Optoelectronic Materials and Devices II, Taipei, Taiwan, 793-800, 2000.
87. J. C. Chou and C. Y. Weng, Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET, Materials Chem. & Phys., 71(2001) 120-124.
88. S. S. Jan, J. L. Chiang, J. C. Chou and Y. C. Chen, Temperature effect on PbTiO3 gate pH-ISFET, Proc. of the 2000 International Electron Devices and Materials Symposia (IEDMS’2000), National Central University, Chung- Li, Taiwan, 242-245, 2000.
89. J. C. Chou and C. N. Hsiao, Drift behavior of ISFET with a-Si:H-SiO2 gate insulator, Materials Chem. & Phys., 63 (2000) 270-273.
90. C. R. Chen, H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, Study on Si3N4/SiO2/Si structure for H+ ion sensing, Proceedings of 1997 Annual Symposium of the Biomedical Engineering Society, Chung-Li, Chun Yuan Christian University, December 12-13, 1997, pp. 56-57.
91. E. H. Yang, H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, Study on SnO2 film for ISFET sensor using EIS diode, Proceedings of 1997 Annual Symposium of the Biomedical Engineering Society, Chung-Li, Chun Yuan Christian University, December 12-13, 1997, 54-55.
92. J. L. Chiang, J. C. Chou and Y. C. Chen, Study of the pH-ISFET and EnFET for biosensor applications, Journal of Medical and Biological Engineering, 21(3) (2001) 135-146.
93. Y. F. Wang, Study on the pH-ISFET based on the PECVD prepared hydrogenated amorphous silicon and sol-gel prepared tin oxide, Master Dissertation, Institute of Electronic and Information Engineering, National Yunlin University of Science and Technology, June, 2001.
94. H. M. Tsai, Study on the hydrogen ion sensitive field effect-transistors using the hydrogenated amorphous carbon and hydrogenated amorphous silicon for the gate materials and their read-out circuits, Master Dissertation, Institute of Electronic and Information Engineering, National Yunlin University of Science and Technology, June, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code