Responsive image
博碩士論文 etd-0516114-140036 詳細資訊
Title page for etd-0516114-140036
論文名稱
Title
高效率與高可靠度玻璃螢光體於白光照明模組之研究
The Study of High Performance and High Reliability Glass Phosphor for WLED Module
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-12
繳交日期
Date of Submission
2014-06-23
關鍵字
Keywords
量子效率、演色性、各角度色溫分佈、白光發光二極體
CRI, ACCTD, QY, WLED
統計
Statistics
本論文已被瀏覽 5727 次,被下載 316
The thesis/dissertation has been browsed 5727 times, has been downloaded 316 times.
中文摘要
本論文係高效率與高可靠度玻璃螢光體於白光照明之研究,期能取代現今白光照明以螢光矽膠(低玻璃轉移溫度150℃)之架構。篩選鈉玻璃粉均勻混合黃色螢光粉(Y3Al5O12:Ce3+)後經燒結成玻璃螢光體,發現以700~850℃燒結完並切割拋光得到厚度0.5mm及直徑10mm的量子效率(QY)約68~65%,超過900℃燒結的QY降低至43%。經高解析度穿透式顯微鏡(HRTEM)觀察以700、800和900℃備製玻璃螢光體其擴散層寬度為2、5及25nm,表示玻璃螢光體以高溫燒結會使非晶矽擴散進YAG晶體,破壞發光機制而降低量子效率。以700℃燒結的玻璃螢光體構裝成白光發光二極體(WLED)後,其各角度色溫分佈(ACCTD)為350K。以150℃及250℃經1008小時的可靠度測試,證明玻璃螢光體的流明損失小於傳統矽膠螢光體7倍及38倍,與先前其他國外實驗室的玻璃螢光體/陶瓷螢光體技術研究比較,本研究提供高效率及高可靠度之玻璃螢光體製作技術。
本研究選用玻璃粉各別混合黃色螢光粉(Y3Al5O12:Ce3+)、綠色螢光粉(Lu3Al5O12:Ce3+)及紅色螢光粉(CaAlClSiN3:Eu2+),分別以680、700及750℃燒結成玻璃螢光體,發現黃色與綠色玻璃螢光體在750℃下燒結可保持量子效率68~66%,而紅色玻璃螢光體量子效率隨著溫度上升而大幅降低。經HRTEM觀察擴散層寬度分別為10、150以及350nm,並分別在擴散層做元素分析發現隨溫度越高,紅色玻璃螢光體會有的碳化物產生而使量子效率下降。利用三種螢光粉混合鈉玻璃粉以680℃燒結後,切割拋光玻璃螢光體,量測其量子效率達55%。以445nm波長的LED與其構裝成WLED,色座標(CIE)及色溫(CCT)分別為(0.358, 0.288;3923K),演色性(CRI)可達85,符合美國能源之星規範室內照明之CRI須大於80。以150℃、250℃經1008小時可靠度測試證明玻璃螢光體的流明損失小於傳統矽膠螢光體5倍及10倍。本研究成功研發兼具高效率及高可靠度之玻璃螢光體,此具有高玻璃轉移溫度(567℃),擁有取代傳統商用矽膠螢光體的潛力,未來可應用於高功率固態照明系統上。
Abstract
This doctorate dissertation is to study high-performance and high-reliability glass phosphors for WLED modules. The proposal glass phosphors are high reliability and expected to replace silica gel phosphors (low glass transition temperature, Tg, at 150℃) as the packaging materials for WLEDs. The mixture of sodium glass particles and phosphor crystals (Y3Al5O12:Ce3+) were sintered to form the glass phosphors. The quantum yield (QY) of the glass phosphors sintered at 750℃~850℃ was about 65~68%. The QY of the glass phosphors sintered at 900℃drops greatly to 43%. With the examination of high resolution transmission electron microscope (HRTEM), the distance of the diffusion of amorphous Si into YAG crystals were 2nm, 5nm and 25nm for the glass phosphors sintered at 700℃, 800℃, and 900℃, respectively. The diffusing Si atom damages the light-emitting mechanism of YAG crystals and decreases the QY of the glass phosphors. The WLED equipped with glass phosphor sintered under 700℃ has a angular correlated color temperature distribution (ACCTD) of 350K. In the 1008 hrs reliability tests, the luminescence loss of Ce3+:YAG doping silicone (CeYDS) were 7 and 38 times higher Ce3+:YAG doping glass (CeYDG) at 150℃ and 250℃, respectively. Compared with the study of glass/ceramic phosphor related technology revealed by other research groups, this study develops highly efficient and highly reliable glass phosphors.
The QY of glass phosphors with different phosphor crystals composition were also investigated. Yellow (Y3Al5O12:Ce3+), green (Lu3Al5O12:Ce3+), and red (CaAlClSiN3:Eu2+) phosphors were mixed uniformly with sodium glass and then sintered under 680℃, 700℃, and 750℃ to form glass phosphors. The yellow and green glass phosphor still keeps the QY at 66%~68% under 750℃ sintering temperature, while the QY of the red glass phosphors decreases dramatically with the rising sintering temperature. The diffusion widths were 10nm, 150nm and 350nm by HRTEM for the glass phosphors sintered at 680℃, 700℃, and 750℃. The result of HRTEM and element analysis both indicates that the red glass phosphor sintered at high temperature generates carbide, which has a bad influence on its QY.
High-CRI glass phosphors were realized by mixing multiple phosphors with sodium glass powder and then sintered at 680℃. The QY of the glass phosphor is up to 55%. A WLED packaging with the glass phosphors shows CIE and CCT at (x=0.358, y= 0.288;3923K). The CRI of the WLED reaches 85, which meets the regulation by USA Energy Star for interior lighting. In the 1008 hrs reliability tests, the luminescence loss of yellow, green, red phosphor doping silicone (YGRDS) were 5 and 10 times higher yellow, green, red phosphor doping glass (YGRDG) at 150℃ and 250℃, respectively. In summary, this study realizes color convention layer of WLEDs with high performance and high reliability. The glass phosphors have the potential to replace silicon phosphors for the application of high power solid state lighting.
目次 Table of Contents
摘要………………………………………………………………………………………………………..i
Abstract………………………………………………………………………………………………….ii
誌謝………………………………………………………………………………………………………iii
索引………………………………………………………………………………………………………iv
內容目錄…………………………………………………………………v
圖目錄……………………………………………………………………ix
表目錄…………………………………………………………………..xiv
第一章 緒論…………….………………….………………..……………1
第一節 發光二極體的發展概述….………………………………..1
第二節 研究背景與動機………….………………………………..2
第三節 研究目標與章節介紹…….………………………………..4
參考文獻…………………..………………..………………………10
第二章LED構造及基本原理…………………………….……............11
第一節 WLED發光形式……….…………………………….........11
第二節 LED介紹及發展…………………………………………..12
第三節 LED晶片發光原理………………………………………..13
第四節 色彩學原理………………………………………………..15
壹、 色座標系統…………………………………….……..16
貳、 色溫系統…………………………………………..….18
參、 演色係數…………………………………………...…19
第五節 光致發光螢光機制………………………………………..21
壹、 振動-電子躍遷……………………………………….21
貳、 散射吸收……………………………………………..22
參、 視覺函數………………………………………...…...23
肆、 頻譜視覺效應……………………………………..….23
第六節 螢光粉物理機制
壹、 主體晶格……………………………………....……...24
貳、 稀土元素……………………………..………..…..….25
參、 YAG:Ce3+之結構與特性…..………..……………….26
肆、 LuAG:Ce3+之結構與特性…………………………....26
伍、 CaAlSiN3:Eu2+之結構與特性………………….…….26
第七節 玻璃物理特性
壹、 玻璃理論………………………………………….…..27
貳、 鈉玻璃熱學性質……………………….……….…….28
參考文獻………………………….………………………………..42
第三章 儀器設備與原理…..………………………….…….….............48
第一節 熱示差分析儀……………………………………….....….48
第二節 行星式球磨機……………………………………………..48
第三節 聚焦離子束……………………………………….……….49
第四節 場發射型穿透式電子顯微鏡……………………………..50
第五節 能量散佈分析儀…………………………………………..50
第六節 X光繞射儀……………………………………………......51
第七節 光致螢光光譜儀………………………………………..…51
第八節 積分球量測系統…………………………………………..52
第九節 視角機……………………………………………..………53
參考文獻…………………………………………..………………..62

第四章 玻璃螢光體研發與實驗結果討論…………….…....................63
第一節 玻璃螢光體文獻分析………………………….…….........63
第二節 玻璃螢光體製作流程……………………….…………….64
第三節 玻璃螢光體最佳化研發…………………….…………….65
壹、 玻璃粉徑對玻璃螢光體之影響………………….…..65
貳、 真空製程對玻璃螢光體之影響……………………...65
參、 燒結溫度對玻璃螢光體之影響.……….…………….67
肆、 螢光粉摻雜濃度對玻璃螢光體之影響………...……68
第四節 玻璃螢光體與矽膠螢光體之可靠分析…….…………….69
第五節 高演色性玻璃螢光體最佳化研發………….…………….70
壹、 黃、綠及紅色玻璃螢光體光學特性…..……………71
貳、 紅色玻璃螢光體微結構分析………………………..71
參、 高演色性玻璃螢光體………………………….….…72
第六節 高演色性玻璃螢光體與矽膠螢光體之可靠度分析….….73
參考文獻……………………………………………………..……..95
第五章 結論與建議…………….……………….……….………….….96
第一節 結論………………………………………………………..96
第二節 建議………………………………………………………..97

作者簡介……………………………………………………..…………99
學術著作……………………………………………………..………..100
參考文獻 References
[1]http://memo.cgu.edu.tw/sykuo/LED-1.pdf.
[2]莊賦祥,藍綠發光二極體,科學發展 349 期,2002 年1 月,第46-53 頁
[3]S. Nakamura and G. Fasol, “The Blue Laser Diode: GaN Based Light Emitters and Lasers,” Spinger, Berlin (1997).
[4]S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Applied Physics Letter, vol.64, pp.1687-1689 (1994).
[5]Silica Lighting, http://www.silicalighting.eu/home-image/.
[6]M. Arik and S. Weaver, “Effect of chip and bonding defects on the junction temperatures of high-brightness light-emitting diodes” Optical Engineering, vol.44, no.11, pp.111305. 1-8 (2005).
[7]W. H. Chi, T. L. Chou, C. N. Han, and K. N. Chiang, “Analysis of Thermal Performance of High Power Light Emitting Diodes Package,” Proceedings of EPTC, pp.533-538 (2008).
[8]S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, S. Tanabe, “YAG glass-ceramic phosphor for white LED (I) background and development”, Proceedingsof SPIE, 5941, pp. 594111. 1-8 (2005).
[9] 蔡俊欽 “高功率發光二極體光功率與光場高溫老化可靠度之研究”,國立中山大學光電工程學系,博士論文 (2009).
[10] 陳繼弘 “低溫玻璃螢光體製程及均勻度分析”,國立中山大學光電工程學系,碩士論文 (2012).
[11] 呂紹旭, 歐美採專利與式場合作策略鞏固LED市場http://www.pida.org.tw/optolink/optolink_pdf/100059302.pdf
[12] 劉偉仁、姚中業、黃建豪、鐘淑茹、金風, “LED螢光粉技術”,五南出版(2014)。
[13] S. Muthu, F. J. P. Schuurmans and M. D. Pashley, “Red, green, and blue LEDs for White Light illumination”, IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, pp. 333-338, 2002.
[14] C. M. Chang, Y. C. Fang and C. R. Lee, “A new design mixing R.G.B. LED (Red, Green, Blue Light Emitting Diode) for a modern LCD (Liquid Crystal Display) backlight system”, Proceedings of SPIE, vol. 6338, pp. 63380Q-1~11 (2006).
[15] C. C. Lin and R. S. Liu, “Advances in Phosphors for Light-emitting Diodes,” Journal of Physical Chemistry Letters, vol.2, pp.1268-1277 (2011).
[16] N. T. Tran, J. P. You, and F. G. Shi, “Effect of Phosphor Particle Size on Luminous Efficacy of Phosphor-Converted White LED,” Journal of Lightwave Technology, vol. 27, no. 22, pp.5145-5150 (2009).
[17] M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” Journalof Display Technology, vol. 3, no. 2, pp.160-175 (2007).
[18] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE Journalon Selected Topicsin Quantum Electronics, vol. 8, no. 2, pp.310-320 (2002).
[19] J. P. You, N. T. Tran, and F. G. Shi, “Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration,” Optics Express, vol.18, no.5, pp.5055-5060 (2010).
[20] R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride /nitridephosphors,” Applied Physics Letter, vol.90, no.191101 (2007).
[21] V. R. Bandi, M Jayasimhadri, J. jeong, K. Jang,Ho S. Lee, S. S. Yi and J. H. Jeong, “Host sensitized novel red phosphor CaZrSi2O7:Eu3+ for near UV andblue LED-based white LEDs,”Journalof Physics D: Applied Physics, vol.43, no.395103, pp.1-7 (2010).
[22] Y. C. Chiu, W. R. Liu, C. K. Chang, C. C. Liao, Y. T. Yeh, S. M. Jangaand T. M. Chen, “Ca2PO4Cl:Eu2+: an intense near-ultraviolet converting blue phosphor forwhite light-emitting diodes,”Jonrnal Materal Chemistry, vol.20, pp.1755-1758 (2010).
[23] T. Nishida, T. Ban and N. Kobayashi, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors”, Applied Physics Letters, vol. 82, pp. 3817-3819 (2003).
[24] C. C. Tsai, C. C. Huang, J. Wang, M. C. Hsuh, and W. H. Cheng, “An optimum design and fabrication of focus lens for high intensity Light-Emitting Diodes”, Japen Journal Applied Physics,vol.48, no.094504 (2009).
[25] 蔡國猷“發光二極體基礎技術”,建興出版社,(1992)。
[26] 楊淑慧 “LED產業新版圖”,財訊出版社,(2006)。
[27] 鄭韋治“高效率氮化銦鎵/氮化鎵藍光二極體之研製”,國立高雄第一科技大學光電系,碩士論文 (2008)。
[28] Hongping Zhao, Guangyu Liu, Jing Zhang, Jonathan D. Poplawsky, Volkmar Dierolf, and Nelson Tansu1, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells”, Optics Express, vol. 19, no. S4, pp.A991-A1007 (2011).
[29] S.J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, C. H. Liu, “Nitride-based LEDs fabricated on patterned sapphire substrates,” Solid-State Electronics, vol.47 pp.1539-1542 (2003).
[30] J. Y. Kim, M. K. Kwon, J. P. Kim, and S. J. Park, “Enhanced Light Extraction From Triangular GaN-Based Light-Emitting Diodes,”IEEE Photonics Technology Letters, vol. 19, no. 23, pp.1865-1867(2007).
[31] C. S. Wu T. C. Liang H. Kuan W. C. Cheng “Output Power Enhancement of GaN-Based Light-Emitting Diodes Using Circular-Gear Structure,” Japanese Journal of Applied Physics, vol.50, no.032101 (2011).
[32] S.M. Huang, Y. Yao, C. Jin, Z. Sun , Z.J. Dong,“Enhancement of the light output of GaN-based light-emitting diodes using surface-textured indium-tin-oxide transparent ohmic contacts,” Displays, vol.29 pp.254-259 (2008).
[33] R. H. Horng, S. H. Huang, C. C. Yang, and D. S. Wuu, “Efficiency Improvement of GaN-Based LEDs with ITO Texturing Window Layers Using Natural Lithography,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp.1196-1201 (2006).
[34] J. O. Song, J. S. Ha, and T. Y. Seong, “Ohmic-Contact Technology for GaN-Based Light-Emitting Diodes: Role of P-Type Contact,” IEEE Transactionson Electron Devices, vol. 57, no. 1, pp.42-59 (2010).
[35] Y. Yao, C. Jin, Z. Dong, Z. Sun, S. M. Huang, “Improvement in performance of GaN-based light-emitting diodes with indium tin oxide based transparent ohmic contacts,” Displays, Vol.28, pp.129-132 (2007).
[36] S. J. Chang, L. M. Chang, D. S. Kuo, T. K. Ko, S. J. Hon, and S. Li, “GaN-Based LEDs With Rough Surface and Selective KOH Etching,” Journalof Display Technology, vol. 10, no. 1, pp.27-32 (2014).
[37] H. W. Huang, C. C. Kao, J. T. Chu, W. C. Wang, T. C. Lu, H. C. Kuo, S. C. Wang, C. C. Yu, S. Y. Kuo, “Investigation of InGaN/GaN light emitting diodes with nano-roughened surface by excimer laser etching method,” Materials Science and Engineering B, vol. 136, pp.182-186 (2007).
[38] S. C. Shei, “SILAR-Based Application of Various Nanopillars on GaN-Based LED to Enhance Light-Extraction Efficiency,” Journal of Nanomaterials, vol. 2013, no.653981, pp.1-6 (2013).
[39] 劉俊顯 “同色度玻璃螢光體與矽膠色轉換層之可靠度試驗暨平均壽命預測”,國立中山大學光電工程學系,碩士論文(2011)。
[40] 胡國瑞、孫沛立、徐道義、陳鴻興、黃日鋒、詹文鑫、羅梅君“顯示色彩工程學”,全華圖書(2009)。
[41] 大田登、陳鴻興、陳詩涵 “色彩工程學:理論與應用”,全華圖書股份有限公司,(2008)。
[42] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Applied Physics A, vol. 64, pp. 417-418 (1997)。
[43] H. J. A. Dartnall, J. K. Bowmaker and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons”, Proceedings of the Royal Society of London SeriesB-Biological Sciences, vol. 220, pp. 115-130 (1983).
[44] 劉如熹、劉宇桓“發光二極體用氧氮螢光粉介紹”,全華科技圖書(2006)。
[45] Y. Ohno“Optical metrology for LEDs and solid state lighting,” Proceedings of SPIE, vol.6046, no.604625 (2006).
[46] Y. T. Nien, T. H. Lu, V. R. Bandi, and I. G. Chen “Microstructure and Photoluminescence Characterizations of Y3Al5O12:Ce Phosphor Ceramics Sintered with Silica” American Chemical Society, vol.95 no.4 pp.1378-1382 (2012).
[47] 蔡昌宇“LED準遠場之研究與其在燈具中應用”,國立中央大學光電科學研究所( 2008)。
[48] 楊凱宇“高功率LED之歐洲法規自行車前燈設計”,國立中央大學光電科學研究所(2009)。
[49] 劉如熹“白光發光二極體製作技術”,全華科技圖書,(2008)。
[50] 余昭蓉“摻雜稀土元素鋁矽酸釔螢光體知何成與特性鑑定”,交通大學應用化學系,碩士論文,(1997)。
[51] 鄭煜舜“鎂離子摻雜之YAG:Tb螢光粉體其晶體結構與光學性質”,成功大學資源工程研究所,碩士論文,(1996)。
[52] R. R. Jacobs, W. F. Krupke, and M. J. Weber, “Measurement of excited-state-absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d~4f rare-earth lasersa,” Applied Physics Letter, vol.33, no.5, pp.410-412 (1978).
[53] A. Purwanto, W. N. Wang, T. Ogi, I. W. Lenggoro, E. Tanabe, K. Okuyama“High luminance YAG:Ce nanoparticles fabricated from urea added aqueous precursor by flame process” Journal of Alloys and Compounds vol.463, pp. 350-357 (2008).
[54] H. L. Li, X. J. Liu, L. P. Huang, “Luminescent properties of LuAG:Ce phosphors with differentCe contents prepared by a sol-gel combustion method,”Optical Materials, vol.29, pp.1138-1142 (2007).
[55] X. Piao, K. I. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “preparation of CaAlSiN3:Eu2+ Phosphors by the Self-Propagating High-Temperature Synthesis and Their Luminescent Properties,” American Chemical Society, vol.19, pp.4592-4599 (2007).
[56] Glass Technical Handbook, http://www.schott.com/epackaging/english.
[57] 陳輝達“玻璃對金屬接合技術之研究國立交通大學機械工程研究所,碩士論文(2003).
[58] 汪建民、李源弘 “材料分析”,中國材料科學學會,熱分析,第555至612頁。
[59] 李文傑“以機械合金法備製非晶質合金(Fe1-xMx)62Nb8B30 (M=Ni, Co)之物性研究”,南台科技大學機械工程研究所,碩士論文 (2006)。
[60] R. Wirth, “A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy,” European Journal of Mineralogy, vol. 16, no. 6, pp. 863-876 (2008).
[61] 汪建民、陳福榮、鮑忠興 “材料分析”, 中國材料科學學會,高解析度穿透式電子顯微鏡分析,第215至236頁。
[62] 汪建民、凌永健、王治平 “材料分析”,中國材料科學學會,X光螢光分析,第471至500頁。
[63] 汪建民、吳南均 “材料分析”,中國材料科學學會, X光粉末繞射分析, 第47至72頁。
[64] 汪建民、郭正次 “材料分析”,中國材料科學學會,激發光光譜分析,第237至258頁。
[65] 胡希聖“利用溶膠凝膠法披覆二氧化矽奈米薄膜於Ce3+:YAG螢光粉應用於玻璃螢光體之研究”,國立中山大學光電工程學系,碩士論文(2013)。
[66] C. C. Sun, C. Y. Chen, C. C. Chen, C. Y. Chiu, Y. N. Peng, Y. H. Wang, T. H. Yang, T. Y. Chung, and C. Y. Chung, “High uniformity in angular correlated-color temperature distribution of white LEDs from 2800K to 6500K”, Optics Express,vol. 20, no. 6, pp.6622-6630 (2012).
[67] S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence Characteristics of YAG Glass–Ceramic Phosphor for White LED,” IEEE Journal of Selected Topics in Quantum Electronics, vol.14, no.5, pp.1387-1391 (2008).
[68] H. Segawa, H. Yoshimizu, N. Hirosaki, and S. Inoue, “Fabrication of silica glass containing yellow oxynitride phosphor by the sol-gel process”, Science and. Technology Advanced Materials, vol.12, pp.1-5 (2011).
[69] L. Yang, M. Chen, Z. Lv, S. Wang, X. Liu, and S. Liu, “Preparation of a YAG:Ce phosphor glass by screen-printing technology and its application in LED packaging,” Optics. Letter, vol.38, no.13, pp.2240-2243 (2013).
[70] H. Segawa, S. Ogata, N. Hirosak, S. Inoue, T. Shimizu, M. Tansho, S. Ohki, and K. Deguchi, “Fabrication of glasses of dispersed yellow oxynitride phosphor for white light-emitting diodes,” Optics Materials, vol.33, pp.171-175 (2010).
[71] Y. K. Lee, J. S. Lee, J. Heo, W. B. Im, and W. J. Chung, “Phosphor in glasses with Pb-free silicate glass powders as robust color-converting materials for white LED applications,” Optics Letter, vol. 37, no.15, pp.3276-3278 (2012).
[72] L. Y. Chen, W. C. Cheng, C. C. Tsai, Y. C. Huang, Y. S. Lin and W. H. Cheng, “High-performance glass phosphor for white-light-emitting diodes via reduction of Si-Ce3+:YAG inter-diffusion,” OSA Optical Material Express,vol. 4, no.1, pp.121-128 (2014).
[73] L. Y. Chen, W. C. Cheng, C. C. Tsai, Y. C. Huang, Y. S. Lin and W. H. Cheng, “Novel broadband glass phosphors for high CRI WLEDs,” OSA Optics Express, vol. 22, no.S3, pp. A671-A678 (2014).
[74] JEDEC, http://jedec.org/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code