Responsive image
博碩士論文 etd-0516116-155703 詳細資訊
Title page for etd-0516116-155703
論文名稱
Title
利用斜角光纖製作光纖法布立-培若干涉儀
Fiber-optic Fabry-Pérot interferometer based on beveled fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-04-07
繳交日期
Date of Submission
2016-06-17
關鍵字
Keywords
開放式共振腔、Fabry-Pérot光纖干涉儀、光纖感測器
open-cavity, Fiber-optic Fabry-Pérot interferometer, fiber sensor
統計
Statistics
本論文已被瀏覽 5736 次,被下載 29
The thesis/dissertation has been browsed 5736 times, has been downloaded 29 times.
中文摘要
Fabry-Pérot光纖干涉儀感測器具有體積小、解析度高、構造簡單等優點,其中開放式共振腔的類型又具有較高的折射率敏感度,適合應用於環境折射率的感測。過去文獻提出利用錯位熔接法製作開放式共振腔的Fabry-Pérot光纖干涉儀,但製作過程十分困難;也有研究提出利用飛秒雷射進行加工,但面臨價格昂貴的問題。本研究將切平的單模光纖與研磨後的傾斜光纖進行局部熔接,形成開放式共振腔的Fabry-Pérot光纖干涉儀,並透過化學蝕刻來控制共振腔的大小,相較於錯位熔接法,我們提出的製作流程降低了製程的困難度,而且不需使用飛秒雷射,可以有效降低製作成本。
我們將所製作的開放式Fabry-Pérot光纖干涉儀進行實驗量測,可以觀察到干涉條紋會隨著蝕刻時間增加有越來越密集的趨勢,並得到傾斜角度為3.5°與4°的元件在蝕刻過程中,其共振腔長度的變化速度分別為36.96nm/min與49.36nm/min。而在環境參數感測的部分,我們討論了傾斜角度為3.5°之元件對於折射率、溫度以及振動等環境參數的感測特性。在折射率量測範圍1.3330~1.3478內,其敏感度約為1202.77nm/RIU。在溫度量測範圍25°C~85°C內,其敏感度只有8.64pm/°C,說明此元件在進行其它外在環境參數的感測時,不容易受到環境溫度變化的干擾。而在振動頻率範圍200Hz~5000Hz內,此元件的訊雜比約在42dB~46dB之間,比其他文獻所提出的Fabry-Pérot光纖干涉儀感測器的表現更好。根據上述實驗結果,我們所製作的開放式Fabry-Pérot光纖干涉儀具有很高的潛力應用於外在環境折射率及振動的感測。
Abstract
Fiber-optic Fabry-Pérot interferometers (FFPIs) have several advantages such as small size, high resolution, and simple structure. Among them, open-cavity FFPI sensors have high potentials in applications of refractive index (RI) sensing due to the high RI sensitivity. Previous study has proposed a FFPI formed by splicing fibers with a lateral offset, which requires precise alignment and enhances the fabrication difficulty. Moreover, some studies utilize femtosecond lasers to manufacture FFPI sensors, which results in high cost. As a result, we propose a method to simply splice a beveled single-mode fiber (SMF) to a cleaved lead-in SMF to fabricate an open-cavity FFPI. We have also employed chemical etching process to enlarge and control the cavity size. The utilized method is shown to reduce the fabrication difficulty, and no high-cost femtosecond lasers are required.
The characteristics of our FFPI are demonstrated through measuring the reflection spectra. It is found that the free spectrum range of the interference fringes decreases with the etching time, and the calculated etching rates of the 3.5°-tiled sample and the 4°-tiled sample are 36.96nm/min and 49.36nm/min, respectively. We then apply the 3.5°-tiled FFPI to environmental parameter sensing. The RI sensitivity of the FFPI is 1202.77nm/RIU in the RI range of 1.3330~1.3478. The temperature sensitivity of the FFPI is only 8.64pm/°C between 25°C~85°C, which indicates that the FFPI can be used without temperature disturbance. In the frequency range of 200Hz~5000Hz, our FFPI exhibits signal-to-noise ratios of 42dB~46dB, which is higher than other FFPI vibration sensors. From the experimental results, our fabricated FFPI sensor indeed has good potentials for the measurement of RI and vibration.
目次 Table of Contents
致謝 i
中文摘要 ii
Abstract iii
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1 光纖感測器 1
1-2 光纖干涉儀感測器 2
1-2.1 薩格奈克光纖干涉儀(Sagnac fiber interferometer) 4
1-2.2 麥克森光纖干涉儀(Michelson fiber interferometer) 5
1-2.3 馬赫-任德光纖干涉儀(Mach-Zehnder fiber interferometer) 7
1-2.4 法布立-培若光纖干涉儀(Fabry-Pérot fiber interferometer) 10
1-3 研究動機 13
第二章 Fabry-Pérot光纖干涉儀的原理 14
2-1 Fabry-Pérot干涉儀的原理 14
2-2 Fabry-Pérot光纖干涉儀的原理 20
2-3 傾斜Fabry-Pérot光纖干涉儀的原理 23
第三章 開放式共振腔Fabry-Pérot光纖干涉儀的製作 25
3-1 元件設計 25
3-2 元件製作方法 28
3-3 蝕刻製程特性 35
第四章 開口式共振腔Fabry-Pérot光纖干涉儀的基本特性 37
4-1 元件量測架設 37
4-2 元件量測結果與討論 39
第五章 開放式共振腔Fabry-Pérot光纖干涉儀的感測應用 46
5-1 折射率感測 46
5-2 溫度感測 52
5-3 振動感測 56
第六章 結論 65
參考文獻 66
參考文獻 References
[1] L. Garwin and T. Lincoln, A century of nature: Twenty-one discoveries that changed science and the world. Chicago and London: University of Chicago Press, 2003.
[2] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proceedings of the Institution of Electrical Engineers-London, vol. 113, pp. 1151-1158, 1966.
[3] Y.-C. Huang, J.-S. Wang, Y.-K. Lu, W.-K. Liu, K.-Y. Huang, S.-L. Huang, and W.-H. Cheng, “Preform fabrication and fiber drawing of 300 nm broadband Cr-doped fibers,” Opt. Express, vol. 15, pp. 14382-14388, 2007.
[4] V. Bhatia, K. A. Murphy, R. O. Claus, T. A. Tran, and J. A. Greene, “Recent developments in optical-fiber-based extrinsic Fabry-Pérot interferometric strain sensing technology,” Smart Mater. Struct., vol. 4, pp. 246-251, 1995.
[5] Y. Lu, M. Han, and J. Tian, “Fiber-optic temperature sensor using a Fabry-Pérot cavity filled with gas of variable pressure,” IEEE Photon. Technol. Lett., vol. 26, pp. 757-760, 2014.
[6] L. Li, Z. Feng, X. Qiao, H. Yang, R. Wang, D. Su, Y. Wang, W. Bao, J. Li, Z. Shao, and M. Hu, “Ultrahigh sensitive temperature sensor based on Fabry-Pérot interference assisted by a graphene diaphragm,” IEEE Sens. J., vol. 15, pp. 505-509, 2015.
[7] V. Lanticq, M. Quiertant, E. Merliot, and S. Delepine-Lesoille, “Brillouin sensing cable: Design and experimental validation,” IEEE Sens. J., vol. 8, pp. 1194-1201, 2008.
[8] C. Perrotton, N. Javahiraly, M. Slaman, B. Dam, and P. Meyrueis, “Fiber optic surface plasmon resonance sensor based on wavelength modulation for hydrogen sensing,” Opt. Express, vol. 19, pp. A1175-A1183, 2011.
[9] Y. H. Kim, M. J. Kim, B. S. Rho, M.-S. Park, J.-H. Jang, and B. H. Lee, “Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode,” IEEE Sens. J., vol. 11, pp. 1423-1426, 2011.
[10] T. Zhu, D. Wu, M. Liu, and D. W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors, vol. 12, pp. 10430-10449, 2012.
[11] Y. J. Rao and D. A. Jackson, Optical fiber sensor technology. New York: Springer Science+Business Media, 2000.
[12] H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Y. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt., vol. 47, pp. 2835-2839, 2008.
[13] X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett., vol. 90, pp. 3, 2007.
[14] Y. Xin, X. Y. Dong, Q. Q. Meng, F. Qi, and C. L. Zhao, “Alcohol-filled side-hole fiber Sagnac interferometer for temperature measurement,” Sens. and Actuators A Phys., vol. 193, pp. 182-185, 2013.
[15] A. Singh, “Long period fiber grating based refractive index sensor with enhanced sensitivity using Michelson interferometric arrangement,” Photonic Sensors, vol. 5, pp. 172-179, 2014.
[16] Z. B. Tian and S. S. H. Yam, “In-line single-mode optical fiber interferometric refractive index sensors,” J. Lightw. Technol., vol. 27, pp. 2296-2306, 2009.
[17] J. T. Zhou, Y. P. Wang, C. R. Liao, B. Sun, J. He, G. L. Yin, S. Liu, Z. Y. Li, G. J. Wang, X. Y. Zhong, and J. Zhao, “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sens. and Actuators B Chem., vol. 208, pp. 315-319, 2015.
[18] T. Wei, X. W. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett., vol. 21, pp. 669-671, 2009.
[19] L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. J. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express, vol. 16, pp. 11369-11375, 2008.
[20] Y. E. Fan, T. Zhu, L. L. Shi, and Y. J. Rao, “Highly sensitive refractive index sensor based on two cascaded special long-period fiber gratings with rotary refractive index modulation,” Appl. Opt., vol. 50, pp. 4604-4610, 2011.
[21] H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express, vol. 15, pp. 5711-5720, 2007.
[22] Z. Tian, S. S. H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett., vol. 20, pp. 1387-1389, 2008.
[23] Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B Opt. Phys., vol. 27, pp. 370-374, 2010.
[24] C. C. Chang and J. Sirkis, “Multiplexed optical fiber sensors using a single Fabry-Pérot resonator for phase modulation,” J. Lightw. Technol., vol. 14, pp. 1653-1663, 1996.
[25] D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry-Pérot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B Opt. Phys., vol. 29, pp. 912-915, 2012.
[26] S. H. Aref, H. Latifi, M. I. Zibaii, and M. Afshari, “Fiber optic Fabry-Pérot pressure sensor with low sensitivity to temperature changes for downhole application,” Optics Commun., vol. 269, pp. 322-330, 2007.
[27] M. Z. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry-Pérot interferometer,” Sens. and Actuators A Phys., vol. 88, pp. 41-46, 2001.
[28] Y. Rao, J. Jiang, and C. X. Zhou, “Spatial-frequency multiplexed fiber-optic Fizeau strain sensor system with optical amplification,” Sens. and Actuators A Phys., vol. 120, pp. 354-359, 2005.
[29] V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry-Pérot interferometric sensing system,” Meas. Sci. Technol., vol. 7, pp. 58-61, 1996.
[30] G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Pérot interferometer sensor,” Sens. and Actuators A Phys., vol. 118, pp. 177-182, 2005.
[31] J. M. Corres, J. Bravo, F. J. Arregui, and I. R. Matias, “Unbalance and harmonics detection in induction motors using an optical fiber sensor,” IEEE Sens. J., vol. 6, pp. 605-612, 2006.
[32] Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett., vol. 32, pp. 2662-2664, 2007.
[33] Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry-Pérot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett., vol. 17, pp. 2403-2405, 2005.
[34] Y. Z. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, “High-temperature fiber-tip pressure sensor,” J. Lightw. Technol., vol. 24, pp. 861-869, 2006.
[35] Y. Gong, Y. Guo, Y.-J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry-Pérot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photon. Technol. Lett., vol. 22, pp. 1708-1710, 2010.
[36] P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araujo, and O. Frazao, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J., vol. 12, pp. 8-12, 2012.
[37] C. Yin, Z. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. Zhen, and B. Yu, “Temperature-independent ultrasensitive Fabry-Pérot all-fiber strain sensor based on a bubble-expanded microcavity,” IEEE Photon. J., vol. 6, 2014.
[38] S. Silva, L. Coelho, and O. Frazao, “An all-fiber Fabry-Pérot interferometer for pressure sensing in different gaseous environments,” Measurement, vol. 47, pp. 418-421, 2014.
[39] T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Pérot interferometer for highly sensitive refractive index measurement,” Opt. Express, vol. 16, pp. 5764-5769, 2008.
[40] M. Tian, P. Lu, L. Chen, D. Liu, and M. Yang, “Micro multicavity Fabry-Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photon. Technol. Lett., vol. 25, pp. 1609-1612, 2013.
[41] Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Pérot interferometers in silica fibers machined by femtosecond laser,” Opt. Express, vol. 15, pp. 14123-14128, 2007.
[42] Y. Liu, S. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Opt. Lett., vol. 38, pp. 335-337, 2013.
[43] L. Yuan, J. Huang, X. Lan, H. Wang, L. Jiang, and H. Xiao, “All-in-fiber optofluidic sensor fabricated by femtosecond laser assisted chemical etching,” Opt. Lett., vol. 39, pp. 2358-2361, 2014.
[44] X. Jiang and D. Chen, “Low-cost fiber-tip Fabry-Pérot interferometer and its application for transverse load sensing,” Prog. Electromagn. Res. Lett., vol. 48, pp. 103-108, 2014.
[45] G. Hernandez, Fabry-Pérot interferometers. Cambridge: Cambridge University Press, 1986.
[46] A. Yariv and P. Yeh, Photonics: Optical electronics in modern communications, 6th ed. New York: Oxford University Press, 2007.
[47] E. Hecht, Optics, 4th ed. New York: Addison-Wesley, 2001.
[48] M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handb. Opt., 3rd ed.: McGraw-Hill Education, 2009.
[49] J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Pérot interferometer,” Opt. Lett., vol. 34, pp. 2441-2443, 2009.
[50] K. K. Chin, “Interference of fiber-coupled Gaussian beam multiply reflected between two planar interfaces,” IEEE Photon. Technol. Lett., vol. 19, pp. 1643-1645, 2007.
[51] Y.-C. Wang, L.-H. Shyu, and S.-S. Chen, “Development of Fabry-Pérot interferometer for length measurement in large traveling range,” Master of science in mechanical engineering, institute of mechanical engineering, national Yunlin university of science & technology, Douliu, Yunlin, Taiwan, republic of China, 2006.
[52] H. Proksche, G. Nagorsen, and D. Ross, “The influence of NH4F on the etch rates of undoped SiO2 in buffered oxide etch,” J. Electrochem. Soc., vol. 139, pp. 521-524, 1992.
[53] G. Spierings, “Wet chemical etching of silicate-glasses in hydrofluoric-acid based solutions,” J. Mater. Sci., vol. 28, pp. 6261-6273, 1993.
[54] W. M. B. Yunus and A. B. Rahman, “Refractive index of solutions at high concentrations,” Appl. Opt., vol. 27, pp. 3341-3343, 1988.
[55] S. S. Zumdahl, Chemical Principles. Boston: Houghton Mifflin Company, 2003.
[56] X. Zou, N. Wu, Y. Tian, J. Ouyang, K. Barringhaus, and X. Wang, “Miniature Fabry-Pérot fiber optic sensor for intravascular blood temperature measurements,” IEEE Sens. J., vol. 13, pp. 2155-2160, 2013.
[57] Z. Y. Feng, J. C. Li, X. G. Qiao, L. Li, H. Z. Yang, and M. L. Hu, “A thermally annealed Mach-Zehnder interferometer for high temperature measurement,” Sensors, vol. 14, pp. 14210-14221, 2014.
[58] J. M. Corres, J. Bravo, F. J. Arregui, and I. R. Matias, “Vibration monitoring in electrical engines using an in-line fiber etalon,” Sens. and Actuators A Phys., vol. 132, pp. 506-515, 2006.
[59] F. Wang, J. Xie, Z. Hu, S. Xiong, H. Luo, and Y. Hu, “Interrogation of extrinsic Fabry-Pérot sensors using path-matched differential interferometry and phase generated carrier technique,” J. Lightw. Technol., vol. 33, pp. 2392-2397, 2015.
[60] F. Wang, Z. Shao, J. Xie, Z. Hu, H. Luo, and Y. Hu, “Extrinsic Fabry-Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm,” J. Lightw. Technol., vol. 32, pp. 4026-4034, 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code