Responsive image
博碩士論文 etd-0517112-151451 詳細資訊
Title page for etd-0517112-151451
論文名稱
Title
颱風巨浪侵襲下沙質海岸緩衝帶寬度之預估
Estimation of Storm Buffer Width for a Sandy Beach
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-04-26
繳交日期
Date of Submission
2012-05-17
關鍵字
Keywords
海岸緩衝帶、海灘剖面模擬、暴浪型海灘剖面、濱台侵蝕幅度、海岸防護、沙洲位置
Location of offshore bar, Extent of berm retreat, Storm-built beach profile, Modeling beach profile changes, Storm beach buffer width, Shore protection
統計
Statistics
本論文已被瀏覽 5658 次,被下載 982
The thesis/dissertation has been browsed 5658 times, has been downloaded 982 times.
中文摘要
以海岸防災與防護觀點而言,海灘必須有充裕的寬度,才能避免颱風暴潮巨浪對後灘公共設施的破壞及保護居民生命財產安全。這種由海灘灘線至後灘濱台受波浪掏刷所需的海灘寬度,稱為颱風侵襲時之「海岸緩衝帶寬度」。本研究在不考慮全球暖化及海水面上昇對已達到平衡剖面與濱台高度的影響下,應用SBEACH模組於美國CERC在1960年代的大型水槽試驗結果,檢討該模組中兩個最具代表性的參數值(K 與 ε ),應用於模擬直立式海堤前無海灘及堤前無充裕寬度情況,受颱風暴浪正向入射時的向離岸方向剖面變化;再模擬48個有充裕寬度的平衡海灘剖面案例,在颱風暴浪作用下,濱台後退幅度與潛洲位置與高度的特徵,以供海工界規劃海岸緩衝帶之參考。
SBEACH模擬結果顯示:(1)當海堤前無海灘或寬度不足時,無法抵禦颱風巨浪侵襲,導致堤趾被刷深或海灘完全消失;(2)若有充裕的寬度,不論是天然或人工養灘所造成,雖濱台在短時間內遭侵蝕後退,仍有餘地保護後灘的安全;(3)在相同的波高及週期條件下,沙灘中值粒徑愈小者,剖面坡度較緩,必須規劃寬廣的海灘,且在後灘濱台的設計高程為暴潮設計水位的1.6倍時,方能消減颱風巨浪的能量,達到海緩衝帶寬度的功效;由本研究所得之複迴歸式,輸入波浪條件及沙灘中值粒徑,可估算濱台刷深深度與侵蝕幅度及海岸緩衝帶寬度。
Abstract
On the basis of coastal disaster mitigation and protection, a beach must have sufficient width for preventing the destruction to public facilities, as well as protecting the safety of life and private property during storm events. The requirement of such a horizontal extent from the initial shoreline to the probable erosion landward to safeguard against the onslaught of a storm is referred to as ‘storm beach buffer width’. Upon neglecting the effects of global warming and sealevel rise on a beach and berm with profile in equilibrium, numerical calculations are conducted first to validate the range of the most important parameters (K 與 ε ) in the SBEACH model using the results of profile changes available from the CERC’s large wave tank (LWT) tests in 1960s. These results are then applied to assess the profile changes for a beach with a vertical seawall and the other without sufficient berm, subject to the normal incidence of storm waves over a specific duration. Finally, a total of 48 cases with sufficient beach width are then investigated, from which a multiple linear regression model is proposed to determine the extent of berm retreat, as well as the location and height of a submerged offshore bar, for the benefit of coastal profession on preliminary design of storm buffer.
Our modeling results using SBEACH reveal that: (1) A seawall without or with insufficient fronting beach could result in serious scour at its toe and even the total loss of the entire beach berm; (2) A beach with sufficient berm, natural or artificially nourished, is capable of protecting the back beach, despite the temporary erosion in the early hours of a storm action; (3) Under the same conditions of wave height and period, a wide buffer is necessary for a beach with small mean sand grain, and the berm height should be designed at 1.6 times of the designed storm surge level, in order to effectively absorb storm wave energy and maintain the provision of a storm buffer; and (4) The multiple linear regression model proposed in this study can be used to evaluate the scour depth and retreat of the berm, as well as the width of a storm beach buffer, upon the input of wave conditions and mean beach sand grain etc.
目次 Table of Contents
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 4
1.2.1 海灘剖面變化 4
1.2.2 海岸緩衝區 9
1.3 研究方法 11
1.4 本文組織 13
第二章 颱風暴潮巨浪作用的海灘過程 15
2.1 颱風特性 15
2.2 海灘剖面特性 16
第三章 海岸緩衝帶定義 25
第四章 SBEACH模組 32
4.1 模式介紹 32
4.1.1 波浪計算模組 33
4.1.2 淨輸沙率計算模組 39
4.1.3 海灘剖面變化計算模組 41
4.2 模式參數率定 45
第五章 波浪對海灘剖面變化的影響 51
5.1 重現期颱風波浪估計 51
5.2 不同重現期颱風波浪作用 55
第六章 海灘剖面變化模擬 67
6.1 直立式海堤前無海灘 67
6.2 海堤前無充裕海灘 75
6.3 海堤前配合人工養灘 83
6.4 綜合討論 91
第七章 海岸緩衝帶寬度估算 95
第八章 結論與建議 103
8.1 結論 103
8.2 建議 105
參考文獻 106
參考文獻 References
1. Basco, D. R. and C. S. Shin, (1999). A one-dimensional numerical model for storm-breaching of barrier islands. Journal of Coastal Research, 15(1), 241-260.
2. Bascom, W. N., (1951). The relationship between sand size and beach face slope. American Geophysical Union Transactions, 32, 866-874.
3. Battjes, J.A., (1974). Surf similarity. Proc. 14th Inter. Conf. Coastal Eng., ASCE, Vol.1, pp. 466-480.
4. Bodge, K. R., (1988). Longshore current and transport across non-singular equilibrium beach profiles. Proc. 21st Inter. Conf. Coastal Eng., ASCE, Chapter 104, pp. 1396-1410.
5. Bodge, K. R., (1992). Representing equilibrium beach profiles with an exponential expression. Journal of Coastal Research, 8(1), 47-55.
6. Bruun, P., (1954). Coast erosion and the development of beach profiles. Tech. Memo. 44, Beach Erosion Board, U.S. Army Corps of Engineers, Washington, D.C.
7. Dally, W.R. and R.G. Dean, (1984). Suspended sediment transport and beach profile evolution, J. Waterway, Ports, Coastal and Ocean Eng., ASCE, 110(1), 15-33.
8. Dally, W.R., (1985). Wave height variation across beaches of arbitrary profile. J. Geophysical Research, 90(6), 11917-11927.
9. Dean, R. G., (1977). Equilibrium beach profiles: U. S. Atlantic, Gulf coasts. Ocean Engineering Report No.12, Department of Civil Engineering, University of Delaware, Newark, Delaware, 45 pp.
10. Dean, R.G., (1991). Equilibrium beach profiles: characteristics and applications. Journal of Coastal Research, 7, 53-84.
11. Dean, R.G. and R. A. Dalrymple, (2002). Coastal Processes with Engineering Application. Cambridge University Press, 464 pp.
12. Dette, H. H. and K. Uliczka, (1987). Prototype investigation on time-dependent dune recession and beach erosion. Proc. Coastal Sediments’87, ASCE, Vol. 2, pp. 1430-1444.
13. Dette, H. H., M. Larson, J. Newe, J. Peters, K. Reniers, and A. Steetzel, (2002). Application of prototype flume tests for beach nourishment assessment. Coastal Engineering, 47, 137-177.
14. Dingler, J. R., (2005). Beach processes. In (M. L. Schwartz, ed.) Encyclopedia of Coastal Science, pp. 161-167.
15. Desbonnet, A., V. Lee, P. Pogue, D. Reis, J. Boyd, J. Willis, and M. Imperial, (1995). Development of coastal vegetated buffer programs. Coastal Management, 23, 91-109.
16. Dimke S. and P. Froehle, (2008). Sediment transport at the Baltic Sea coast of Mecklenburg-Vorpommern, Germany. Proc. 31st Inter. Conf. Coastal Eng., ASCE, Vol. 3, pp. 2471-2480.
17. Ebersole, B. A., (1987). Measurements and prediction of wave height decay in the surf zone. Proc. Coastal Hydrodynamics, ASCE, pp. 1-16.
18. Fitzgerald, D. M., S. Vanheteren, and T. M. Montello, (1994). Shoreline processes and damage resulting from the Halloween-Eve storm of 1991 along the North and South Shores of Massachusetts Bay, USA. Journal of Coastal Research, 10(1), 113-132.
19. Elko, N. A. and P. Wang, (2007). Immediate profile and planform evolution of a beach nourishment project with hurricane influences. Coastal Engineering, 54, 49-66.
20. Forbes, D. L., G. S. Parkesb, G. K. Mansona, and L. A. Ketch, (2004). Storms and shoreline retreat in the southern Gulf of St Lawrence. Marine Geology, 210, 169-204.
21. Galvin, C.J., (1969). Breaker travel and choice of design wave height. J. Waterways and Harbors Division, ASCE, 95(2), 175-200.
22. Gooderham, K. and K. Gooderham, (2010). Beaches a buffer between you and storm’s waves. Beach News, ABSPA Newsroom, August 24, 2010, 2 pp.
23. Government of Sri Lanka and Development Partners, (2005). Post tsunami recovery and reconstruction. (Accessed 3 February 2006)
24. Hanson, H., A. Brampton, M. Capobianco, H.H. Dette, L. Hamm, C. Laustrup, A. Lechuga, and R. Spanhof, (2002). Beach nourishment projects, practices, and objectives—a European overview. Coastal Engineering, 47, 81-111.
25. Hedegaard, I. B., R. Deigaard, and J. Fredsoe, (1991). Onshore/offshore sediment transport and morphological modeling of coastal profiles. Proc. Coastal Sediments’91, Seattle, WA, pp. 643-657.
26. Hisamichi, N. and F. Kato, (2008). Storm surge disaster caused by Ekman transportation along Pacific Ocean side of northern part of Japan in 2006. Proc. 31st Inter. Conf. Coastal Eng., ASCE, Vol. 2, pp. 1098-1109.
27. Horikawa, K., (1987). Nearshore Dynamics and Coastal Processes. University of Tokyo.
28. Horikawa, K. and C.T. Kuo, (1966). A study on wave transformation inside the surf zone. Proc. 10th Inter. Conf. Coastal Eng., ASCE, Vol. 1, pp. 217-233.
29. Hsu, J.R.C., M.M.J. Yu, F.C. Lee, J.C. Chu, and S.R. Liaw, (2008). Sizihwan beach restoration project: the first model case in Taiwan. Proc. Chinese-German Joint Symposium on Hydraulic and Coastal Engineering, Aug. 24-39, Darmstadt, Germany, pp. 35-40.
30. Hsu, T. W. and H. Wang, (1997). Geometric characteristics of storm beach profiles. Journal of Coastal Research, 13(4), 1102-1110.
31. Hsu, T. W., J.M. Liau, and J.Y. Lin, (1998). A model for predicting equilibrium storm beach profiles. Chinese Institute of Civil and Hydraulic Engineering, 10, 271-278. (In Chinese)
32. Hsu, T. W., I.F. Tseng, and C.P. Lee, (2006). A new shape function for bar-type beach profiles. Journal of Coastal Research, 22(3), 728-736.
33. Kajima, R., T. Shimizu, K. Maruyama, and S. Sato, (1983). Experiments of beach profile change with a large wave flume. Proc.18th Inter. Conf. Coastal Eng., ASCE, Vol.2, pp. 1385-1404.
34. Kamphuis, J. W., (2000). Introduction to Coastal Engineering and Management. 262 pp.
35. Komar, D. P. and W. G. McDougal, (1994). The analysis of exponential beach profiles. Journal of Coastal Research, 10(1), 59-69.
36. Komar, D. P., (1998). Beach processes and sedimentation. NJ: Prentice Hall, 540 pp.
37. Kraus, N. C. and M. Larson, (1988). Beach profile change measured in the tank for large waves 1956-1957 and 1962. Tech. Report CERC 88-6. Coastal Engineering Research Center, US Army Corps of Engineers.
38. Kraus, N. C., (1988). The effects of seawalls on the beach: an extended literature review. Journal of Coastal Research, Special Issue (4), 1-28.
39. Kraus, N. C. and W. G. McDougal, (1996). The effects of seawalls on the beach -1. An updated literature review. Journal of Coastal Research, 12(3), 691-701.
40. Kraus, N. C., (2005). Beach profile. In (M. L. Schwartz, ed.) Encyclopedia of Coastal Science, pp. 169-172.
41. Kriebel, D. L., W. R. Dally, and R. G. Dean, (1986). Undistorted Froude model for surf zone sediment transport. Proc. 20th Inter. Conf. Coastal Eng., ASCE, pp. 1296-1310.
42. Kustenschutz Mecklenburg-Vorpommern, (2009). Ministry of Agriculture, Environment and Consumer, Mecklenburg-Vorpommern, Germany.
43. Larson, M., (1988). Quantification of Beach Profile Change. Dissertation, Doctor of Philosophy, Report TVVR-1008, Department of Water Resources Engineering, Lund University, Sweden, 293 pp.
44. Larson, M. and N. C. Kraus, (1989). SBEACH: Numerical model for simulating storm-induced beach change, Report 1, Empirical foundation and model development. Technical Report CERC-89-9. Coastal Engineering Research Center, US Army Corps of Engineers, Washington, DC, USA.
45. Larson, M., N. C. Kraus, and M. R. Byrnes, (1990). SBEACH: Numerical model for simulating storm-induced beach change, Report 2, Numerical formulation and model tests. Tech Rept. CERC 89-9. Coastal Engineering Research Center, US Army Corps of Engineers.
46. Larson, M. and N. C. Kraus, (1991). Equilibrium profile of a beach with varying grain size. Proc. Coastal Sediments’91, ASCE, Vol.1, pp. 905-919.
47. Larson, M, (1996). Model of beach profile change under random waves. J. Waterway, Ports, Coastal and Ocean Eng., ASCE, 122(4), 172-181.
48. Lee F. C., J. R. C. Hsu, and W. H. Lin, (2010). Appraisal of storm beach buffer width for cyclonic waves. Coastal Engineering, 58, 1049-1061.
49. Legates, D. R. and G. J. McCabe Jr, (1999). Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241.
50. Longuet-Higgins, M.S. and R.W. Stewart, (1962). Radiation stress and mass transport in gravity waves with application to ‘surf beat’. J. Fluid Mech., 13, 481-504.
51. National Research Council (NRC), (1990). Managing Coastal Erosion. Water Science and Technology Board and Marine Board, National Academy Press, Washington, DC, 182 pp.
52. Ozolcer, İ. H., (2008). An experimental study on geometric characteristics of beach erosion profiles. Ocean Engineering, 35, 17-27.
53. Public Works Department, Ministry of the Interior, (1994). Beach rehabilitation project. Pattaya city rehabilitation and development project, Chonburi Province. 162 pp.
54. Quick, M.C., M. Asce, and J. Ametepe, (1991). Relationship between longshore and cross-shore transport. Proc. Coastal Sediments’91, ASCE, WA, pp. 184–195.
55. Roelvink, J.A. and I. Broker, (1993). Cross-shore profile models. Coastal Engineering, 21, 163–191.
56. Samarrasinghe, J., (2005). Executive director, task force for rebuilding the nation, personal communication.
57. Silvester, R. and J.R.C. Hsu, (1993). Coastal Stabilization:Innovative Concepts. Englewood Cliffs, NJ: Prentice Hall, 578 pp.
58. Silvester, R. and J.R.C. Hsu, (1997). Coastal Stabilization. Singapore : World Scientific, 578 pp. (Reprint of Silvester and Hsu, 1993)
59. Sunamura, T. and K. Horikawa, (1974). Two-dimensional beach transformation due to waves, Proc. 14th Inter. Conf. Coastal Eng., ASCE, pp. 920-938.
60. Sunamura, T., (1984). Quantitative predictions of beach-face slopes. Geological Society of America Bulletin, 95, 242-245.
61. Svendsen, I.A., P.A. Madsen, and J.B. Hansen, (1978). Wave characteristics in the surf zone. Proc.16th Inter. Conf. Coastal Eng., ASCE, Vol. 1, pp.520-539.
62. Thieler E. R., O. R. Pikey, R. S. Young, D. M. Bush, and F. Chai, (2000). The use of mathematical models to predict beach behavior for US coastal enginerring: a critical review. Journal of Coastal Rsearch, 16(1), 48-70.
63. Tita, G., M. Vincx, and G. Desrosiers, (1999). Size spectra, body width and morphotypes of intertidal nematodes: an ecological interpretation. J. Marine Biology Association of the United Kingdom, 79, 1007-1015.
64. Tsai C. P., H. B. Chen, and R. C. Hsu, (2001). Calculations of wave transformation across the surf zone. Ocean Engineering, 28, 941-955.
65. Tseng, I.F., C.P. Lee, and H.K. Chang, (1997). Study on shape functions for bar-type beach profiles. Proc. 19th Ocean Engineering Conference (Taiwan, Republic of China), pp. 561-568.
66. Vanoni, V., (2006). Sedimentation Engineering. ASCE, New York, 418 pp.
67. Walton, T.L., Jr. and R. G. Dean, (2007). Temporal and spatial change in equilibrium beach profiles from the Florida Panhandle. J. Waterway, Ports, Coastal and Ocean Eng., ASCE, 133(5), 364-376.
68. Wiegel, R.L., (1965). Oceanographical Engineering. Englewood Cliffs, NJ: Prentice Hall, 531 pp.
69. Willmott, C. J., (1981). On the validation of models, Phys. Geogr., 2, 184-194.
70. Zheng, J. and R.G. Dean, (1997). Numerical models and intercomparisons of beach profile evolution. Coastal Engineering, 30, 169-201.
71. 張隆盛,(1987)。「海岸地帶發展與管理」,台灣地區海資源保育與管理研討會,第2-3頁。
72. 張石角,(1993)。「台灣海岸之自然環境與國土資源評估」,工程環境會刊,13期,第4頁。
73. 葉榮樁、唐高永、鍾兆君、賀陳旦、邱文彥(1995)。「海岸地區整體規劃之研究」,內政部營建署委託研究計畫。
74. 邱文彥(2000)。「海岸管理理論與實務」,129頁。
75. 謝佳殷(2001)。「我國海岸管理法規體系與行政機制之研究」,國立海洋大學海洋法律研究所碩士論文。
76. 許泰文(2003)。「近岸水動力學」,中國土木水利工程學會,第367-374頁。
77. 許泰文、許榮中、李兆芳、簡仲和、曾以帆(2004)。「海岸開發後對地形變遷影響機制分析研究(鰲鼓至曾文溪口)(2/3)」,經濟部水利署水利規劃試驗所。
78. 尹彰(2004)。「德國海岸生態工法案例」,生態工法案例編選集,行政院公共工程委員會,第355-388頁。
79. 郭金棟(2004)。「海岸保護」,科技圖書,第89-94頁。
80. 鄭凱文(2004)。「以SBEACH模擬颱風暴浪引起之海灘剖面變化」,國立中山大學海洋環境及工程學系碩士論文。
81. 周玉娟(2008)。「海岸緩衝區之研究-以好美寮為例」,國立成功大學海洋科技與事務研究所碩士論文。
82. 龔志富(2008)。「聯合波浪與水位機率之分佈」,國立成功大學水利及海洋工程研究所碩士論文。
83. 李芳君、林文華、許榮中(2009)。「颱風巨浪侵襲下海岸緩衝帶預估與海灘剖面變化的探討」,第31屆海洋工程研討會,第519-524頁。
84. 林文華、李芳君、許榮中(2009)。「颱風巨浪暴潮作用下海岸緩衝帶寬度研擬」,第31屆海洋工程研討會,第525-530頁。
85. 謝宛芝(2009)。「海岸緩衝區與自然保護區相關性之分析研究-以好美寮海岸為例」,國立成功大學海洋科技與事務研究所碩士論文。
86. 交通部運輸研究所(2010)。「臺灣主要港口海域長期性海氣象觀測及資料特性應用之研究(1/4)」。
87. 吳柏辰(2011)。「台灣海岸緩衝區劃設之研究」,國立成功大學海洋科技與事務研究所碩士論文。
88. 李怡婷(2011)。「以海岸水動力及海岸漂沙劃設海岸緩衝區」,國立成功大學海洋科技與事務研究所博士論文。
89. 高雄市政府工務局下水道工程處(2011)。「旗津區海岸線保護工程(潛堤)─海岸公園觀景台至海水浴場段委託規劃設計及監造技術服務」。
90. 經濟部水利署第六河川局(2011)。「高雄彌陀海岸深水域抽沙養灘配合岬灣工法之研究」。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code