Responsive image
博碩士論文 etd-0517113-012532 詳細資訊
Title page for etd-0517113-012532
論文名稱
Title
miRNA在乳癌的調控及治療潛力上之探討
The role of miRNA in regulation and their therapeutic potential in breast cancer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-02
繳交日期
Date of Submission
2013-07-22
關鍵字
Keywords
miRNA 治療法、miRNA、抑癌性 miRNA、致癌性miRNA、乳癌幹細胞、正常乳腺幹細胞、乳癌
miRNA, breast cancer stem cell, normal breast stem cell, breast cancer, oncogenic miRNA, tumor suppressor miRNA, miRNA therapy
統計
Statistics
本論文已被瀏覽 5676 次,被下載 0
The thesis/dissertation has been browsed 5676 times, has been downloaded 0 times.
中文摘要
乳癌為婦女癌症中最首要的癌症,佔了所有婦女癌症約23%。雖然早期乳癌5年存活率很高,但在後期存活率快速下降。在所有的新的癌症治療方法中,因MicroRNAs在許多方面扮演重要角色。MiRNAs為單股、小片段(18-30 個核苷酸) 且不具蛋白質編譯功能的RNA所組成,藉由後轉譯修譯及mRNA降解達成其功能。本文探討miRNAs功能,包含參與正常乳腺的發育,乳癌中致癌性跟抑癌性miRNAs表現影響乳癌的病情發展、預後以及治療的效果。我們也對一些已知參與乳腺發育以及表現在正常乳腺幹細胞或乳癌幹細胞中的miRNAs、乳癌中的致癌性或抑癌性miRNAs與目標基因的相關表現對乳癌細胞的增生、侵襲、轉移以及對乳癌預後的影響以及miRNAs在乳癌治療潛力上之現況作一整理說明
Abstract
Breast cancer is one of the most leading carcinomas in women (23% in woman cancer). The 5 year survival rate in the early stage of breast cancer is high, however, the survival rate decrease rapidly in late stages. In the scope of new therapeutics of breast cancer, MicroRNAs (miRNAs) plays roles in many aspects. MiRNAs are small, non-coding single-stranded RNA molecules (18-30 nt) that regulate target gene expression in post-transcriptional and mRNA degrading process. This document discuss about the requirement of miRNAs which not only functioning in normal mammary gland development but also play roles of oncogenic or tumor suppressor pathways, and miRNAs also has been established on breast cancer progression, prognosis and therapeutic efficiency. We also summarize parts of well-known miRNAs which play the key roles during mammary gland development, in normal breast stem cell and breast cancer stem cell maintenance, and oncogenic and tumor suppressor miRNAs regulate their target genes which involved in cell proliferation, migration, metastasis and prognosis of breast cancer. At last, we will discuss the progress of miRNAs application in breast cancer therapy.
目次 Table of Contents
目錄
論文審定書………………………………………………………………………………iv
中文摘要………………………………………………………………………………..v
英文摘要………………………………………………………………………………...vi
英文縮寫表……………………………………………………………………………..vii
緒論………………………………………………………………………………….......xi
第一章:miRNA的背景資料…..………………………………………………………..1
第一節:lin-4─第一個被發現的miRNA基因……………………………………1
第二節:miRNA的生成……………………………………………...…………….2
第三節:miRNA的作用機轉………………………………………………………3
第二章:乳癌的背景資料…………………………………………………………..…...4
第一節:乳房的結構及生理功能簡要…………………………………….………4
第二節:乳癌的生成……………………………………….………………………4
第三節:乳癌的發生與基因的突變……………………………………………….5
第四節;乳癌的類型………………………………………………………….……6
第五節:乳癌的臨床分期………………………………………………………….8
第六節:乳癌的治療……………………………………………………………….8
第七節:乳癌的預後……………………………………………………………….9
第三章:miRNA與乳癌之間的關係………………………………………………..…10
第一節:正常乳腺與幹細胞中的miRNA………………………………………..10
第二節:乳癌幹細胞中的miRNA………………………………………………..11
第三節:乳癌中的致癌性miRNA………………………………………………..15
第四節;乳癌中的抑癌性miRNA………………………………………………..23
第四章:以miRNA作為治療乳癌的潛力……………………………………..………32
第一節:miRNA療法簡要………………………………………………………..32
第二節:幾個經實驗證實具有治療乳癌潛力的miRNA………………………..33
結論…………………………………………………………………………………….37
參考文獻……………………………………………………………………………….38
圖表…………………………………………………………………………………….53
參考文獻 References
1. Jemal, A., et al., Global cancer statistics. CA Cancer J Clin, 2011. 61(2).
2. Sasco, A.J., M.B. Secretan, and K. Straif, Tobacco smoking and cancer: a brief review of recent epidemiological evidence. Lung Cancer, 2004. 45 Suppl 2.
3. Kushi, L.H., et al., American cancer society guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin, 2006. 56(5).
4. Pagano, J.S., et al., Infectious agents and cancer: criteria for a causal relation. Semin Cancer Biol, 2004. 14(6).
5. Berrington de Gonzalez, A., et al., Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med, 2009. 169(22).
6. 行政院衛生署, 100年死因統計. 2011.
7. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2).
8. Lal, A., et al., p16(INK4a) translation suppressed by miR-24. PLoS One, 2008. 3(3).
9. Tay, Y., et al., MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 2008. 455(7216).
10. Abdelmohsen, K., et al., miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proc Natl Acad Sci U S A, 2008. 105(51).
11. Forman, J.J., A. Legesse-Miller, and H.A. Coller, A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A, 2008. 105(39).
12. Lytle, J.R., T.A. Yario, and J.A. Steitz, Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc Natl Acad Sci U S A, 2007. 104(23).
13. Baek, D., et al., The impact of microRNAs on protein output. Nature, 2008. 455(7209).
14. Selbach, M., et al., Widespread changes in protein synthesis induced by microRNAs. Nature, 2008. 455(7209).
15. Vasudevan, S., Y. Tong, and J.A. Steitz, Switching from repression to activation: microRNAs can up-regulate translation. Science, 2007. 318(5858).
16. Mello, C.C. and D. Conte, Jr., Revealing the world of RNA interference. Nature, 2004. 431(7006).
17. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005. 120(1).
18. Hendrickson, D.G., et al., Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol, 2009. 7(11).
19. Zhao, Y. and D. Srivastava, A developmental view of microRNA function. Trends Biochem Sci, 2007. 32(4).
20. Tang, J., A. Ahmad, and F.H. Sarkar, The role of microRNAs in breast cancer migration, invasion and metastasis. Int J Mol Sci, 2012. 13(10).
21. Iorio, M.V., et al., MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 2005. 65(16).
22. Murakami, Y., et al., Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene, 2006. 25(17).
23. Casalini, P. and M.V. Iorio, MicroRNAs and future therapeutic applications in cancer. J BUON, 2009. 14 Suppl 1.
24. Croce, C.M., Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet, 2009. 10(10).
25. Ma, L., J. Teruya-Feldstein, and R.A. Weinberg, Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 2007. 449(7163).
26. Valastyan, S. and R.A. Weinberg, MicroRNAs: Crucial multi-tasking components in the complex circuitry of tumor metastasis. Cell Cycle, 2009. 8(21).
27. Ahmad, A., et al., Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res, 2011. 71(9).
28. Barcenas, C.H., et al., Race as an independent risk factor for breast cancer survival: breast cancer outcomes from the medical college of georgia tumor registry. Clin Breast Cancer, 2010. 10(1).
29. Adams, B.D., I.K. Guttilla, and B.A. White, Involvement of microRNAs in breast cancer. Semin Reprod Med, 2008. 26(6).
30. Lowery, A.J., et al., MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast cancer management. Clin Cancer Res, 2008. 14(2).
31. Ahmad, A.A., A.S.; Ali, S.; Wang, Z.; Kong, D.; Sarkar, F.H., MicroRNAs: targets of interest in breast cancer research. In microRNA: expression, detection and therapeutic Ssrategies. Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011.
32. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5).
33. Tomari, Y. and P.D. Zamore, Perspective: machines for RNAi. Genes Dev, 2005. 19(5).
34. Reinhart, B.J., et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000. 403(6772).
35. Pasquinelli, A.E., et al., Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000. 408(6808).
36. Lagos-Quintana, M., et al., Identification of novel genes coding for small expressed RNAs. Science, 2001. 294(5543).
37. Lau, N.C., et al., An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001. 294(5543).
38. Lee, R.C. and V. Ambros, An extensive class of small RNAs in Caenorhabditis elegans. Science, 2001. 294(5543).
39. Ambros, V., et al., A uniform system for microRNA annotation. RNA, 2003. 9(3).
40. Griffiths-Jones, S., The microRNA Registry. Nucleic Acids Res, 2004. 32(Database issue).
41. Lagos-Quintana, M., et al., Identification of tissue-specific microRNAs from mouse. Curr Biol, 2002. 12(9).
42. Borchert, G.M., W. Lanier, and B.L. Davidson, RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol, 2006. 13(12).
43. Lee, Y., et al., The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003. 425(6956).
44. Lee, Y., et al., MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 2002. 21(17).
45. Zeng, Y. and B.R. Cullen, Sequence requirements for micro RNA processing and function in human cells. RNA, 2003. 9(1).
46. Okamura, K., et al., The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell, 2007. 130(1).
47. Ruby, J.G., C.H. Jan, and D.P. Bartel, Intronic microRNA precursors that bypass Drosha processing. Nature, 2007. 448(7149).
48. Yi, R., et al., Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 2003. 17(24).
49. Lund, E., et al., Nuclear export of microRNA precursors. Science, 2004. 303(5654).
50. Bernstein, E., et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001. 409(6818).
51. Grishok, A., et al., Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell, 2001. 106(1).
52. Hutvagner, G., et al., A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 2001. 293(5531)
53. Ketting, R.F., et al., Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev, 2001. 15(20).
54. Knight, S.W. and B.L. Bass, A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science, 2001. 293(5538).
55. Khvorova, A., A. Reynolds, and S.D. Jayasena, Functional siRNAs and miRNAs exhibit strand bias. Cell, 2003. 115(2).
56. Schwarz, D.S., et al., Asymmetry in the assembly of the RNAi enzyme complex. Cell, 2003. 115(2).
57. Kanellopoulou, C., et al., Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev, 2005. 19(4).
58. Bernstein, E., et al., Dicer is essential for mouse development. Nat Genet, 2003. 35(3).
59. Sood, P., et al., Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A, 2006. 103(8).
60. Houbaviy, H.B., M.F. Murray, and P.A. Sharp, Embryonic stem cell-specific MicroRNAs. Dev Cell, 2003. 5(2).
61. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859).
62. Daniel, C.W., et al., The in vivo life span of normal and preneoplastic mouse mammary glands: a serial transplantation study. Proc Natl Acad Sci U S A, 1968. 61(1).
63. Deome, K.B., et al., Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res, 1959. 19(5).
64. Young, L.J., et al., The influence of host and tissue age on life span and growth rate of serially transplanted mouse mammary gland. Exp Gerontol, 1971. 6(1).
65. Shackleton, M., et al., Generation of a functional mammary gland from a single stem cell. Nature, 2006. 439(7072).
66. Stingl, J., et al., Purification and unique properties of mammary epithelial stem cells. Nature, 2006. 439(7079).
67. Ginestier, C., et al., ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 2007. 1(5).
68. Lim, E., et al., Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med, 2009. 15(8).
69. Chen, J.F., et al., The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 2006. 38(2).
70. Chen, C.Z., et al., MicroRNAs modulate hematopoietic lineage differentiation. Science, 2004. 303(5654).
71. Smirnova, L., et al., Regulation of miRNA expression during neural cell specification. Eur J Neurosci, 2005. 21(6).
72. Yi, R., et al., A skin microRNA promotes differentiation by repressing 'stemness'. Nature, 2008. 452(7184).
73. Ibarra, I., et al., A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells. Genes Dev, 2007. 21(24).
74. Shimono, Y., et al., Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 2009. 138(3).
75. Greene, S.B., et al., A putative role for microRNA-205 in mammary epithelial cell progenitors. J Cell Sci, 2010. 123(Pt 4).
76. Greene, S.B., J.I. Herschkowitz, and J.M. Rosen, The ups and downs of miR-205: identifying the roles of miR-205 in mammary gland development and breast cancer. RNA Biol, 2010. 7(3).
77. Lee, M.J., et al., Expression of miR-206 during the initiation of mammary gland development. Cell Tissue Res, 2013.
78. Ailles, L.E. and I.L. Weissman, Cancer stem cells in solid tumors. Curr Opin Biotechnol, 2007. 18(5).
79. Marotta, L.L. and K. Polyak, Cancer stem cells: a model in the making. Curr Opin Genet Dev, 2009. 19(1).
80. Li, X., et al., Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst, 2008. 100(9).
81. Phillips, T.M., W.H. McBride, and F. Pajonk, The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst, 2006. 98(24).
82. Zhang, M., et al., Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res, 2008. 68(12).
83. Lu, J., et al., MicroRNA expression profiles classify human cancers. Nature, 2005. 435(7043).
84. Volinia, S., et al., A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A, 2006. 103(7).
85. Yu, F., et al., let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 2007. 131(6).
86. Iliopoulos, D., et al., MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells. Sci Signal, 2009. 2(92).
87. Burk, U., et al., A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep, 2008. 9(6).
88. Gregory, P.A., et al., The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol, 2008. 10(5).
89. Korpal, M., et al., The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem, 2008. 283(22).
90. Park, S.M., et al., The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev, 2008. 22(7).
91. Wellner, U., et al., The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol, 2009. 11(12).
92. Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008. 133(4).
93. Howe, E.N., D.R. Cochrane, and J.K. Richer, Targets of miR-200c mediate suppression of cell motility and anoikis resistance. Breast Cancer Res, 2011. 13(2).
94. Polytarchou, C., D. Iliopoulos, and K. Struhl, An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state. Proc Natl Acad Sci U S A, 2012. 109(36).
95. Zhang, Y., et al., Estrogen receptor alpha signaling regulates breast tumor-initiating cells by down-regulating miR-140 which targets the transcription factor SOX2. J Biol Chem, 2012. 287(49).
96. Han, M., et al., MiR-21 regulates epithelial-mesenchymal transition phenotype and hypoxia-inducible factor-1alpha expression in third-sphere forming breast cancer stem cell-like cells. Cancer Sci, 2012. 103(6).
97. Han, M., et al., Re-expression of miR-21 contributes to migration and invasion by inducing epithelial-mesenchymal transition consistent with cancer stem cell characteristics in MCF-7 cells. Mol Cell Biochem, 2012. 363(1-2).
98. Han, M., et al., Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS One, 2012. 7(6).
99. Wang, D., et al., Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets. PLoS One, 2010. 5(9).
100. Chen, J., B.C. Wang, and J.H. Tang, Clinical significance of microRNA-155 expression in human breast cancer. J Surg Oncol, 2012. 106(3).
101. Zheng, S.R., et al., Clinical significance of miR-155 expression in breast cancer and effects of miR-155 ASO on cell viability and apoptosis. Oncol Rep, 2012. 27(4).
102. Lu, Z., et al., miR-155 and miR-31 are differentially expressed in breast cancer patients and are correlated with the estrogen receptor and progesterone receptor status. Oncol Lett, 2012. 4(5).
103. Ovcharenko, D., et al., Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res, 2007. 67(22).
104. Jiang, S., et al., MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res, 2010. 70(8).
105. Zhang, M., et al., MicroRNA-155 may affect allograft survival by regulating the expression of suppressor of cytokine signaling 1. Med Hypotheses, 2011. 77(4).
106. Kong, W., et al., MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol, 2008. 28(22).
107. Neilsen, P.M., et al., Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene, 2012.
108. Zhang, C., J. Zhao, and H. Deng, 17beta-Estradiol up-regulates miR-155 expression and reduces TP53INP1 expression in MCF-7 breast cancer cells. Mol Cell Biochem, 2013.
109. Kong, W., et al., Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene, 2013.
110. Czyzyk-Krzeska, M.F. and X. Zhang, MiR-155 at the heart of oncogenic pathways. Oncogene, 2013.
111. Cascione, L., et al., Integrated microRNA and mRNA signatures associated with survival in triple negative breast cancer. PLoS One, 2013. 8(2).
112. Chang, S., et al., Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nat Med, 2011. 17(10).
113. Gatenby, R.A. and R.J. Gillies, Why do cancers have high aerobic glycolysis? Nat Rev Cancer, 2004. 4(11).
114. Jiang, S., et al., A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J, 2012. 31(8).
115. Liu, J., et al., Analysis of miR-205 and miR-155 expression in the blood of breast cancer patients. Chin J Cancer Res, 2013. 25(1).
116. Yan, L.X., et al., MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA, 2008. 14(11).
117. Si, M.L., et al., miR-21-mediated tumor growth. Oncogene, 2007. 26(19).
118. Chen, L., et al., Role of deregulated microRNAs in breast cancer progression using FFPE tissue. PLoS One, 2013. 8(1).
119. Mar-Aguilar, F., et al., Differential expression of miR-21, miR-125b and miR-191 in breast cancer tissue. Asia Pac J Clin Oncol, 2013. 9(1).
120. Ozgun, A., et al., MicroRNA-21 as an indicator of aggressive phenotype in breast cancer. Onkologie, 2013. 36(3).
121. Lee, J.A., et al., Prognostic implications of microRNA-21 overexpression in invasive ductal carcinomas of the breast. J Breast Cancer, 2011. 14(4).
122. Huang, T.H., et al., Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. J Biol Chem, 2009. 284(27).
123. Pichiorri, F., et al., In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation. J Exp Med, 2013. 210(5).
124. Selcuklu, S.D., et al., Regulatory interplay between miR-21, JAG1 and 17beta-estradiol (E2) in breast cancer cells. Biochem Biophys Res Commun, 2012. 423(2).
125. Huang, G.L., et al., Expression of microRNA-21 in invasive ductal carcinoma of the breast and its association with phosphatase and tensin homolog deleted from chromosome expression and clinicopathologic features. Zhonghua Yi Xue Za Zhi, 2008. 88(40).
126. Song, B., et al., MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J Exp Clin Cancer Res, 2010. 29.
127. Connolly, E.C., et al., Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Mol Cancer Res, 2010. 8(5).
128. Mandal, C.C., et al., miR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression. Carcinogenesis, 2012. 33(10).
129. Khaidakov, M. and J.L. Mehta, Oxidized LDL triggers pro-oncogenic signaling in human breast mammary epithelial cells partly via stimulation of MiR-21. PLoS One, 2012. 7(10).
130. Wang, B. and Q. Zhang, The expression and clinical significance of circulating microRNA-21 in serum of five solid tumors. J Cancer Res Clin Oncol, 2012. 138(10).
131. Si, H., et al., Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer. J Cancer Res Clin Oncol, 2013. 139(2).
132. Asaga, S., et al., Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem, 2011. 57(1).
133. Radojicic, J., et al., MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle, 2011. 10(3).
134. Ota, D., et al., Identification of recurrence-related microRNAs in the bone marrow of breast cancer patients. Int J Oncol, 2011. 38(4).
135. Bourguignon, L.Y., et al., Hyaluronan-CD44 interaction promotes c-Src-mediated twist signaling, microRNA-10b expression, and RhoA/RhoC up-regulation, leading to Rho-kinase-associated cytoskeleton activation and breast tumor cell invasion. J Biol Chem, 2010. 285(47).
136. Haque, I., et al., Cysteine-rich 61-connective tissue growth factor-nephroblastoma-overexpressed 5 (CCN5)/Wnt-1-induced signaling protein-2 (WISP-2) regulates microRNA-10b via hypoxia-inducible factor-1alpha-TWIST signaling networks in human breast cancer cells. J Biol Chem, 2011. 286(50).
137. Banerjee, S.K. and S. Banerjee, CCN5/WISP-2: A micromanager of breast cancer progression. J Cell Commun Signal, 2012. 6(2).
138. Vesuna, F., et al., Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer. Biochem Biophys Res Commun, 2008. 367(2).
139. Liu, Y., et al., MicroRNA-10b targets E-cadherin and modulates breast cancer metastasis. Med Sci Monit, 2012. 18(8).
140. Moriarty, C.H., B. Pursell, and A.M. Mercurio, miR-10b targets Tiam1: implications for Rac activation and carcinoma migration. J Biol Chem, 2010. 285(27).
141. Zhao, F.L., et al., Serum overexpression of microRNA-10b in patients with bone metastatic primary breast cancer. J Int Med Res, 2012. 40(3).
142. Chen, W., et al., The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumour Biol, 2013. 34(1).
143. Edmonds, M.D., et al., Breast cancer metastasis suppressor 1 coordinately regulates metastasis-associated microRNA expression. Int J Cancer, 2009. 125(8).
144. Keklikoglou, I., et al., MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-kappaB and TGF-beta signaling pathways. Oncogene, 2012. 31(37).
145. Yang, K., A.M. Handorean, and K.A. Iczkowski, MicroRNAs 373 and 520c are downregulated in prostate cancer, suppress CD44 translation and enhance invasion of prostate cancer cells in vitro. Int J Clin Exp Pathol, 2009. 2(4).
146. Huang, Q., et al., The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol, 2008. 10(2).
147. de Souza Rocha Simonini, P., et al., Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res, 2010. 70(22).
148. Ward, A., et al., Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene, 2013. 32(9).
149. Wu, X., et al., De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer. J Transl Med, 2012. 10.
150. Stinson, S., et al., TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci Signal, 2011. 4(177).
151. Miller, T.E., et al., MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem, 2008. 283(44).
152. Zhang, C., et al., PUMA is a novel target of miR-221/222 in human epithelial cancers. Int J Oncol, 2010. 37(6).
153. Zhao, J.J., et al., MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem, 2008. 283(45).
154. Di Leva, G., et al., MicroRNA cluster 221-222 and estrogen receptor alpha interactions in breast cancer. J Natl Cancer Inst, 2010. 102(10).
155. Chen, W.X., et al., miR-221/222: promising biomarkers for breast cancer. Tumour Biol, 2013.
156. Shah, M.Y. and G.A. Calin, MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Med, 2011. 3(8).
157. Peter, M.E., Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle, 2009. 8(6).
158. Shell, S., et al., Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci U S A, 2007. 104(27).
159. Jiang, J., et al., Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res, 2005. 33(17).
160. Sun, X., et al., [Role of let-7 in maintaining characteristics of breast cancer stem cells]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2012. 28(8).
161. Dangi-Garimella, S., et al., Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J, 2009. 28(4).
162. Sakurai, M., et al., LIN28: a regulator of tumor-suppressing activity of let-7 microRNA in human breast cancer. J Steroid Biochem Mol Biol, 2012. 131(3-5).
163. Yun, J., et al., Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO J, 2011. 30(21).
164. Hu, X., et al., The heterochronic microRNA let-7 inhibits cell motility by regulating the genes in the actin cytoskeleton pathway in breast cancer. Mol Cancer Res, 2013. 11(3).
165. Bhat-Nakshatri, P., et al., Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res, 2009. 37(14).
166. Zhao, Y., et al., Let-7 family miRNAs regulate estrogen receptor alpha signaling in estrogen receptor positive breast cancer. Breast Cancer Res Treat, 2011. 127(1).
167. Chen, P.S., et al., miR-107 promotes tumor progression by targeting the let-7 microRNA in mice and humans. J Clin Invest, 2011. 121(9).
168. Lv, K., et al., Lin28 mediates paclitaxel resistance by modulating p21, Rb and Let-7a miRNA in breast cancer cells. PLoS One, 2012. 7(7).
169. Guo, L., et al., Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition. Oncogene, 2013.
170. Jiang, Y., et al., Genetic variation in a hsa-let-7 binding site in RAD52 is associated with breast cancer susceptibility. Carcinogenesis, 2013. 34(3).
171. Valastyan, S., et al., A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell, 2009. 137(6).
172. Augoff, K., et al., miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer, 2012. 11.
173. Vrba, L., et al., miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer. PLoS One, 2013. 8(1).
174. Valastyan, S. and R.A. Weinberg, miR-31: a crucial overseer of tumor metastasis and other emerging roles. Cell Cycle, 2010. 9(11).
175. Valastyan, S., et al., Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes Dev, 2009. 23(22).
176. Valastyan, S., et al., Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Res, 2010. 70(12).
177. Sossey-Alaoui, K., et al., WAVE3, an actin remodeling protein, is regulated by the metastasis suppressor microRNA, miR-31, during the invasion-metastasis cascade. Int J Cancer, 2011. 129(6).
178. Gaur, A., et al., Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res, 2007. 67(6).
179. Luo, D., et al., A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells. J Transl Med, 2013. 11.
180. Kato, M., et al., The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene, 2009. 28(25).
181. Nugent, M., N. Miller, and M.J. Kerin, Circulating miR-34a levels are reduced in colorectal cancer. J Surg Oncol, 2012. 106(8).
182. Zhang, Y., et al., MicroRNA 125a and its regulation of the p53 tumor suppressor gene. FEBS Lett, 2009. 583(22).
183. Mattie, M.D., et al., Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer, 2006. 5.
184. Scott, G.K., et al., Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem, 2007. 282(2).
185. Hofmann, M.H., et al., A short hairpin DNA analogous to miR-125b inhibits C-Raf expression, proliferation, and survival of breast cancer cells. Mol Cancer Res, 2009. 7(10).
186. Dykxhoorn, D.M., et al., miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS One, 2009. 4(9).
187. Maitah, M.Y., et al., Up-regulation of sonic hedgehog contributes to TGF-beta1-induced epithelial to mesenchymal transition in NSCLC cells. PLoS One, 2011. 6(1).
188. O'Day, E. and A. Lal, MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res, 2010. 12(2).
189. Dohadwala, M., et al., Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E(2) induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Res, 2006. 66(10).
190. Aigner, K., et al., The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene, 2007. 26(49).
191. Bracken, C.P., et al., A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res, 2008. 68(19).
192. Zavadil, J. and E.P. Bottinger, TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 2005. 24(37).
193. Eades, G., et al., miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J Biol Chem, 2011. 286(29).
194. Yu, Y., et al., Kindlin 2 promotes breast cancer invasion via epigenetic silencing of the microRNA200 gene family. Int J Cancer, 2013.
195. Teng, Y., et al., WASF3 regulates miR-200 inactivation by ZEB1 through suppression of KISS1 leading to increased invasiveness in breast cancer cells. Oncogene, 2013.
196. Uhlmann, S., et al., miR-200bc/429 cluster targets PLCgamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene, 2010. 29(30).
197. Menard, S., et al., Role of HER2/neu in tumor progression and therapy. Cell Mol Life Sci, 2004. 61(23).
198. Stern, D.F., ERBB3/HER3 and ERBB2/HER2 duet in mammary development and breast cancer. J Mammary Gland Biol Neoplasia, 2008. 13(2).
199. Iorio, M.V., et al., microRNA-205 regulates HER3 in human breast cancer. Cancer Res, 2009. 69(6).
200. Adams, B.D., H. Furneaux, and B.A. White, The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol, 2007. 21(5).
201. Chen, X., et al., Expression of the tumor suppressor miR-206 is associated with cellular proliferative inhibition and impairs invasion in ERalpha-positive endometrioid adenocarcinoma. Cancer Lett, 2012. 314(1).
202. Zhou, J., et al., miR-206 is down-regulated in breast cancer and inhibits cell proliferation through the up-regulation of cyclinD2. Biochem Biophys Res Commun, 2013. 433(2).
203. Tavazoie, S.F., et al., Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 2008. 451(7175).
204. Liu, H., et al., Effect of microRNA-206 on cytoskeleton remodelling by downregulating Cdc42 in MDA-MB-231 cells. Tumori, 2010. 96(5).
205. Li, Y., F. Hong, and Z. Yu, Decreased expression of microRNA-206 in breast cancer and its association with disease characteristics and patient survival. J Int Med Res, 2013. 41(3).
206. Johnson, C.D., et al., The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res, 2007. 67(16).
207. Trang, P., et al., Regression of murine lung tumors by the let-7 microRNA. Oncogene, 2010. 29(11).
208. Esquela-Kerscher, A., et al., The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle, 2008. 7(6).
209. Kota, J., et al., Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 2009. 137(6).
210. Hayashita, Y., et al., A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res, 2005. 65(21).
211. Zhang, B., X. Pan, and T.A. Anderson, MicroRNA: a new player in stem cells. J Cell Physiol, 2006. 209(2).
212. Zhu, S., et al., MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res, 2008. 18(3).
213. Anastasov, N., et al., Radiation resistance due to high expression of miR-21 and G2/M checkpoint arrest in breast cancer cells. Radiat Oncol, 2012. 7.
214. Wang, Z.X., et al., MicroRNA-21 modulates chemosensitivity of breast cancer cells to doxorubicin by targeting PTEN. Arch Med Res, 2011. 42(4).
215. Hui, C., et al., MicroRNA-34a and microRNA-21 play roles in the chemopreventive effects of 3,6-dihydroxyflavone on 1-methyl-1-nitrosourea-induced breast carcinogenesis. Breast Cancer Res, 2012. 14(3).
216. Niu, J., et al., DNA damage induces NF-kappaB-dependent microRNA-21 up-regulation and promotes breast cancer cell invasion. J Biol Chem, 2012. 287(26).
217. Kong, W., et al., MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem, 2010. 285(23).
218. Zhu, J., et al., [Expression and its clinical significance of miR-155 in human primary breast cancer]. Zhonghua Wai Ke Za Zhi, 2010. 48(3).
219. Song, C.G., et al., Correlation of miR-155 on formalin-fixed paraffin embedded tissues with invasiveness and prognosis of breast cancer. Zhonghua Wai Ke Za Zhi, 2012. 50(11).
220. Ma, L., et al., Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol, 2010. 28(4).
221. Zhao, Y., et al., let-7 microRNAs induce tamoxifen sensitivity by downregulation of estrogen receptor alpha signaling in breast cancer. Mol Med, 2011. 17(11-12).
222. Sun, X., et al., Let-7: a regulator of the ERalpha signaling pathway in human breast tumors and breast cancer stem cells. Oncol Rep, 2013. 29(5).
223. Barh, D., et al., MicroRNA let-7: an emerging next-generation cancer therapeutic. Curr Oncol, 2010. 17(1).
224. Korner, C., et al., MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase C epsilon (PKCepsilon). J Biol Chem, 2013. 288(12).
225. Schmittgen, T.D., miR-31: a master regulator of metastasis? Future Oncol, 2010. 6(1).
226. Valastyan, S., et al., Activation of miR-31 function in already-established metastases elicits metastatic regression. Genes Dev, 2011. 25(6).
227. Li, L., et al., MiR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1. Clin Exp Med, 2013. 13(2).
228. Yang, S., et al., MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene, 2012.
229. Guo, X., Y. Wu, and R.S. Hartley, MicroRNA-125a represses cell growth by targeting HuR in breast cancer. RNA Biol, 2009. 6(5).
230. Wu, H., S. Zhu, and Y.Y. Mo, Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res, 2009. 19(4).
231. Wu, H. and Y.Y. Mo, Targeting miR-205 in breast cancer. Expert Opin Ther Targets, 2009. 13(12).
232. Cittelly, D.M., et al., Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Mol Cancer, 2010. 9.
233. Carthew, R.W. and E.J. Sontheimer, Origins and Mechanisms of miRNAs and siRNAs. Cell, 2009. 136(4).
234. Greene, S.B., J.I. Herschkowitz, and J.M. Rosen, Small players with big roles: microRNAs as targets to inhibit breast cancer progression. Curr Drug Targets, 2010. 11(9)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.200.26.112
論文開放下載的時間是 校外不公開

Your IP address is 44.200.26.112
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code