Responsive image
博碩士論文 etd-0517113-182139 詳細資訊
Title page for etd-0517113-182139
論文名稱
Title
運用生質柴油及固定氫氧混合氣對於柴油引擎醛酮化合物排放特徵之研究
Characteristics of Emitted Carbonyl Compounds by using Biodiesel fuel with constant H2/O2 in a Heavy-Duty Diesel Engine
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
148
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-04
繳交日期
Date of Submission
2013-06-20
關鍵字
Keywords
柴油引擎、生質柴油、醛酮類化合物、節能效益、臭氧生成潛勢
Carbonyls, Ozone Formation Potential, Biodiesel, Diesel Engine, Energy conservation
統計
Statistics
本論文已被瀏覽 5703 次,被下載 1291
The thesis/dissertation has been browsed 5703 times, has been downloaded 1291 times.
中文摘要
本研究以一重型柴油引擎在穩態循環條件下進行測試,先運用車上發電機將富餘之電力在氫氧機中電解水以產生氫氣和氧氣,並在固定60 L/min之氫氧氣進入燃燒室內與不同添加比例生質柴油(B0、B5、B10、B20 及B30)進行燃燒,以期瞭解柴油引擎效能方面之整體變化趨勢及燃燒效率進而減少Carbonyls 排放。
研究發現,固定60 L/min的H2/O2作為混合燃料時,傳統污染物THC、CO排放因子,隨生質柴油添加比例增加而下降;NOx、CO2及PM排放因子則反之。
醛酮化合 物則隨著生質柴油比例增加(0%–30%)而減少,其濃度依序為239.87μg/m3、234.69μg/m3、226.55μg/m3、 213.39μg/m3及207.19μg/m3,其排放減量為2.16%、5.55%、11.04%及13.62%。由上述可知,柴油引擎中的生質柴油 摻配比例愈高,其醛酮化合物排放愈低。
純柴油(B0)與生質柴油(B5、B10、B20 及B30)之臭氧生成潛勢(OFP)為:1,538.26 μg-O3/m3、1,496.15μg-O3/m3、1,447.31μg-O3/m3、1,368.00 μg-O3/m3 及1,327.84 μg-O3/m3,表示隨生質柴油添加比例越高,臭氧生成潛呈現下降趨勢,Carbonyls之光化反應性降低。綜合引擎耗油柴油當量以及氫氧機耗電柴油 當量,整體耗能之柴油當量分別為2.261 L、2.262 L、2.321 L、2.322 L 及2.342 L。由上述可知,隨著生質柴油比例增加,其整體耗能之柴油當量增加。節能效益方面呈現下降趨勢分別為–0.04%、–2.65%、–2.70%、 –3.58%。
Abstract
The emission tests were conducted under steady-state cycle condition in a heavy-duty diesel engine using 0% to 30% ratios of biodiesel fuel with constant H2/O2 (60 L/min) inflow rate for understanding the emission characteristics of carbonyl compounds and overall engine performance.
Experimental results showed that the emission factors of THC (total hydrocarbon) and CO (carbon monoxide) decreased with the increasing biodiesel ratio (0% – 30%). On the contrary, NOx, CO2, and PM emission factors increased with the increasing biodiesel ratio (0% – 30%).
The emission concentrations of carbonyl compounds were 239.87 μg/m3, 234.69μg/m3, 226.55μg/m3, 213.39μg/m3, and 207.19μg/m3 for B0 (pure diesel), B5, B10, B20 and B30 of biodiesel fuel, respectively, i.e., decreasing with increasing addition of biodiesel fuel.
The Ozone Formation Potentials, OFP, for pure diesel and biodiesel (B5, B10, B20, B30) were 1538.26μg-O3/m3, 1496.15μg-O3/m3, 1447.31μg-O3/m3, 1368.00μg-O3/m3, and 1327.84μg-O3/m3, respectively, decreasing with the increasing biodiesel ratio. Thus, addition of biodiesel in diesel fuel can reduce the photochemical formation of ozone.
Total oil equivalents, combining fuel consumption of diesel and biodiesel and electricity consumption of H2/O2 generator, were 2.261, 2.262, 2.321, 2.322 and 2.342 for B0, B5, B10, B20, and B30, respectively. That is, energy consumption was increased with the addition of biodiesel with the rates of 0.04% (B5), 2.65% (B10), 2.70% (B20), and 3.58% (B30), respectively.
目次 Table of Contents
謝誌 ....................................................................................................... i
摘要............................................................................................................ii
Abstract ....................................................................................................iii
目錄 ..................................................................................................... iv
圖目錄 ................................................................................................vii
表目錄 .................................................................................................. x
第一章 前言............................................................................................ 1
1.1 研究緣起..............................................................................................1
1.2 研究目標..............................................................................................3
第二章文獻回顧.................................................................................... 4
2.1 能源概論..............................................................................................4
2.1.1 現今能源概況............................................................................... 4
2.1.2 節能效益....................................................................................... 7
2.1.3 生質柴油概述............................................................................... 8
2.1.4 氫燃料物化特性......................................................................... 10
2.1.5 氫氣之生成反應與來源............................................................. 13
2.1.6 氫氣燃料之應用......................................................................... 15
2.2 柴油引擎及污染排放特徵................................................................17
2.2.1 柴油引擎簡介和未來發展......................................................... 17
2.2.2 柴油引擎作用原理..................................................................... 17
2.2.3 引擎設定及控制技術對污染物排放之影響............................. 19
2.2.4 傳統污染物排放特徵及健康危害性......................................... 25
2.3 醛酮化合物........................................................................................30
2.3.1 醛酮化合物之性質..................................................................... 30
2.3.2 醛酮化合物之來源..................................................................... 32
2.3.3 醛酮化合物之轉化反應............................................................. 32
2.3.4 醛酮化合物於大氣之分佈特性................................................. 34
2.3.5 醛酮化合物及其前驅物致臭氧生成特性................................. 35
2.3.6 醛酮化合物之健康危害............................................................. 36
2.3.7 不同燃油中對柴油車排放醛酮之影響..................................... 39
第三章研究方法與步驟...................................................................... 43
3.1 研究架構與流程................................................................................43
3.2 實驗規劃............................................................................................44
3.2.1 氫氧氣進氣量之添加比例......................................................... 44
3.2.2 生質柴油之添加比例................................................................. 44
3.2.3 採樣規劃..................................................................................... 45
3.3 採樣設備............................................................................................46
3.3.1 柴油引擎規格............................................................................. 46
3.3.2 氫氧機......................................................................................... 46
3.3.3 三相電力分析儀......................................................................... 47
3.3.4 醛酮化合物採樣方法與設備..................................................... 48
3.4 採樣程序............................................................................................51
3.4.1 柴油系統..................................................................................... 51
3.4.2 傳統污染物量測......................................................................... 53
3.4.3 Carbonyls 採樣............................................................................. 54
3.5 樣品分析............................................................................................55
3.6 分析設備及程序................................................................................57
3.7 Carbonyls 分析之品質保證與品質控制............................................57
3.7.1 空白試驗..................................................................................... 57
3.7.2 方法偵測極限(Method Detection Limit, MDL)......................... 58
3.7.3 檢量線(Calibration Curve)之配置.............................................. 59
3.7.4 準確度(Accuracy) ....................................................................... 59
3.7.5 精密度(Precision ......................................................................... 61
第四章結果與討論.............................................................................. 63
4.1 生質柴油與固定60 L/min的H2/O2進氣量混合對引擎性能之影響63
4.1.1 制動熱效率................................................................................. 63
4.1.2 制動單位燃料消耗率................................................................. 66
4.2 以60 L/min 氫氧氣混和生質柴油對於柴油引擎之排放特徵.......68
4.2.1 碳氫化合物(THC)....................................................................... 69
4.2.2 氮氧化物(NOX)........................................................................... 71
4.2.3 一氧化碳(CO) ............................................................................. 73
4.2.4 二氧化碳(CO2)............................................................................ 75
4.2.5 懸浮微粒(PM) ............................................................................. 76
4.3 以60 L/min 氫氧氣混和生質柴油對於柴油引擎醛酮類化合物排放特徵....78
4.3.1 Total Carbonyls 之排放濃度與排放減量.................................... 78
4.3.2 Total Carbonyls 之排放因子特徵................................................ 81
4.3.3 Total Carbonyls 之組成分析..................................................... 87
4.4 柴油引擎醛酮化合物排放對臭氧生成潛勢之影響......................110
4.5 Carbonyls 年排放量推估..................................................................112
4.6 節能效益..........................................................................................116
第五章結論與建議............................................................................ 122
5.1 結論..................................................................................................112
5.2 建議 ..................................................................................................124
參考文獻 ............................................................................................ 125
附錄 .................................................................................................. 133
參考文獻 References
Atkinson, R., Tuazon, E.C., Aschmann, S.M., 1995. Products of the gas-phase
reactions of O3 with alkenes. Environment Science & Technology 29, 1860
– 1866.

Ballesteros, R., Hernández, J.J., Guillén-Flores, J., 2011. Carbonyls speciation in
a typical European automotive diesel engine using bioethanol/butanol-diesel
blends.

British Petroleum., 2010, BP Statistical Review of World Energy.

Brown, W.H., 1997. Introduction to Organic Chemistry. Saunders College
Publishing, Harcourt Brace & Company, FL, USA.

Bünger, J., Müller, M., Krahl, J., Baum, K., Weigel, A., Haillier, E., Schulz, T.G.,
2000. Mutagenicity of Diesel Exhaust Particles from Two Fossil and Two
Plant Oil Fuels. Mutagenesis 15, 391 – 397.

British Petroleum., 2010, BP Statistical Review of World Energy.
Chan, C.C., Nien, C.K., Tsai, C.Y., Her, G.R., 1995. Comparison of Tail Pipe
Emission from Motocycles and Passenger Cars. Journal of Air & Waste
Management Association 45, 116 – 124.
Finlayson-Pitts, B.J., Pitts, J.N., 1986. Atmospheric chemistry. John Wiley and
Sons. New York.
Gatts, T., Liu, S., Liew C., Ralston, B., Bell, C., Li, H., 2012. An experimental
investigation of incomplete combustion of gaseous fuels of a heavy-duty
diesel engine supplemented with hydrogen and natural gas. International
Journal of Hydrogen Energy 37, 7848 – 7859.
126
Graham, L., 2005. Chemical Characterization of Emissions from Advanced
Technology Light- Duty Vehicles. Atmospheric Environment 39, 2385 –
2398.
Grosjean, D., 1982. Formaldehyde and other carbonyls in Los Angeles ambient
air. Environment Science and Technology 16, 254 – 262.
Guarieiro, L.L.N., Pereira, P.A.de.P., Torres, E.A., Rocha, G.O.da., Andrade,
J.B.de., 2008. Carbonyl compound emitted by a diesel engine fuelled with
diesel and biodiesel-diesel blends:Sampling optimization and emissions
profile. Atmospheric Environment 42, 8211 – 8218.
Hawanam, K., Byungchul, C., 2010. The effect of biodiesel and bioethanol
blended diesel fuel on nanoparticles and exhaust emissions from CRDI
diesel engine. Renewable Energy 35, 157 – 163.
He, B.Q., Shuai, S.J., Wang, J.X., He, H., 2003. The effect of ethanol blended
diesel fuels on emissions from a diesel engine. Atmospheric Environment
37, 4965 – 4971.
He, C., Ge Y., Tan, J., You, K., Han, X., Wang, J., 2009.Comparison of carbonyl
compounds emissions from diesel engine fueled with biodiesel and diesel.
Atmospheric Environment 43, 3657 – 3661.
Heywood, J.B., 1988. Internal Combustion Engine Fundamentals. New York:
McGraw – Hill Book Company.
Ho, K.F., Ho, S.S.H., Cheng, Y., Lee, S.C., Yu, J.Z., 2007. Real-world emission
factors of fifteen carbonyl compounds measured in a Hong Kong tunnel.
Mospheric Environment 41, 1747 – 1758.
Levy, H., 1971. Normal Atmosphere: Large Radical and Formaldehyde
Concentration Predicted Science 173, 141 – 143.
127
Lílian, L.N.G., Amanda, F.de.S., Ednildo, A.T., Jailson, B.de.A., 2009. Emission
profile of 18 carbonyls, CO, CO2, and NOx emitted by a diesel engine
fueled with diesel and ternary blends containing diesel, ethanol and
biodiesel or vegetable oils. Atmospheric Environment 43, 2754 – 2761.
Lin, Y.C., Hsu, K.H., Chen, C.B., 2011. Experimental investigation of the
performance and emissions of a heavy-duty diesel engine fueled with waste
cooking oil biodiesel/ultra-low sulfur diesel blends. Energy 36, 241 – 248.
Lin, Y.C., Wu, T.Y., Ou-Yang, W.C., Chen, C.B., 2009. Reducing emissions of
carbonyl compounds and regulated harmful matters from a heavy-duty
diesel engine fueled with paraffinif/biodiesel blends at one low load
steady-state condition. Atmospheric Environment 43, 2642 – 2647.
Liu, S., Li, H., Liew, C., Gatts, T., Wayne, S., Shade, B., Clark, N., 2011. An
experimental investigation of NO2 emission characteristics of a heavy-duty
H2-diesel dual fuel engine. International Journal of Hydrogen Energy 36,
12015 – 12024.
National Biodiesel Board, 2006
Osama, M.M., Matar, M.S., Koreish, S., 1993, Effect of Methyl Teriary Butyl
Ether (MTBE) as a Gasoline Additive on Engine Performance and Exhaust
Emission. Fuel Science and Technology International 11, 1331 – 1343.
Pang, X., Shi, X., Mu, Y., He, H., Shuai, S., Chen, H., Li, R., 2006.
Characteristics of Carbonyl Compounds Emission from a Diesel-Engine
Using Biodiesel-Ethanol-Diesel as Fuel. Atmospheric Environment 40, 7057
– 7065.
Peng, C.Y., Yang, H.H., Lan, C.H., Chien, S.M., 2008. Effects of the biodiesel
blend fuel on aldehyde emissions from diesel engine exhaust. Atmospheric
Environment 42, 906 – 915.
Petit, A., Montagne, X., 1993. Effects of the gasoline composition on exhaust
emissions of regulated and speciated pollutants. SAE paper 932681.
128
Possanzini, M., Dipalo, V., 1995. Determination of Olefinic Aldehydes Other
Volatile VOCs in Air Samples by DNPH-Coated Cartridges and HPLC.
Chromatographia 40, 134 – 138.
Raber, W.H., Moortgat, G.K., 1995. Photooxidation of Selected Carbonyl
Compounds in Air: Methyl Ethyl Ketone, Methyl Vinyl Ketone,
Methacrolein and Methylglyxal. Progress and Problems in Atmospheric
Chemistry, Advanced Series in Physical Chemistry-Vol.3, World Scientific
Publishing Co. Pte. Ltd., Singapore, 319.
Randazzo, M.L., Sodré, J.R., 2011. Exhaust emissions from a diesel powered
vehicle fuelled by soybean biodiesel blends (B3-B20) with ethanol as an
additive (B20E2-B20E5). Fuel 90, 98 – 103.
Schwartz, W.R., McEnally, C.S., Pfefferle, L.D., 2006. Decomposition and
htdrocaron growth processes for esters in non-premixed flames. Journal of
Physical Chemistry A 110, 6643 – 6648.
Seinfeld, J.H., 1986. Atmospheric Chemistry and Physics of Air Pollution. John
Wiley and Sons Inc., Canada, 58 – 59
Sérgio, M.C., Graciela, A., 2008. Carbonyl emissions in diesel and biodiesel
exhaust. Atmospheric Environment 42, 769 – 775.
Shepson, P.B., Hastie, D.R., Schiff, H.I., Polizzi, M., Bottenheim, J.W., Anlauf,
K., Mackay. G.I., Karecki, D.R., 1991. Atmospheric concentration and
temporal variations of C1 – C3 carbonyl-compounds at 2 rural sits in Central
Ontario. Atmospheric Environment Part A-General Topics 25, 2001 – 2005.
Singh, H.B., Ohara, D., Herlth, D., Sachse, W., Blake, D.R., Bradshaw, J.D.,
Kanakidou, M., Crutzen, P.J., 1994. Acetone in the Atmosphere-Distribution,
Sources, and Sinks. Journal of Geophysical Research-Atmosphere 99, 1805
– 1819.
129
Sitting, M., 1974. Aldehydes. Pollution Detection and Monitoring Handbook,
Noyes Data Corp., Park Ridge, New Jersey.
Tan, P.Q., Hu, Z.Y., Lou, D.M., Li, Z.J., 2012. Exhaust emissions from a
light-duty diesel engine with Jatropha biodiesel fuel. Energy 39, 356 – 362.
Tsai, J.H., Chen, S.J., Huang, K.L., Lin, Y.C., Lee, W.J., Lin, C.C., Lin, W.Y.,
2010. PM, carbon, and PAH emissions from a diesel generator fuelled with
soy-biodiesel blends. Journal of Hazadous Materials 179, 237 – 243.
Tsolakis, A., Megaritis, A., 2005. Partially premixed charge compression ignition
engine with on-board H2 production by exhaust gas fuel reforming of diesel
and biodiesel. International Journal of Hydrogen Energy 30, 731 – 745.
Vairavamurthy, A., Roberts, J.M., Newman, L., 1992. A Review: Methods for
Determination of Low Molecular Weight Carbonyl Compounds in the
Atmosphere. Atmospheric Environment 26A, 1965 – 1993.
Wang, H.K., Cheng, C.Y., Chen, K.S., Lin, Y.C., Chen, C.B., 2012. Effect of
regulated harmful matters from a heavy-duty diesel engine by H2/O2
addition to the combustion chamber. Fuel 93, 524 – 527.
Wang, H.K., Cheng, C.Y., Lin, Y.C., Chen, K.S., 2012. Emission reductions of
Air Pollutants from a Heavy-duty Diesel Engine Mixed with Various
Amounts of H2/O2. Aerosol and Air Quality Research 12, 133 – 140.
Warneck, P., 1988. 「International Geophysical」, Elsevier Inc.
Yoon, S.H., Lee, C.S., 2011. Experimental investigation on the combustion and
exhaust emission characteristics of biogas-biodiesl dual-fuel combustion in
a CI engine. Fuel processing Technology 92, 902 – 1000.
Yuan, C.S., Lin, Y.C., Tsai, C.H., Wu, C.C., Lin, Y.S., 2009. Reducing carbonyl
emissions from a heavy-duty diesel engine at US transient cycle test by use
of paraffinic/biodiesel blends. Atmospheric Environment 43, 6175 – 6181.
130
Zervas, E., Montagee, X., Lahaye J., 2001. Emission of Alcohol and VOC
compounds from a Spark Ignition Engine. Influence of Fuel and Air/Fuel
Equivalence Ratio. Environment Science & Technology 36, 2414 – 2421.
Zhao, H., Ge, Y., Hao, G., Han, X., Fu, M., Yu, L., Shah, A.N., 2010. Carbonyl
compound emissions from passenger cars fueled with methanol/gasline
blends. Science of the Total Environment 408, 3607 – 3613.
Zhu, R., Cheung, C.S., Huang, Z., Wang, X., 2011. Regulated and unregulated
emissions from a diesel engine fueled with diesel fuel blended with diethyl
adipate. Atmospheric Environment 45, 2174 – 2181.
王信凱,2008,「高雄都會區與中部鄉村多環芳香烴化合物濃度特徵之研究」,
國立中山大學環境工程研究所,博士論文。
王盈嵐,2011,「添加氫氧氣為替代燃料對柴油引擎排放醛酮類化合物減量
與節能效益之研究」,國立中山大學環境工程研究所,碩士論文。
行政院勞工委員會,1997,物質安全資料表– 氫氣
曲新生、陳發林’呂錫民,2007,「產氫與儲氫技術」,五南圖書出版股份有
限公司,台北市。
何文淵,1999,「汽油車引擎廢氣揮發性有機物成份及光化反應潛勢」,國立
成功大學環境工程研究所,碩士論文。
吳耿東、李宏台,2004,「生質能源化腐朽為能源」,工業技術研究院能源與
資源研究所,科學發展383 期。
李興旺,2004,「石化柴油及添加生質柴油引擎排放多環芳香烴之特徵」,國
立成功大學環境工程學系,碩士論文。
林世傑,2007,「漁船用柴油引擎廢氣排放減量裝置之開發」,國立臺灣海洋
大學機械與機電工程學系,碩士論文。
131
林淵淙,2006,「生質柴油及乳化柴油對柴油引擎排放廢氣污染減量及提昇
能源效率之研究」,國立成功大學環境工程學系,博士論文。
林順華,2004,「重型柴油引擎污染測試程序分析」,財團法人車輛研究測試
中心。
美國黃豆出口協會,http://www.asaimtaiwan.org/p7-1.php?flag=tech6-3
翁閎政,1999,「機車排氣之揮發性有機物特徵及光化反應性研究」,國立成
功大學環境工程研究所,碩士論文。
陳介武,2000,「生化柴油發展與趨勢」,黃豆之工業應用與環保。
陳文杰、張文振,2011,「氫能燃料電池發展與旭升方案推動」,經濟部能源
局,能源科技。
陳必虔,2007,「以預混噴流火焰相互作用下研究次貧油極限之火焰特性」,
國立成功大學航空太空工程研究所,碩士論文。
陳恭府,2005,「超低硫柴油摻配生質柴油之油品特性及污染排放分析」,國
立中山大學環境工程研究所,碩士論文。
黃亦生,2011,「添加氫氧混合氣對柴油引擎多環芳香烴減量與節能之研究」,
國立中山大學環境工程研究所,碩士論文。
黃柏舜,2008,「柴油引擎發電機使用生質柴油所排放醛酮化合物及排氣毒
性分析」,國立成功大學環境工程研究所,碩士論文。
黃靖雄,1990,「汽車排氣污染與控制全書」,台中市,正工出版社。
經濟部能源局,2010
http://web3.moeaboe.gov.tw/ECW/populace/home/Home.aspx。
132
劉育穎,2001,「機車排放醛酮化合物特徵與光化反應性研究」,國立成功大
學環境工程研究所,碩士論文。
劉駿賢、莊邵權、陳佳玫,2012,「國內外柴油車環保法規趨勢與管制現況」,
車輛研究測試中心。
鄭加佑,2012,「氫氧混合氣注入柴油引擎燃燒室對節能與污染減量之研究」,
國立中山大學環境工程研究所,博士論文。
鄭儀節,2011,「以二甲醚混合柴油對柴油引擎醛酮類化合物排放特徵之研
究」,國立中山大學環境工程研究所,碩士論文。
葉惠芬,2004,「冷熱啟動測試機車排放揮發性有機物特徵之差異研究」,國
立成功大學環境工程研究所,博士論文。
楊皓翔,2012,「異丁醇混合柴油對柴油引擎醛酮類化合物排放特徵之研究」,
國立中山大學環境工程研究所,碩士論文。
陳偉倫,2010,「高比例二甲醚/柴油混合燃料引擎油耗性能與廢氣排放之研
究」,國立台灣海洋大學機械與機電工程學系,碩士論文。
巫信毅,2012,「添加不同比例之生質柴油及固定氫氧混合氣對於柴油引擎
多環芳香烴排放特徵之研究」,國立中山大學環境工程研究所,碩士論

曾偉志,2008,「醛酮類有機物檢測與環境因子相關性之研究」,國立成功大
學環境工程學系,碩士論文。
黃錦宏,2008,「高雄地區大氣中醛酮類化合物濃度時空分布調查分析」,國
立中山大學環境工程研究所,碩士論文。
張笙又,2006,「生質柴油燃料比例對引擎排放有機氣態污染物特徵影響研
究」,國立成功大學環境工程學系,碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code