Responsive image
博碩士論文 etd-0517115-145719 詳細資訊
Title page for etd-0517115-145719
論文名稱
Title
石墨烯及銦錫氧化材料應用到有機發光二極體和太陽能電池導電電極之研究
Research of Light-Emitting Diodes and Organic Solar Cell with Graphene and ITO Electrode
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-06
繳交日期
Date of Submission
2015-06-17
關鍵字
Keywords
有機發光二極體、有機太陽能電池、光穿透、轉換效率、旋轉塗佈
spin-coated, organic light-emitting diodes, organic solar cell, transmittance, PCE
統計
Statistics
本論文已被瀏覽 5724 次,被下載 101
The thesis/dissertation has been browsed 5724 times, has been downloaded 101 times.
中文摘要
本論文主要探討改變有機太陽能電池及有機發光二極體之電極,利用石墨烯材料取代原先的ITO電極,並量測其光電特性。研究主要部分有:(1) 主動層P3HT (Poly(3-hexylthiophene-2,5-diyl))不同厚度之特性影響、(2)太陽能電池主動層退火溫度探討、(3)混合不同主動層P3HT:PC60BM比例、(4)石墨烯電極之太陽能電池光電特性分析、(5) 有機發光二極體Rubrene摻雜濃度、(6)石墨烯電極之有機發光二極體光電特性分析。
太陽能電池研究部分,首先改變主動層P3HT (Poly(3-hexylthiophene-2,5-diyl)) 厚度為 60、 70、 80、 130、 210 nm 之特性,發現當主動層厚度約80nm實驗結果顯示單層有機太陽能電池之開路電壓為0.825V、短路電流密度為4E-4 mA,並且,能量轉換效率為3.7E-5%為最佳特性,呈現出來的結果得知隨著主動層厚度之增加,元件主動層會有較佳的光子吸收度,在電極上之電荷收集能力較差。之後測量在大氣環境下將主動層P3HT:PC60BM依1:0、1:0.5和1:1比例發現當比例為1:1時候示開路電壓0.31V短路電流密度為2.61E-3mA能量轉換效率為1.64E-4為最佳特性,因混入PC60BM可以增加激子的接觸面,電子電動解離機率上升,使更多電荷被電極收集。最後,在大氣質量AM1.5G且光照度100mW/cm2的條件下,測得石墨烯太陽能電池的開路電壓(Voc) 0.761 V,短路電流(mA/cm2)4.092及轉換效率(PCE) 0.56%。
有機發光二極體的部分,客體材料摻雜濃度會影響元件發光效率,故設計元件結構為:石墨烯/ PEDOT: PSS (65 nm)/ PVK: x wt% Rubrene (65 nm)/ Al (100 nm),其中摻雜5 wt% Rubrene的發光層有最佳光電特性:Vth=22.3V。在元件結構石墨烯/ PEDOT: PSS (65 nm)/ PVK: 5 wt% Rubrene (65 nm)/ Al (100 nm),不同層數石墨烯有機發光二極體元件以雙層石墨烯之Vth最佳,但未能較ITO電極之有機發光二極體元件佳。
Abstract
In this study, Organic solar cells with the Al/P3HT/PEDOT:PSS/ITO structure on glass substrate was investigated and examined the performance of the polymer solar cells by changing 60, 70 and 80nm thickness of the P3HT active layer. This device had better absorbance in the active layer and poor charges collect in the electrode with increase thickness of active layer were observed. It is found that the best properties that the single layer organic solar cell with open-circuit voltage 0.825 V, short-circuit current density 4E-4 mA and power conversion efficiency of 3.7E-5% was achieved under illumination 100 mW/cm2.
A single layer of organic solar cells with the Al/P3HT:PCBM/PEDOT: PSS/Graphene structure on glass substrate was investigated in this paper was investigated in this paper, and examined the performance of the polymer solar cells by changing the numbers of graphene layers. After that, we compared graphene solar cells to solar cells with ITO as an electrode. Graphene has excellent electronic properties, such as carrier mobility, high transparency which improve the light absorption of solar cells. We found that the best performance of our research was the solar cell with 2-layer Graphene as the electrode. It shows the properties of open-circuit voltage 0.761 V, short-circuit current 4.092 mA/〖cm〗^2 and power conversion efficiency 0.56%.
The second part of this study, the active layer of organic light-emitting diodes (OLEDs) of PVK: Rubrene are measured OLEDs electrical-optical characteristics. OLEDs structures are Grpahene/ PEDOT: PSS (65 nm)/ PVK: x wt% Rubrene / Al (100 nm). Each device area is 0.0625cm2.
Because of the quenching effect, the active layer of OLEDs doped with 0, 5, 10, 15 wt% Rubrene are investigated. The OLED of the active layer doping with 5 wt% Rubrene has the best electrical-optical characteristics: threshold voltage of 22.3 V.
The structure of Grpahene/ PEDOT: PSS (65 nm)/ PVK: 5 wt% Rubrene / Al (100 nm) with different Graphene layers 1 to 3 are found that 2-layer has the lowest threshold voltage, however, higher than the device with ITO electrode.
目次 Table of Contents
論文審定書i
致謝 ii
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xvi
第一章、緒論 1
1.1 石墨烯簡介 1
1.1.1石墨烯製備方法 2
1.2 太陽能電池發展世代 11
1.2.1高分子太陽能電池結構演進 13
1.2.2高分子共軛結構 14
1.2.3太陽能電池基本架構 15
1.2.4混合層異質界面結構有機太陽能電池P3HT:PCBM 17
1.3 有機電致發光之發展歷史 18
1.3.1 有機發光二極體 (OLED) 之簡介 18
1.3.2 高分子電激發光二極體 (PLED) 之簡介 20
1.3.3 OLED與PLED之比較 23
1.3.4發光二極體元件結構 25
1.4 研究動機 28
第二章、理論基礎 29
2.1 太陽能電池理論 29
2.1.1 材料設計 29
2.1.2 主動層型態 29
2.1.3 元件結構 30
2.2 高分子太陽能電池工作原理 30
2.2.1 入射光子的吸收 31
2.2.2 激子擴散和飄移 31
2.2.3 電荷分離 31
2.2.4 電荷收集 31
2.3 高分子太陽能電池效率分析 32
2.4 串並聯電阻的影響 35
2.5 太陽能元件量測 36
2.6 有機發光二極體原理與機制 38
2.6.1 有機發光二極體原理 38
2.6.2 發光機制 38
2.7 儀器理論 41
2.7.1 超音波震洗機 41
2.7.2 磁石攪拌器 42
2.7.3 旋轉塗佈機 43
2.7.4 電子束蒸鍍 44
2.7.5 紫外光/可見光光譜儀(UV-Vis) 46
2.7.6 太陽光譜模擬測量 47
2.7.7 拉曼光譜儀 49
第三章、實驗流程 51
3.1 太陽能電池實驗架構 51
3.1.1太陽能電池實驗材料 51
3.1.2太陽能電池藥品的配製 52
3.1.3太陽能電池實驗步驟 53
3.2 有機發光二極體實驗架構 56
3.2.1 有機發光二極體實驗材料 56
3.2.2 有機發光二極體溶液配製 57
3.2.3 有機發光二極體實驗步驟 57
第四章、結果與討論 60
4.1 薄膜特性量測 60
4.1.1 P3HT/Glass 60
4.1.2 P3HT:PCBM/Glass 62
4.1.3 Graphene/Glass 62
4.2 太陽能電池元件量測 65
4.2.1 Al/P3HT/PEDOT:PSS/ITO/Glass 66
4.2.2 Al/P3HT:PC60BM/PEDOT:PSS/ITO/Glass 68
4.2.3 Al/ P3HT:PC60BM /PEDOT:PSS/Graphene/Glass 69
4.3 有機發光二極體元件量測 71
4.3.1 PVK: x wt% Rubrene元件分析 72
4.3.2改變石墨烯層數分析 73
第五章、結論 74
參考文獻 76
Published 84
參考文獻 References
[1] H. P. Boehm, A. Clauss, G. O. Fischer and U. Hofmann, "Das Adsorptionsverhalten sehr dünner Kohlenstoff-Folien," Zeitschrift für anorganische und allgemeine Chemie, vol. 316, pp. 119-127, Jul. 1962.
[2] A. K. Geim , K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.
[3] Wonbong Choi, Indranil Lahiri, Raghunandan Seelaboyina, Yong Soo Kang, "Synthesis of Graphene and Its Applications: A Review," Critical Reviews in Solid State and Materials Sciences, vol. 35, pp. 52-71, Feb. 2010.
[4] Virendra Singh, Daeha Joung, Lei Zhai, Soumen Das, Saiful I. Khondaker, Sudipta Seal, "Graphene based materials: Past, present and future," Progress in Materials Science, vol. 56, pp. 1178-1271, Oct. 2011.
[5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666 - 669, Jul. 2004.
[6] Sasha Stankovich, Dmitriy A. Dikin, Geoffrey H. B. Dommett, Kevin M. Kohlhaas, Eric J. Zimney,Eric A. Stach, Richard D. Piner, SonBinh T. Nguyen, Rodney S. Ruoff, "Graphene-based composite materials," Nature, vol. 442, pp. 282-286, Jul. 2006.
[7] Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, vol. 5, pp. 1312-1314, May 2009.
[8] Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong-Hyun Ahn, Philip Kim, Jae-Young Choi and Byung Hee Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 5, pp. 706-710, Feb. 2009.
[9] Ching-Yuan Su, Ang-Yu Lu, Yanping Xu, Fu-Rong Chen, Andrei N. Khlobystov, Lain-Jong Li, "High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation," ACS NANO, vol. 5, pp. 2332-2339, Nov. 2011.
[10] C.T.J. Low, F.C. Walsh, M.H. Chakrabarti, M.A. Hashim, M.A. Hussain, "Electrochemical approaches to the production of graphene flakes and their potential applications," CARBON, vol. 54, p. 1–21, Apr. 2013.
[11] Sungjin Park, Rodney S. Ruoff, "Chemical methods for the production of graphenes," nature nanotechnology, vol. 4, pp. 217 - 224, Mar. 2009.
[12] Prakash R. Somani, Savita P. Somani, Masayoshi Umeno, "Planer nano-graphenes from camphor by CVD," Chemical Physics Letters, vol. 430, pp. 56-59, Jun. 2006.
[13] A.N. Obraztsov, E.A. Obraztsova, A.V. Tyurnina, A.A. Zolotukhin, "Chemical vapor deposition of thin graphite films of nanometer thickness," Carbon, vol. 45, p. 2017–2021, Jun. 2007.
[14] Qingkai Yu1, Jie Lian, Sujitra Siriponglert, Hao Li, Yong P. Chen and Shin-Shem Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Appl. Phys. Lett., vol. 93, p. 113103, Sep. 2008.
[15] Sukang Bae, Hyeongkeun Kim, Youngbin Lee, Xiangfan Xu, Jae-Sung Park, Yi Zheng, "Roll-to-roll production of 30-inch graphene films for transparent electrodes," NATURE NANOTECHNOLOGY, vol. 5, pp. 574-578, Jun. 2010.
[16] Yuanbo Zhang, Joshua P. Small, William V. Pontius, and Philip Kim, "Fabrication and electric-field-dependent transport measurements of," Appl. Phys. Lett., vol. 86, p. 073104, Feb. 2005.
[17] Sivudu KS, Mahajan YR., "Challenges and opportunities for the mass production of high quality graphene: an analysis of worldwide patents.," Nanotech Insights, vol. 3, pp. 6-19, 2013.
[18] Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate Brown, Cécile Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, Walt A. de Heer, "electronic Confinement and Coherence in Patterned Epitaxial Graphene," Science, vol. 312, pp. 1191-1196, May 2006.
[19] Yenny Hernandez, Valeria Nicolosi, Mustafa Lotya, Fiona M. Blighe, Zhenyu Sun, Sukanta De, I. T. McGovern, Brendan Holland, Michele Byrne, Yurii K. Gun'Ko, John J. Boland, Peter Niraj, Georg Duesberg, Satheesh Krishnamurthy, Robbie Goodhue, John Hutchison, "High-yield production of graphene by liquid-phase exfoliation of graphite," Nature Nanotechnology, pp. 563-568, Aug. 2008.
[20] Chenggang Tao, Liying Jiao, Oleg V. Yazyev,Yen-Chia Chen, Juanjuan Feng, Xiaowei Zhang,Rodrigo B. Capaz, James M. Tour, Alex Zettl, Steven G. Louie, Hongjie Dai and Michael F. Crommie, "Spatially resolving edge states of chiral graphene nanoribbons," Nature Physics, vol. 7, pp. 616-620, May 2011.
[21] E. Bequerel, “Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen descourants électriques, ”. C.R. Acad. Sci. vol 9, pp.145–149. Feb.1839
[22] S. Zh. Karazhanov, “Impurity photovoltaic effect in indium-doped silicon solar cells, “ J. Appl. Phys, vol. 89, pp. 4030, Jan. 2001.
[23] M. J. Keevers and M. A. Green, “Efficiency improvements of silicon solar cells by the impurity photovoltaic effect,” J. Appl. Phys, vol. 75, pp. 4022, Nov. 1994.
[24] C. Fritts, “On the Fritts selenium cell and batteries, “ Van Nostrands Engineering Magazine, vol. 32, pp. 388–395, Mar, 1885.
[25] Martin A. Green1, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta and Ewan D. Dunlop“ Solar cell efficiency tables (version 39)” Progress in Photovoltaics, vol. 20, pp. 12-20, Jan. 2012.
[26] J. Meier1, R. Flückiger1, H. Keppner1 and A. Shah “Complete microcrystalline p‐i‐n solar cell—Crystalline or amorphous cell behavior?,” Appl. Phys. Lett, vol. 65,pp. 860, Jun. 1994..
[27] F. Takashi, K. Hayato, Y. Tsutomu, T. Yu and U. Yukiharu, “Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence,” Appl. Phys. Lett, vol. 65, pp. 2621088, Jun. 2005.
[28] H. Yoshihiro, F. Kouha, O. Kouji, K. Yoshio, N. Shuichi and O. Hiroaki, “New types of high efficiency solar cells based on a‐Si,” Appl. Phys. Lett, vol. 43, pp. 644, Jul. 1983
[29] C. Yen Ju, Y. Sheng Hsiung and H. Chain-Shu, “Synthesis of conjugated polymers for organic solar cell applications,” Chem. Rev, pp. 5868-5923, May. 2009
[30] http://dairarios.wix.com/dairarios#!contenidos-alquenos/c1wcd
http://earthkart2011.blogspot.tw/2012/12/sp2-sp2-hybridization.html
[31] A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Ba¨tzner, F.-J. Haug, M. Ka¨lin, D. Rudmann1 and A. N. Tiwari, “Development of Thin-film Cu(In,Ga)Se2 and CdTe Solar Cells, “ Prog. Photovolt: Res. Appl, pp.527, Oct. 2004
[32] A.G. Aberle, “Thin-film solar cells, Thin Solid Films, “ vol. 517, pp. 4706–4710, Mar. 2009.
[33] A.G. Aberle (Ed.), Special Issue “Recent Advances in Solar Cells”, Advances in OptoElectronics, vol. 2007, Hindawi Publishing Corp., Egypt. May.2007.
[34] A. Luque, S. Hegedus (Eds.), Handbook of Photovoltaic Science and Engineering, Wiley, UK. Jan. 2003.
[35] A.L. Fahrenbruch, R.H. Bube, Fundamentals of Solar Cells, Academic Press, USA. Jan 1983.
[36] D. E. Carlson, G. Lin and G. Ganguly,“Temperature dependence of amorphous silicon solar cell pv parameters, “ vol.7011064. pp.707-712. Sep.2000.
[37] P. Lechner, H. Schade,” Photovoltaic thin-film technology based on hydrogenated amorphous silicon,” Prog. Photovolt, vol.10, pp.85–97. Jan.2002,
[38] D. L. Staebler, and C. R. Wronski,”Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett., Vol. 31, pp. 292-294, May.1977.
[39] Yen-Ju Cheng, Sheng-Hsiung Yang, and Chain-Shu Hsu, “Synthesis of Conjugated Polymers for Organic Solar Cell Applications”, Chem. Rev., 109, 5868–5923 (2009).
[40] A. Bernanose, M. Conet, and P. Vouauzx, “A new method of emission of light by certain organic compounds,” J. Chem. Phys., vol. 50, pp. 64, 1953.
[41] E. F. Gurnee, and F. R. Teoste, “Organic electroluminescent phosphors,” U.S. Patent 3 171 862, Mar. 9, 1965.
[42] M. Pope, H. P. Kallmann, and P. J. Magnante, “Electroluminescence in Organic Crystals,” J. Chem. Phys., vol. 38, no. 8, pp. 2042, Jan. 1963.
[43] W. Helfrich, and W. G. Schneider, “Recombination radiation in Anthracene crystals,” Phys. Rev. Lett., vol. 14, no. 7, pp. 229-231, Feb. 1965.
[44] D. F. Williams, and M. Schadt, “A simple organic electroluminescent diode,” Proceedings IEEE, vol. 58, no. 3, pp. 476, Mar. 1970.
[45] P. S. Vincett, and G. G. Roberts, “Electrical and photoelectrical transport properties of Langmuir-Blodgett films and a discussion of possible device applications,” Thin Solid Films, vol. 98, no. 1, pp. 135-171, May 1980.
[46] P. S. Vincett, W. A. Barlow, R. A. Hann, and G. G. Roberts, “Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films,” Thin Solid Films, vol. 94, no. 2, pp. 171-183, Aug. 1982.
[47] C. W. Tang, and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, no. 12, pp. 913-915, Jul. 1987.
[48] S. A. VanSlyke, C. W. Tang, and L. C. Robert, “Electroluminescent device with organic luminescent medium,” U.S. Patent 4 720 432, Jan. 19, 1988.
[49] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x,” J. Chem. Soc., Chem. Commun., no. 16, pp. 578-580, May 1977.
[50] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, pp. 539-541, Sep. 1990.
[51] N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, and A. B. Holmes, “Efficient light-emitting diodes based on polymers with high electron affinities,” Nature, vol. 365, pp. 628-630, Oct. 1993.
[52] R. H. Friend, J. H. Burroughes, and D. D. Bradley, “The semiconductor between contactors,” U.S. Patent 5 247 190, Sep. 21, 1993.
[53] D. Braun, A. J. Heeger, “Visible light emission from semiconducting polymer diodes,” Appl. Phys. Lett., vol. 58, no. 18, pp. 1982-1984, Feb. 1991.
[54] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers,” Nature, vol. 357, pp. 477-479, Jun. 1992.
[55] Y. Ohmori, M. Uchida, K. Muro, and K. YoShino, “Visible-light electroluminescent diodes utilizing poly(3-alkylthiophene),” Jpn. J. Appl. Phys., vol. 30, no. 11B, pp. L1938-1940, Sep. 1991.
[56] Y. Ohmori, M. Uchida, K. Muro, and K. YoShino, “Blue electroluminescent diodes utilizing poly(alkylfluorene),” Jpn. J. Appl. Phys., vol. 30, no. 11B, pp. L1941-1943, Nov. 1991.
[57] C. Adachi, T. Tsutsui, and S. Saito, “Organic electroluminescent device having a hole conductor as an emitting layer,” Appl. Phys. Lett., vol. 55, no. 15, pp. 1489-1491, Jul. 1989.
[58] M. Era, C. Adachi, T. Tsutsui, and S. Saito, “Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter,” Chem. Phys. Lett., vol. 178, no. 5-6, pp. 488-490, Apr. 1991.
[59] J. Kido, C. Ohtaki, K. Hongawa, K. Okuyama, and K. Nagai, “1,2,4-triazole derivative as an electron transport layer in organic electroluminescent devices,” Jpn. J. Appl. Phys., vol. 32, no. 7A, pp. L917-920, Jul. 1993.
[60] J. Kido, M. Kohda, K. Okuyama, and K. Nagai, “Organic electroluminescent devices based on molecularly doped polymers,” Appl. Phys. Lett., vol. 61, no. 7, pp. 761-763, Jun. 1992.
[61] J. Kido, H. Shionoya, and K. Nagai, “Single‐layer white light‐emitting organic electroluminescent devices based on dye‐dispersed poly(N‐vinylcarbazole),” Appl. Phys. Lett., vol. 67, no. 16, pp. 2281-2283, Aug. 1995.
[62] D. H; “ Frequency dependence of ultrasonic cleaning, “ Ultrasonics, Mcqueen, vol 24 273-280, May1986.
[63] W. Leonard. Schwartz, R. Valery Roy. “ Theoretical and numerical results for spin coating of viscous liquids, “ Physics of Fluids, vol.16, pp.569. Jan. 2004.
[64] D. Meyerhofer, ‘‘Characteristics of resist films produced by spinning,’’ J.Appl. Phys. 49, 3993 -1978, Aug. 2008
[65] P. Birnie, R. N. Vogt, M. N. Orr, ‘‘Coating uniformityand device applicability of spin coated sol-gel pzt films,’’ Microelectron.Eng. vol.29, pp.189-1982. May.1995
[66] A. L. Morton, R. E. Marrs, J. R. Henderson, D. A. Knapp and Marilyn B Schneider. “The Electron Beam Ion Trap: A New Instrument for Atomic Physics Measurements, “ Phys. Scr, pp.157. May1988.
[67] M. Schnaiter et al. “ UV-VIS-NIRspectral optical properties of sootand soot-containing aerosols ,“ Aerosol Science, vol.34. pp.1421 – 1444. May.2003.
[68] K. Suzuki,et al, “Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells,” Chem. Lett, vol.32, pp. 28−29. Apr. 2003.
[69] S. Haque, et al, ”Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films,” J. Phys. Chem, vol104, pp.538–547, Dec. 2000
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code