Responsive image
博碩士論文 etd-0517116-154557 詳細資訊
Title page for etd-0517116-154557
論文名稱
Title
近似消息傳遞演算法於大規模多天線系統的定點轉換研究
Study on fixed point transformation of approximate message passing algorithm in massive MIMO systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-15
繳交日期
Date of Submission
2016-06-17
關鍵字
Keywords
硬體架構、大規模多天線解調、近似信息演算法、近似對數和、字元長度、固定點數、組尼
Massive MIMO detection, AMP algorithm, Hardware architecture, Word lengths, Fixed point, Damping, Log-sum approximation
統計
Statistics
本論文已被瀏覽 5723 次,被下載 21
The thesis/dissertation has been browsed 5723 times, has been downloaded 21 times.
中文摘要
在大規模多天線系統中,最大的問題在於如何從組合的訊號終將個別的訊號解調出來,但是最佳的解調器極其複雜。而被設計用在壓縮感知的近似信息傳遞演算法,因為AMP演算法可以減少運算複雜度因此,吸引了許多研究者用來解決大規模多天線系統的問題。本篇論文中我們把重點放在如何以固定點數實現AMP演算法。為了實現此架構,我們在AMP演算法中提出近似平均值與變異數估測方程式 這些估測方程式是利用近似對數和得到,且取出結果的指數。近似對數和是由雅各比演算法且利用地回修正的方法所得到。為了更符合我們的問題,我們也提供了近似修正方程式的修改。接著利用近似方程式來取代平均值和變異數方程式。這些近似的應用影響了演算法的收斂性,為了對抗這個問題我們修改算法的初始阻尼和提供新的阻尼演算法的位元錯誤率效能 接著我們將這個演算法轉為固定點數,目標是得到變數的字元長度 最後我們利用硬體來實現這個演算法。
Abstract
In massive multiple input and multiple output (MIMO) systems the challenge is the detection of the individual signals from the composite signal in the large system limit. The optimal detector becomes prohibitively complex. The approximate message passing (AMP) algorithm, designed for compressed sensing, has attracted researchers to counter this problem due to its reduced complexity in the large system limit. For this reason the AMP algorithm has been used for detection in massive MIMO systems. In this thesis we focus on implementing this algorithm in fixed-point format. To obtain an implementation friendly architecture, we propose approximations for the mean and variance estimation functions within the algorithm. These estimation functions are obtained using the log-sum approximation then taking the exponent of the result. The log sum approximation is obtained by the Jacobean logarithm with a correction function recursively. We also provide a modification of the correction function for the approximations that best suits our case. We then substitute the mean and variance estimation functions with the approximations. The application of these approximations affect the convergence of the algorithm, to counter that we modify the initial damping strategy of the algorithm and plot a BER performance for the algorithm of the newly damped version. We then transform this algorithm to fixed point with an aim of obtaining word lengths for the variables. We finally provide a hardware architecture for the algorithm.
目次 Table of Contents
Thesis Validation letter …………………………………………………………………………. i
Acknowledgements ……………………………………………………...….…………………… ii
Abstract (Chinese) ...…………………………………………………..………………………....iii
Abstract (English) ...…………………………………………………………………...………... iv
Chapter 1: Introduction …………………………………………………..……………………… 1
1.1 Introduction…………………………………………...…………………………...1
1.2 Background ………………………………………………………...……………. 3
1.2.1 MIMO Detection …………….….……………………………………….. 3
1.2.2 Fixed point theory …………...………..…………………………………. 5
1.2.3 Hardware architecture ……………………….……………………………7
1.3 Problem statement ……………………………...…………………………………8
1.4 Purpose of the study………………………………………...……………………..9
1.5 Significance of the study ……………………………...…………………………..9
1.6 Basic assumptions …………………………………...…………………………..10
1.7 Limitations …………………………………………...………………………….10
1.8 Summary …………………………………………………...……………………11
Chapter 2: MIMO-AMP algorithm derivation …………………….……………..……………..12
2.1 Introduction of the AMP algorithm...………………………...……….……………..12
2.2 MIMO - AMP algorithm ……………………………………….……………………13
2.2.1 Bayes theorem ……………………………………...……………………...13
2.2.2 Belief Propagation ……………………………………..………………….15
2.2.3 Relaxed Belief Propagation ………………...……………………………..16
2.2.4 Approximate Message Passing………………...…………………………..17
2.2.5 Damping ……………………………………………………...……………19
2.3 Approximations of mean and variance estimation functions ………………….…….21
2.3.1 Approximation of mean estimation function …………………………...…21
2.3.2 Approximation of variance estimation function …..…………………...…...25
2.4 Correction function modification …………………………………………….……...26
2.5 Convergence of AMP algorithm with approximated estimation function …………..27
2.6 Summary ……………………………………………………………….……………29
Chapter 3: Fixed point transformation …………………………………………………..………30
3.1 Introduction ……………………………………………………….…………………30
3.2 The fi object ……………………………………………………….………………...30
3.3 Effects of arithmetic operations on the word-length …….…………………………..32
3.3.1 Addition and subtraction …………………………………………………...32
3.3.2 Multiplication ……………………………………………………...………33
3.3.3 Division ………………………………………………………...………….33
3.3.4 Complex numbers arithmetic ……………………………...………………34
3.4 Word length analysis of the AMP algorithm ………………………………….…….38
3.5 Fixed point transformation procedure ……………………………………….……....41
3.6 Summary …………………………………………………………….………………44
Chapter 4: Hardware architecture ………………………………………..……………………..45
4.1 Introduction …………………………………………………………….……………45
4.2 Functions’ pseudo codes ………………………………………………….…………45
4.2.1 AMP algorithm function pseudo-code ...................................................…...45
4.2.2 Approximated estimate function pseudo-code ……………………………..46
4.2.3 Mean approximation function pseudo-code ………………………....…….48
4.2.4 Log sum-approximation function of complex numbers …………………...49
4.2.5 Log-sum approximation function for real numbers ………………………...50
4.3 Hardware architecture ………………………………………………….……………51
4.4 Summary …………………………………………………….………………………58
Chapter 5: Results and Analysis ……………………………………………..………………….59
5.1 Introduction …………………………………………………….……………………59
5.2 Performance plots of AMP algorithm variants …………………………….………..60
5.3 Fixed point AMP algorithm performance analysis …………………………….……63
5.3.1 64-QAM performance analysis ………………………………...………….63
5.3.2 16-QAM performance analysis ………………………...………………….67
5.4 Summary …………………………………………………………………….………68
Chapter 6: Conclusion and Future work ……………………………………………..………….70
6.1 Conclusion …………………………………………………………………………..70
6.2 Future work ………………………………………………………….………………70
References …………………………………………………….…………………………….…...72
Appendix A ……………………………………………………………………………..……….75
Appendix B ………………………………………………………………………………...……77
參考文獻 References
1. Gou Chunli, “Compressed sensing with approximate message passing: measurement matrix and algorithm design,” Ph.D. dissertation, The Univ. of Edinburgh, 2013.
2. Kyungtae Han, and Brian L. Evans, “Word Lengths Optimization” in Transforming Floating point algorithms to fixed point implementation, Saarbrucken, Germany: VDM Verlag Dr. Müller, 2009, pp. 12 -18.
3. Li Li Lim, David Wee Gin Lim, “Hybrid log-MAP algorithm for turbo decoding over AWGN channel,” The Seventh International Conference on Wireless and Mobile Communications, 2011.
4. F. Krzakala, M. M´ezard, F. Sausset, Y. Sun, and L. Zdeborov´a, “Probabilistic reconstruction in compressed sensing: Algorithms, phase diagrams, and threshold achieving matrices,” J. Stat. Mech., vol. P08009, Aug. 2012.
5. Tzi-Dar Chiueh, Pei-Yun Tsai, and I-Wei Lai, “MIMO Detection” in Baseband receiver design for wireless MIMO-OFDM Communications, Singapore: John Wiley and Sons, 2012, pp. 209 – 212.
6. Karl F. Nieman, Marcel Nassar, Jing Lin, and Brian L.Evans, “FPGA implementation of a message passing OFDM receiver for impulsive noise channels,” Proc. Asilomar Conference on Signals, Systems and Computers, 2013.
7. Patrick Maechler et al, “VLSI design of approximate message passing for signal restoration and compressive sensing,” IEEE J. Emerging and Sel. Topics Circuits and Syst. Vol.2, No.3, pp. 579-590, Sept. 2012.
8. D. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms for compressed sensing,” Proc. Nat. Acad. Sci.,vol. 106, No. 45, pp. 18 914-18 919, Sep. 2009.
9. Peter Nilson, Ateeq Ur Rahman Shaik, Rakesh Gangarajaiah, and Erik Hertz, “Hardware implementation of the exponential function using Taylor series,” NORCHIP, Tampere, Oct. 2014.
10. Francesco Caltagirone, Lenka Zdeborov´a, and Florent Krzakala, “On convergence of approximate message passing,” IEEE Symp. Information Theory, 2014.
11. Sundeep Rangan, Philip Schniter, and Alyson Fletcher, “On the convergence of approximate message passing with arbitrary matrices,” arXvi:1402.3210v1 [cs.IT]
12. Sarah J. Johnson, “Introducing low-density parity-check codes,” School. Elect. Eng. and Comp. Sci., The Univ. of New Castle.
13. Matlab Fixed-Point Designer™ User's Guide.
14. Charles Jeon, Ramina Ghods, Arian Maleki, and Christoph Studer “Optimality of large mimo detection via approximate message passing,” arXiv:1510.06095v1 [cs.IT], Oct. 2015.
15. Ramina Ghods, Charles Jeon, Arian Maleki, and Christoph Studer, “Optimal large-mimo data detection with transmit impairments,” Fifty-third Annual Allerton Conference Allerton House, UIUC, Illinois, USA ,Sept. 29 – Oct. 2, 2015.
16. Sheng Wu,Linling Kuang, Zuyao Ni, Jianhua Lu, Defeng (David) Huang, and Qinghua Guo, “Low complexity iterative detection for large-scale multiuser mimo-ofdm systems using approximate message passing,” IEEE J. Sel. Topics Signal Process. vol. 8, No. 5, pp. 902-915, Oct. 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code