Responsive image
博碩士論文 etd-0517118-002555 詳細資訊
Title page for etd-0517118-002555
論文名稱
Title
碳酸化轉爐石及碳源補充對重緣葉馬尾藻(Sargassum duplicatum)生長之影響
Effect of carbonated basic oxygen furnace slag and carbon source enrichment on the growth of Sargassum duplicatum
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-25
繳交日期
Date of Submission
2018-08-20
關鍵字
Keywords
元素分析、重金屬分析、碳酸氫鈉、二氧化碳、重緣葉馬尾藻、碳酸化轉爐石、轉爐石
Sargassum duplicatum, sodium bicarbonate, carbon dioxide, Carbonated BOF slag, element analysis, heavy metal, BOF slag
統計
Statistics
本論文已被瀏覽 5654 次,被下載 0
The thesis/dissertation has been browsed 5654 times, has been downloaded 0 times.
中文摘要
廢物再利用為環保重要課題,減少因溶解的金屬轉製成鋼的過程所產生的爐碴(轉爐石)數量,轉爐石為高爐產生鐵水運至轉爐,轉爐吹煉成鋼液再加生石灰等原料當助劑,去除鐵水中雜質而形成鋼液,此過程所產之副產物,由轉爐石釋放出的元素,可以促進藻類的生長,同時可以作為藻類固著處,能夠讓轉爐石再利用,穩定海洋生態,提高基礎生產力,而經過碳酸化之轉爐石已經改質可以減少轉爐石崩壞而保有穩定性。
本實驗目的為透過在有無碳酸化轉爐石(CBOS)、有無二氧化碳(CO2)補充及有無添加碳酸氫鈉(NaHCO3)三個因子中培養的重緣葉馬尾藻(Sargassum duplicatum)生長是促進或抑制以了解碳酸化轉爐石在補充碳源情形下對於重緣葉馬尾藻之影響。
本實驗結果指出,轉爐石在碳酸化改質程序可以有效幫助大型海藻生長,這是發展轉爐石再利用於海洋生態之循環再利用例子。由相對生長量來看,添加碳酸化轉爐石有助於重緣葉馬尾藻之生長;二氧化碳補充於碳酸化轉爐石下則有效於重緣葉馬尾藻在碳酸化轉爐石下之生長,但是二氧化碳單獨補充生長極低,可能是為本研究使用pH控制器(pH值設定在7.8) 限制二氧化碳補充量所致;另一組為,單獨添加碳酸氫鈉之情形,有助於重緣葉馬尾藻之生長,但是添加碳酸氫鈉之碳酸化轉爐石生長組則受到抑制與無碳酸化轉爐石生長組相比,碳酸化轉爐石含有或易溶出之重金屬,但是在有無添加碳酸化轉爐石這兩組實驗中之重緣葉馬尾藻的金屬含量並沒有差異,表示碳酸化轉爐石不會溶出多餘重金屬被重緣葉馬尾藻吸收。反而是添加碳酸氫鈉之重緣葉馬尾藻含有較高鉀(K)及鈣(Ca)兩種元素,這兩種均屬於無害的元素。所以,碳酸化轉爐石不會造成重緣葉馬尾藻重金屬累積。
重緣葉馬尾藻碳及氮元素與生長有關,本研究發現除了添加碳酸氫鈉於碳酸化轉爐石生長組之重緣葉馬尾藻含有較低之碳及氮元素含量外,其他生長組變化不大,由於添加碳酸氫鈉於碳酸化轉爐石生長組之重緣葉馬尾藻生長量較低,所以有較低之碳及氮元素含量總而言之,碳酸化轉爐石有助於重緣葉馬尾藻生長,二氧化碳補充則明顯提高碳酸化轉爐石下之重緣葉馬尾藻生長,但是相反地添加碳酸氫鈉於碳酸化轉爐石則抑制重緣葉馬尾藻生長。
Abstract
Recycling for important task to environmental protection, to reduce dissolved metal rewinded into the process of the conversion of the Basic Oxygen Furance slag (BOF slag) quantity, BOF slag of blast furnace to produce iron water transportation to converter, converter to produce liquid add lime as raw materials such as fertilizer, to remove impurities in the molten iron to form a liquid steel, the byproduct produced by this process, by releasing the elements of the BOF slag, can promote the growth of algae, fixation, at the same time can be used as algae can make converter recycling, stable Marine ecology, improve productivity, and after Carbonated BOF slag (CBOS) have modification can reduce the BOF slag collapse and maintain stability.
The purpose of this experiment is to determine the presence of CBOS, carbon dioxide (CO2) supplement, or sodium bicarbonate (NaHCO3) for the cultivation of Sargassum duplicatum in order to understand the interactive effects of the carbonate rock of converter and supplementary carbon source for Sargassum duplicatum growth.
The results indicate that BOF slag can help the growth of macroalga effectively, which is an example of the development of the recycling of BOF slag for marine ecology. In terms of relative growth, the presence of CBOS helps the growth of S. duplicatum. Carbon dioxide supplementation was effective in the growth of S. duplicatum in the presence of CBOS. However, the growth of S. duplicatum for carbon dioxide alone was low, possibly due to restriction of the amount of carbon dioxide by the use of pH controller to pH 7.8. However, when both CBOS and carbon dioxide are added together, the growth of S. duplicatum was significantly facilitated. In the other group, compared to S. duplicatum without any supplements, the addition of sodium bicarbonate alone was helpful for S. duplicatum growth, which was similar to CBOS alone treatment. But, the S. duplicatum growth of CBOS supplemented with sodium bicarbonate was lower than CBOS alone, and also lower than bicarbonate alone. It reflects that the interaction of CBOS and bicarbonate was negative for S. duplicatum growth.
Compared with CBOS-free group, the metal contents in CBOS treatment were similar, indicating that CBOS will not release extra heavy metals for the absorption S. duplicatum. On the contrary, S. duplicatum treated with sodium bicarbonate alone contained high potassium (K) and calcium (Ca), both of which were harmless elements. Therefore, CBOS does not cause heavy metal accumulation in S. duplicatum.
Carbon and nitrogen element are related to the growth of S. duplicatum. Among all treatments, the presence of bicarbonate in CBOS group, S. duplicatum showed low carbon and nitrogen contents. It reflects that low S. duplicatum growth ability of the treatment of CBOS and bicarbonate supplement.
In conclusion, CBOS helps S. duplicatum grow, while carbon dioxide supplementation with CBOS can largely increase S. duplicatum growth, but bicarbonate upplementation with CBOS showed inhibitory effect on S. duplicatum growth.
目次 Table of Contents
誌謝 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 ix
表目錄 x
第一章 前言 1
壹. 認識轉爐石 1
一、 轉爐石來源及製造 1
二、 轉爐石特性 1
三、 重金屬溶出檢測 3
四、 轉爐石之應用 3
貳. 重緣葉馬尾藻(Sargassum duplicatum)簡介 4
一、 重緣葉馬尾藻之型態與分布 4
二、 重緣葉馬尾藻與碳源之關係 5
三、 重緣葉馬尾藻之營養成分 6
參. 研究動機 6
第二章 材料方法 8
壹. 材料 8
一、 碳酸化轉爐石 8
二、 重緣葉馬尾藻(Sargassum duplicatum) 8
貳. 方法 9
一、 實驗設置 9
二、 碳酸化轉爐石添加與否之試驗 13
三、 無碳酸化轉爐石添加之處理 13
四、 有碳酸化轉爐石添加之處理 14
五、 統計分析 14
第三章 結果 16
壹. pH值及溫度變化 16
貳. 重緣葉馬尾藻之濕重、乾重、相對生長量 16
參. 統計分析結果 18
肆. 重緣葉馬尾藻氮及碳元素含量之分析 19
伍. 重緣葉馬尾藻固碳量之計算 19
陸. 重緣葉馬尾藻(重)金屬含量之分析 19
第四章 討論 21
壹. 重緣葉馬尾藻之生長與三個因子 21
貳. 重緣葉馬尾藻之生長與轉爐石 22
參. 重緣葉馬尾藻之生長與營養元素 22
肆. pH值及溫度變化 24
第五章 結論 25
第六章 參考文獻 26
第七章 附錄 30
參考文獻 References
周廷耀(2002)。碳源的添加對等鞭金藻增殖的影響。國立中山大學海洋生物研究所,碩士學位論文。台灣,中華民國。
林平全(2006)。「轉爐石於鋪面工程之應用」,期末報告,桃園,第12頁。
袁家偉(2007)。使用轉爐石提升耐久性瀝青混凝土成效之研究。國立中央大學土木工程研究所,碩士學位論文。台灣,中華民國。
張婉純(1998)。龍鬚菜(Gracilaria tenuistipitata)(Gigartinales, Rhodophyta)高溫下游離輔胺酸(free proline)代謝。國立中山大學海洋生物研究所。碩士學位論文。台灣,中華民國。
許伯良,林平全,徐登科(2011)。轉爐石產製與工程應用。2011年轉爐石應用於瀝青混凝土鋪面研討會。台灣,中華民國。
陳雅惠(2002)。儀器基本原理。逢甲大學研發處共同貴重儀器中心。台灣,中華民國。
蔡娟娟(2000)。營養鹽與溫度對墾丁南灣大型海藻生物量之影響。國立中山大學海洋生物研究所,碩士學位論文。台灣,中華民國。
簡富成(2011)。以轉爐石為人工濕地填充材之功能評估。國立屏東科技大學環境工程與科學系,碩士學位論文。台灣,中華民國。
Beardall, J., A. Johnston, and J. Raven. (1998) Environmental regulation of CO2-concentrating mechanisms in microalgae. Canadian Journal of Botany 76: 1010-1017.
Becker, E.W. (1994) Microalgae: biotechnology and microbiology. University of Cambridge Press, New York, pp. 293.
Chapman, A. R. O., and J. S. Craigie. (1977) Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Marine Biology 40: 197-205.
DeBoer, J. A. (1981) Nutrients. In (Lobban, C. S. and Wynne, M. J. eds). The Biology of Seaweeds. University of California Press, Berkeley, pp. 356-392.
Earle, S. A. (1969) Phaecphyta of the eastern Gulf of Mexico. Phycologia 7: 71-254
Fujita, R. M. (1985) The role of nitrigen status in regulating transient ammonium uptake and nitrogen storage by macroalgae. Journal of Experimental Marine Biology and Ecology 92: 283-301.
Fujita, R. M., P. A. Wheeler, and R. L. Edwards. (1989) Assesment of macroalgal nitrogen limitation in seasonal upwelling regions. Marine Ecology Progress.
Hanisak, M. D. (1979) Nitrogen limitation of Codium fragile ssp. tomentosoides as determined by tissue analysis. Marine Biology 50: 333-730.
Ik Kyo Chung, Jung Hyun Oak, Jin Ae Lee, Jong Ahm Shin, Jong Gyu Kim, and Kwang-Seok Park. (2013) Installing kelp forests/seaweed beds for mitigation and adaptation against global warming: Korean Project Overview. ICES JOURNAL OF MARINE SCIENCE. 70: 1038–1044
Kaplan, D., Z. Cohen, and A. Abeliovich. (1986) Optimal growth conditions for Isochrysis galbana. Biomass 9: 37-48.
Kazuhiro HORII, Naoto TSUTSUMI, Yoshiyuki KITANO, Toshiaki KATO. (2013) Processing and Reusing Technologies for Steelmaking Slag. NIPPON STEEL TECHNICAL REPORT No. 104.
Ja-Myung Kim, Kitack Lee, Kyoungsoon Shin, Jung-Hoon Kang, Hyun-Woo Lee, Miok Kim, Pung-Guk Jang, Min-Chul Jang. (2006) The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnology and Oceanography 51: 1629-1636
Lapointe, B.E. (1987) Phosphorus- and nitrogen-limitation photosynthesis and growth of Gracilaria tikvahiae (Rhodophyceae) in the Florida Keys: an experimental field study. Marine Biology 93: 561-568.
MIYATA Yasuhito, SATO Yoshio, SHIMIZU Satoru, OYAMADA Kumi. (2009) Environment Improvement in the Sea Bottom by Steelmaking Slag. JFE TECHNICAL REPORT No. 13.
Morris, J. (1974) Nitrogen assimilation and protein synthesis. In (Stewart, W. D. P. ed). Algal Physiology and Biochemistry. University of California Press. Berkelley and Los Angeles pp: 583-609.
Murphy, P.P., and M.F. Lamb. (1995) The role of pH measurements in modern oceanic CO2-system characterizations: precision and thermodynamic consistency. Deep Sea Research 42: 403-411.
Naldi M, Wheeler PA (1999) Changes in nitrogen pools in Ulva fenestrata Chlorophyta) and Gracilaria pacifica (Rhodophyta) under nitrate and ammonium enrichment. J Phycol 35:70–77.
Philips, S. (1997) A biology of the algae. Second edition. Cambridge University Press, London, pp. 259.
Stryer, L. (1996) Biochemistry, 4th edition. W.H. Freeman and Company, New York, pp. 795.
Victoria J. Fabry, Brad A. Seibel, Richard A. Feely, James C. Orr. (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65: 414-432.
Turpin, D.H. (1991) Effect of inorganic N availability on algal photosynthesis and carbon metabolism. Journal of Phycology 27: 14-20.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code