Responsive image
博碩士論文 etd-0518113-190439 詳細資訊
Title page for etd-0518113-190439
論文名稱
Title
利用臭氧消毒結合生物活性碳去除原水中有機物之探討
Removal of organics from raw water using ozone disinfection combined with biological activated carbon process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-11
繳交日期
Date of Submission
2013-06-18
關鍵字
Keywords
生物可利用有機碳、臭氧消毒、生物活性碳、水處理、有機物
Ozone disinfect, BAC, Water treatment, Organic, AOC
統計
Statistics
本論文已被瀏覽 5705 次,被下載 1
The thesis/dissertation has been browsed 5705 times, has been downloaded 1 times.
中文摘要
最近由於梅雨季節所帶來的暴雨而造成水處理廠水源受到大腸桿菌及有機物污染,這些水質項目之濃度均高於飲用水水源水質標準,故會影響處理水質。為了降低水處理廠加氯消毒所衍生之消毒副產物(Disinfection By-Products, DBPs),有必要於前處理去除原水中大腸桿菌及有機物。
本研究運用臭氧反應槽串聯及生物活性碳管柱,以二種系統(以T1、T2表示)之現場模組,探討去除原水中大腸桿菌及有機物之效能。使用培養在地菌種及使用該地區之原水馴養生物活性碳以提高生物降解有機物的效率。本研究所使用的原水取自高屏溪河川並實驗中以生物可利用有機碳(AOC) 代表生物降解,AOC中P17此菌種之產率為2.41×106 CFU /μg acetate-C,NOx此菌種之產率為7.82×106 CFU / μg acetate-C。
結果顯示,臭氧對大腸桿菌群及總菌落數在5分鐘以內之去除率已高達99%,表示臭氧對大腸桿菌群及總菌落數為一有效的前處理方法。
TOC、DOC、AOC等原水中有機物,去除率約40至80%。生物活性碳(BAC)的關鍵去除有機物操作條件為停留時間及臭氧濃度。當原水以足夠臭氧量串聯BAC時,因有機物之去除率可比原水直接進入BAC高出10至20%。因此,前臭氧處理可以有效提升BAC對有機物生物降解效能。
Abstract
Because of the heavy rain in plum rain season recently, the water source from water treatment factory was polluted by E coli and organic. The concentration of these water quality items is higher than the standard of drinking water source quality. So, it cannot be supplied to public. In order to reduce the DBPs that caused of interaction between the remaining chlorine and organic when disinfection of water treatment plant is adding chlorine, it is very important to eliminate E coli and organic using pretreatment before the water treatment plant.
We use the module of 2 processes of will ozone reactor and biological activated carbon column, the research mainly will discuss the elimination for E coli and organic efficiency from raw water. We cultivate local bacteria from the raw in biological activated carbon to increase the efficiency of AOC. For the results of this experiment, it regards creature usable carbon as AOC. For AOC, the productive yield of bacteria P17 is 2.41x106 CFU /μg acetate-C, while the productivity of bacteria NOX is 7.82×106 CFU /μg acetate-C. The above AOC values in raw water was sampling from Kao-Ping River. Therefore, the yields can be treated as AOC of Kao-Ping River.
The results indicated that elimination rate of E coli reach to 99% in five minutes for the influence of ozone to E coli and total colony number. It indicates ozone is the good pre-treatment method for removal of E coli and total colony.
TOC, DOC and AOC are three indicators of stands for the organic in the raw water. The elimination rate of these organic is ranging from 40 to 80%. The key operation conditions of BAC are the empty bed contact time and the concentration of ozone. We found the removal efficiency is more 10 to 20% in the way of ozone combined BAC, than the way of only BAC for treating raw water. It can be seen the ozone pre-treatment can increase the removal efficiency of AOC in followed BAC.
目次 Table of Contents
摘要 i
ABSTRACT .iii
目錄 v
圖目錄 x
表目錄 xii
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
1-3研究內容 3
第二章 文獻回顧 4
2-1 水中有機物的種類與來源 4
2-1-1水中背景有機物之性質 5
2-1-2水中背景有機物之結構分析 7
2-1-3 水中生物可分解有機質之測定 9
2-2 臭氧氧化之原理及程序 11
2-2-1臭氧物理化學性質 11
2-2-2 臭氧的自解機制 12
2-2-3 PH 值對臭氧反應特性之影響 14
2-2-4臭氧對於生物分解性的影響 15
2-2-5臭氧在給水場之應用 16
2-3 活性碳 20
2-4 高屏溪攔河堰概況 22
第三章 研究方法 24
3-1 研究流程之規畫 24
3-2 臭氧處理程序實驗法 25
3-3 生物活性碳(BAC)程序實驗方法 .26
3-4 水質分析項目與方法 27
3-4-1水溫與氫離子濃度指數 29
3-4-2導電度 29
3-4-3總溶解固體物 29
3-4-4濁度 29
3-4-5總有機碳 30
3-4-6溶解性有機碳 30
3-4-7生物可利用有機碳 30
3-4-7-1 純菌菌液的預先培養 30
3-4-7-2 菌種活化、培養與保存 34
3-4-9-3 菌種純種鑑定與特性分析 37
3-4-7-4 AOC器皿之清洗方式 40
3-4-7-5 P17與NOX生長曲線與產率之求得 41
3-4-7-6 水樣AOC之分析方式 43
3-4-8氨氮 44
3-4-9化學需氧量 44
3-4-10大腸桿菌群 44
3-4-11總菌落數 45
3-4-12臭氧濃度 45
3-5實驗分析儀器設備 46
第四章 結果與討論 48
4-1AOC之菌種(P17及NOX)生長曲線及產率值(YIELD) 48
4-2生物活性碳(BAC)預前的微生物馴養 55
4-2-1 TOC及DOC濃度之變化 55
4-3臭氧對原水水質之處理效率 59
4-3-1臭氧濃度及溶解度測試 59
4-3-2臭氧對原水水質之處理效能 62
4-3-2-1 COD之去除率 62
4-3-2-2臭氧對原水大腸桿菌群及總菌落數之處理效能 65
4-4現場模組對經臭氧與未經臭氧串聯生物活性碳對TOC及DOC處理效能 68
4-4-1總有機碳(TOC)去除率 70
4-4-2-1比較,T1與T2在對DOC去除率 70
4-4-2溶解性有機碳(DOC) 73
4-4-2-1比較,T1與T2在對DOC去除率 73
4-5現場模組對經臭氧與未經臭氧串聯生物活性碳對AOC處理效能 76
4-5-1綜合T1與T2對AOC去除率之比較 76
第五章結論與建議 80
5-1結論 80
5-2建議 .81
參考文獻 82
參考文獻 References
Anu M., Egil T., Gjessing, Tanja L., Leif H., Amit B., Mika S., (2011) “An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment” Chemosphere, 83(11):1431 – 1442.
AWWARF (1993a) Characterization of Natural Organic Matter and Its Relationship to Treatability, AWWA Research Foundation and American Water Works Association, Denver, CO .
AWWARF (1993b) Assimilable Organic Carbon Measurement Techniques, AWWA Research Foundation and American Water Works Association, Denver, CO .
Bao M. L., Griffini O., Santianni K., Burrini D., Pantani F., (1999),“Removeal of bromate ion from water using granular activated carbon” Water Research(13):2959–2970
Barber L.B., Leenheer J.A., Noyes T.I., Stiles E.A., (2001), “Nature and transformation of dissolved organic matter in treatment wetlands.” Environ. Sci. Technol., 35:4805 – 4816.
Camel V., Bermon A., (1998), “The use of ozone and associated oxidation process in drinking water treatment.” Water Research, 32(11): 3208 – 3222.
Carlson M. A., Heffernan K. M. Ziesemer C. C., Snyder E. G., (1994) “Comparing two GAC for Adsorption and Biostabilization” J. Amer. Water Works Assoc, 86(3):91 – 102.
Chang Y., Benjamin M. M., (1996) “Iron oxide adsorption and UF to remove NOM and control fouling.” American Water Works Association Journal, 88(12):74 – 88.
Chu W. H., Gao N. Y., Yin D., Deng Y., Michael R. T., (2012) “Ozone–biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by products.” Chemosphere, (86):1087 – 1091.
Cicmanec J. L., Condie L.W., Olson G. R., Wang S. R., (1991) “90-Day toxocoty study of dichloroacetate.”Metabolism, 30(10):1024 – 1039.
Cigdem K., Kozet Y., Bulent M., Deniz T., Ahment S., (2011) “Evaluation of Biological Activated Carbon (BAC) process in wastewater treatment secondary effluent for reclamation purposes.“ Desalination. 265(15):266 – 273.
Daniel G., Sujanie G., Janie C., Holady, Douglas M. B., Oscar Q., Rebecca A. T., Shane A. S., (2011). “Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection” water research, 45:2155 – 2165.
Edwards M., Benjamin M. M., (1992). “Effect of preozonation on coagulant-NOM interactions.” Journal of American Water Works Association, 84(8): 63 – 72.
Elkins K. M., Nelson D. J., (2002) “Spectroscopic approaches to the study of the interaction of aluminum with humic substances.” Coordination Chemistry Reviews, 228(2):205 – 225.
Escobar I. C., Randall A. A., (2001) “Ozone and Distribution System Biostability.” Jour. AWWA, 93(10):77 – 89.
Galapate R. P., Baes A.U., kada M., (2001) “Transformation of Dissolved Organic Matter During Ozonation: Effects on Trihalomethane Formation Potential.” Wat. Res, 35(9):2201 – 2206.
Glaze W. H., Kang J. W., (1988) “Advance oxidation process for treating groundwater contaminated with TCE and PCE : laboratory studies.” J. AWWA, 88(5):57 – 63.
Gong C. H., Zhang Z. G., Qian Q. G., Liu D., Cheng Y. J., Yuan G. Q., (2013) “Removal of bromide from water by adsorption on silver-loaded porous carbon spheres to prevent bromate formation” Chemical Engineering journal(218):333–340
Haag W. R., Hoigne J., (1983) “Ozonation of Bromide-Containing Waters: Kinetics of Formation of Hypobromous Acid and Bromate. ” Environ. Sci Technol, (17):261 – 267.
Idil A. A., (2003) “The effect of pre-ozonation on the biocompatibility of reactivedye hydrolysates” Chemosphere 51(9):825 – 833.
Jinsik S., Gary A., Jaeweon C., Yonghun L., Yeomin Y., (2004) “Disinfectant decay and disinfection by-products formation model development: chlorination and ozonation.“
Johnson P. D., Dawson B. V., Goldberg S. J., (1998) “Cardiac teratogenicity of trichloroacetate on carbonhydrate metabolism in B6C3F1 mice. ” Toxicology, 130(1):141 – 154.
Kim W. H., Nishijima W., Shoto E., Okada M., (1997) “Pilot Plant Study on Ozonationand Biological Activated Carbon Process for Drinking Water Treatment.” Wat.Sci. Tech. 35(8):21 – 28.
Kirisits M. J., Snoeyink V. L., (1999) “ Reduction of Bromate in a BAC Filter. ” Jour. AWWA, 91(8):74 – 84.
Kirisits M. J., Snoeyink V. L., Inan H., Chee-Sanford J. C., Raskin L., Brown J. C., (2001) “Water Quality Factors Affecting Bromate Reduc tion In Biologically Active Carbon Filters. ” Wat. Res, 35(4):891 – 900.
Kozet Y., Bulent M., Ferhan C., (2010) “Identification of nitrifiers and nitrification performance in drinking water biological activated carbon (BAC) filtration. ” Process Biochemistry, (45):1543 – 1549.
Krasner S. W., Croue J. P., Buffle J., Perdue E. M., (1996) “Three approaches for characterizing NOM. ” AWWA, 88(6): 66 – 79.
Langlais B., Reckhow D. A., Brink D. R., (1991) “Practical application of ozone. Ozone In Water Treatment : Application and Engineering. ” AWWA RF and Lewis Publishers, Chelsea, Michigan.
Lauren A. W., Patrick K. J., Eugenio G., Mark W. L., (2010) “Implications of organic carbon in the deterioration of water quality in reclaimed water distribution systems.” water research, (44):5367 – 5375.
Leenheer J. A., Brown G. K., Maccarthy P., Cabaniss S. E., (1998) “Models of Metal Binding Structures in Fulvic Acid From the Suwannee River, Georgia.“ Environmental Science and Technology, 32(16):2410 – 2416.
Legube B., Parinet B., Gelient K., Berne F., Croue J. P., (2004) “Modeling of bromate formation by ozontion of surface waters in drinking water treatment. ” Water Research, (38):2185 – 2195.
Li L. S., Zhu W. P., Zhang P. Y., Zhang Q., Zhang Z. L., (2006) “TiO2/UV/O3-BAC processes for removing refractory and hazardous pollutants in raw water.” Journal of Hazardous Materials, B(128):145 – 149.
Lia L. S., Zhu W. P., Zhang P. Y., Lu P., Zhang Q., Zhang Z., (2007) “UV/O3-BAC process for removing organic pollutants in secondary effluents.” Desalination, (207):114 – 124.
Lou J. C., Tseng W. B., Wu M. C., Han J. Y., Chen B. H., (2012)“Removal of disinfection by-products in raw water using a biological powder-activated carbon system ” Journal of Environmental Science and Health, Part A(47):1478–1485
MacCarthy P., Klusman R. W., Cowling S. W., Rice J. A., (1995) “Water analysis. Analytical” Chemistry, 67(12):525 – 525.
Marhaba T. F., Van D., (2000) “The variation of mass and disinfection by-product formation potential of dissolved organic matter fractions along a conventional surface water treatment plant. ” Journal of Hazardous Materials, A(74):133 – 147.
Marhaba T. F., Washington M. B., (1998) “Drinking water disinfection and byproducts: history and current practice.” environmental research, 2(1):103 – 115.
Narkis N., Rotel M. S., (1980) “Evalution of Ozone induced biodegradability of wastewater treatment plant effluent.” Water Res, (14):929 – 939.
Nilson J. A., DiGian F. A., (1996) “Influence of NOM composition on nanofiltration.” J.AWWA, 88(5):53 – 66.
Nishijima W., Okada M., (1998) “Particle Separation as a pretreatment of an advanced drinking water treatment process by ozonation and biological activated carbon.” Water Science and Technology, (37):117 – 124.
Porter W. B. R. N., Removal of VUV pre-treated natural organic matter by biologically activated carbon columns (2008) Water Research(42):3335 – 3342
Rice J. A., Mac C. P., (1991) “Statistical evaluation of the elemental composition of humic substances.” Organic Geochemistry, (17):635.
Servais P., Billen G., HascoëT M. C., (1987) “ Determination of The Biodegradable Fraction of Dissolved Organic Matter in Waters. ” Wat. Res, 21(4):445 – 450.
Siddiqui M. S., Amy G. L., Murphy B. D., (1997). “Ozone enhance removal of organic matter from drinking water sources.”Water Research, (31):3098 – 3106.
Singer P.C., (1999), “Humic substance as precursors for potentially harmful disinfection by-products.” Water Science and Technology, 40(9):25 – 30.
Sotelo J. L., Beltran F. J., Benitez F. J., Beltranherdia J., (1987) “ozone decomposition in water–kinetic study.” Ind. Eng. Chem. Res, 26(1):39 – 43.
Staehelin J., Buhler R. E., Hoigne J., (1984) “ozone decomposition in water studied by pulse-radiolysis .2. OH and HO4 as chain intermediates.” J. Phys. Chem, 88(24):5999 – 6004.
Steven V. G., Leen B., Bart V. d. B., (2011) “Ozone oxidation for the alleviation of membrane fouling by natural organic matter: A review.” water research (45):3551 – 3570.
Stevenson F. J., (1994) “Humus chemistry: Genesis, Composition, Reactions (2nd Ed.). ”John Wiley & Sons, Inc , New York, USA. 189
Sung M. H., Chen B. H., (2011) “Using aliphatic alcohols as gaseous tracers in determination of water contents and air–water interfacial areas in unsaturated sands.“ Journal of Contaminant Hydrology, (126):226 – 234.
Thurman E. M., Malcolm R. L., (1983) “Structural study of humic substances: New approaches and methods. In Aquatic and Terrestrial Humic Material.“ Ann Arbor Science, Ann Anbor, MI, 1 – 23.
Tung H. H., Unz R. F., Xie Y. F., (2009) “ Evidences of HAAs Biodegradation in GAC Filtration.” Journal of Environment Management, (19):59 – 66
Van der Kooij D., (1990) “Assimilable organic carbon (AOC) in drinking water. in Drinking Water Microbiology,” G. A. Mcfeter, ed., Springer-Verlag, New York.
Van der Kooij D., Hijnen W. A. M., Kruithof J. C., (1989) “The effect of ozonation, biological filtration and distribution on the concentration of easily assimilable organic carbon (AOC) in drinking water. ”Ozone: Science and Engineering, (11):297 – 311.
Van der Kooij D., Visser A., Hijnen W. A. M., (1982) “Determining the concentration of easily assimilable organic carbon in drinking water.” Journal American Water Works Association, (74):540 – 545.
Von Gunten G., (2003) “ Review, Ozonation of drinking water: Part I. Oxidation kinetics and product formation.” Water Research, (37):1443 – 1467.
Von Gunten G., (2003) “ Review, Ozonation of drinking water: Part II. Disinfection and by-production formation in presence of bromide, iodide, or chlorine.” Water Research, (37):1469 – 1487.
Von Gunten U., Hoigne J., (1994) “ Bromate Formation during Ozonation of Bromide-Containing Waters: Interaction of Ozone and Hydroxyl Radical Reactions.” Environ. Sci. Technol, (28):1234 – 1242.
Von Gunten U., Oliveras V., (1998) “Advanced oxidation of bromide containing waters: bromate formation mechanisms. ” Environ Sci Technol, (32):63 – 70.
Wu J., Wang T. W., (2001) “Ozonation of aqueous azo dye in a semi-batch reactor. ” Water Res, 35(4):1093 – 1099.
Zhongtian L., Bruce D., Xu L., (2012) “Removing 17b-estradiol from drinking water in a biologically active carbon (BAC) reactor modified from a granular activated carbon (GAC) reactor.“ Water Research, (46):2828 – 2836.
于昌平,結合臭氧與生物處理硝基酚廢水之研究,國立台灣大學環境工程學研究所博士論文,(2001)。
王啟渝,預臭氧結合生物處理TFT-LCD有機廢水之研究-以四甲基氫氧化銨(TMAH)為例,國立臺灣大學工學院環境工程學研究所碩士論文,(2007)。
江漢全,「水質分析」,(1996)。
行政院環境保護署環境檢驗所,「水質檢驗方法彙編」。
李宜玶,探討臭氧對天然有機物生物降解之影響,國立中興大學環境工程系碩士論文,(2003)。
林治宇,結合化學與生物處理方法處理半導體廠有機廢水之可行性評估,國立台灣大學環境工程學研究所碩士論文,(2003)。
林澤閔,利用活性碳處理生活汙水中有機物,國立中山大學碩士論文,(2012)。
胡思聰,臭氧化預處理之氯酚化合物廢水對於活性污泥系統處理效應之影響,國立台灣大學環境工程學研究所碩士論文,(1994)。
范姜仁茂,預臭氧程序提升綜合性工業廢水生物可分解性之研究,國立中央大學環境工程研究所碩士論文,(2001)。
張庭瑋,模擬高級與傳統淨水場中汙染物之變化,國立中山大學環境工程研究所博士論文,(2011)。
梁仲暉,臭氧配合生物活性碳程序去除自來水中有機物之機制及模式之研究,國立臺灣大學工學院環境工程學研究所碩士論文,(2006)。
陳美吟,以臭氧處理煉焦廢水之效能評估,國立臺灣大學環境工程研究所碩士論文,(2006)。
劉彭譽,臭氧結合傳統淨水程序控制鳳山水庫原水消毒副產物生成之研究,逢甲大學環境工程與科學研究所碩士論文,(2002)。
劉鴻擇,溴離子在預臭氧處理程序中對消毒副產物生成影響,國立台灣大學環境工程研究所碩士論文,(2006)。
蔣本基,比較活性碳及活性碳纖維對揮發性有機物之吸附及再生效率之研究I,行政院國科會專題研究報告,NSC76-0410-E002-23,(1987)。
鄭秀娥,高級處理程序對溴酸鹽生成之影響,國立高雄海洋科技大學海洋環境工程研究所碩士論文,(2008)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.135.209.249
論文開放下載的時間是 校外不公開

Your IP address is 3.135.209.249
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code