Responsive image
博碩士論文 etd-0518114-165953 詳細資訊
Title page for etd-0518114-165953
論文名稱
Title
前瞻顯示器InGaZnO薄膜電晶體於U、I型源極/汲極結構下之熱載子效應與自熱效應研究
Investigation of the Hot Carrier and Self-Heating Effects in InGaZnO Thin Film Transistor with U- and I-shaped structure for Advanced Displays
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-13
繳交日期
Date of Submission
2014-06-18
關鍵字
Keywords
電荷捕獲、臨界電壓、回踢電壓、自熱效應、銦鎵鋅氧、熱載子效應、薄膜電晶體
Threshold voltage, charge trapping, Thin Film Transistors, Hot Carrier Effect, InGaZnO, Self-Heating Effect, kick back voltage
統計
Statistics
本論文已被瀏覽 5701 次,被下載 1229
The thesis/dissertation has been browsed 5701 times, has been downloaded 1229 times.
中文摘要
本研究主要對於a-IGZO薄膜電晶體的熱載子效應與自熱效應在對稱電極與非對稱電極結構下之劣化機制探討,首先討論對稱電極結構之熱載子效應造成之劣化行為,發現在熱載子電應力施加(hot carrier stress, HCS)過後其飽和區的ID-VG曲線出現了因閘極施加正偏壓誘發電子捕獲在閘極絕緣層或IGZO/閘極絕緣層介面導致的正向的VT-shift,且reverse mode有on-state 電流與S.S.劣化,這是因為有缺陷能階產生在靠近汲極端造成的。且非對稱電極結構U型汲極/I型源極模式的熱載子效應劣化機制與對稱電極結構是由相同的劣化機制主導其劣化行為,但在非對稱電極結構薄膜電晶體之I型汲極/U型源極模式的HCS看到不同劣化行為,其飽和區的ID-VG曲線顯示出reverse mode有因尖端效應造成汲極端有強電場誘發大量電子捕獲而出現的嚴重的正向VT-shift,且在CGD、CGS單邊電容量測可以看見因汲極端有大量電子捕獲產生的兩階段電容抬升行為。並使用ISE-TCAD電性模擬軟體模擬得到相同的結果。
而在升溫的熱載子效應,於低溫時所產生的on-state 電流與S.S.劣化會隨著溫度的上升而消失,並會出現CGD單邊電容量測出現了電容提前導通的情形,且不論是對稱電極結構或非對稱電極結構之薄膜電晶體都會發生此種 on-state 電流與S.S.劣化消失的行為。
最後我們探討自熱效應在對稱電極與非對稱電極結構上之劣化機制,對稱電極結構薄膜電晶體的自熱效應產生之劣化行為主要是由汲極端通道電阻較大造成溫度較高而有較源極端多的電子捕獲使飽和區ID-VG曲線的reverse mode有較大的VT-shift以及缺陷能階產生在源極端導致的on-state 電流劣化。至於非對稱電極結構I型汲極/U型源極模式薄膜電晶體的自熱效應劣化機制與對稱締結構是相同的。而非對稱電極結構U型汲極/I型源極模式薄膜電晶體的自熱效應劣化則是由較多的電子捕獲在源極端所主導,且非對稱電極結構的劣化會較對稱電極結構來得嚴重。
Abstract
In the first section, we investigate the hot-carrier effect in indium–gallium–zinc oxide (IGZO) thin film transistors with symmetric and asymmetric source/drain structures. The different degradation behaviors after hot-carrier stress in symmetric and asymmetric source/drain devices indicate that different mechanisms dominate the degradation. The degradation behaviors under hot-carrier stress in InGaZnO thin film transistors with symmetric electrodes indicate on-state current and subthreshold swing degradation, which are only observed in ID-VG transfer curve under reverse mode. This is believed that impact ionization is taken place near the drain side and induced trap states generation. The same stress condition with a U-shaped drain and I-shaped source, the degradation behaviors of I-V and C-V curves are quite similar to the results of the symmetric structure. It is worthy to note the degradation behaviors after the hot-carrier stress with I-shaped drain and U-shaped source. The ID-VG curve under forward-operation mode exhibit a parallel shift caused by electron trapping. Furthermore, the parallel shift is more pronounced under reverse-operation mode, which can be ascribed to more evident electron-trapping at the IGZO/gate dielectric interface or within the gate dielectric layer. The location of trapped electron is estimated from the two-stage rise in the gate-to-drain/gate-to-source capacitance curves and then verified by the simulation tool.
In the second section, we extend the previous chapter about hot-carrier stress in a-InGaZnO TFT. The hot-carrier stress performed at elevated temperatures are performed with VG = 10 V and VD = 25 V. With the increasing of stress temperature, on-state current degradation in the I-V transfer curve under reverse mode is gradually suppressed, and the abnormal hump in the gate-to-drain capacitance-voltage curvebecomes more severe. These suppressed degradations and the more severe hump can be both attributed to hole-trapping near the drain side due to high drain bias at high temperature.
To investigate the self-heating effect in a-InGaZnO TFT, the stress condition is performed with VG = 25 V, VD = 15 V and a grounded source. After self-heating stress, it is found that the threshold voltage shift is more severe than positive gate bias with VG = 25 V. This additional VT-shift can be attributed to Joule-heating generated by self-heating operation. However, the different degradation behaviors are found after I-shaped drain/U shaped source and U-shaped drain/I-shaped source operation. These phenomena are attributed to non-uniform Joule-heating distribution in the channel under self-heating operation. However, the I-shaped drain/U-shaped source induced more serious VT shift than symmetric structure and U-shaped drain/I-shaped source. These results exhibit that I-shaped drain induce higher channel temperature than others operation.
Keyword: Thin Film Transistors, Hot Carrier Effect, InGaZnO, Self-Heating Effect, kick back voltage, Threshold voltage, charge trapping.
目次 Table of Contents
誌謝 ii
摘要 iv
Abstract vi
目錄 viii
圖次 ix
第一章.序論 1
1.1研究背景 1
1.2主動層材料性質與優劣比較 2
1.3為何選擇a-IGZO? 4
1.4研究動機 5
第二章.元件結構與基本電性 12
2.1元件結構 12
2.2元件基本特性 13
2.2.1電晶體輸出特性與轉換特性曲線 13
2.2.2電容-電壓轉換特性 13
第三章.參數萃取與儀器介紹 19
3.1參數萃取 19
3.1.1電流與載子遷移率 19
3.1.2臨界電壓(VT) 20
3.1.3次臨界擺幅(Subthreshold swing, S.S.) 21
3.2 儀器介紹 22
第四章.對稱與非對稱電極結構之熱載子效應 25
4.1簡介 25
4.2實驗架構 26
4.3 結果與討論 27
4.3.1室溫下的對稱與非對稱結構之熱載子效應 27
4.3.2升溫的對稱與非對稱電極結構之熱載子效應 30
4.3.3非對稱I/U電極結構之升溫熱載子效應 36
4.4.總結 39
第五章.對稱與非對稱電極結構之自熱效應 70
5.1簡介 70
5.2實驗架構 71
5.3實驗結果與討論 72
5.3.1對稱電極結構薄膜電晶體之自熱效應 72
5.3.2非對稱I/U電極結構薄膜電晶體之自熱效應與尺寸效應 74
5.4總結 80
第六章.結論 99
Reference 101
參考文獻 References
[1]Joon Seok Park, Review of recent developments in amorphous oxide semiconductor thin-film transistor devices, Thin Solid Films 520 (2012)
[2]Toshio Kamiya, Material characteristics and applications of transparent amorphous oxide semiconductors, NPG Asia Mater. 2(1) 15–22 (2010)
[3]Cherie R. Kagan and Paul Andry, Thin-Film Transistors.
[4]joon Seok Park, The effect of UV-assisted cleaning on the performance and stability of amorphous oxide semiconductor thin-film transistors under illumination, Appl. Phys. Lett. 98, 012107, (2011)
[5]Himchan Oh, Enhanced bias Illumination stability of oxide thin film transistor through insertion of ultrathin positive charge barrier into active material, Appl. Phys. Lett. 99, 022105, (2011)
[6]Seung-Eon Ahn, Metal Oxidethin File Phototransistor for Remote Touch Interactive Displays, Advanced Materials Vol24, pages 2631–2636, 2012
[7]Jang-Yeon Kwon, The impact of gate dielectric materials on the light-induced bias instability in Hf-In-Zn-O thin film transistor, Appl. Phys. Lett. 97, 183503, (2010)
[8]Te-Chih Chen, Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress, Appl. Phys. Lett. 97, 112104, (2010)
[9]Po-Tsun Liu, Environment-dependent metal stability of passivation-free indium zinc oxide thin film transistor after gate bias stress, Appl. Phys. Lett. 95, 233504, (2009)
[10]Chun-Yu Wu, Reliability improvement of InGaZnO thin film transistors encapsulated under nitrogen ambient, Appl. Phys. Lett. 100, 152108, (2012)
[11]Jae Kyeong Jeong, Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors, Appl. Phys. Lett. 93, 123508, (2008)
[12]Shou-En Liu, Influence of Passivation Layer on Characteristics of a-InGaZnO Thin-Film Transistors, IEEE transistors on Electron Devices, VOL.32, NO.2, (2011)
[13]Horng-Chin Lin, characterization of AC Hot-Carrier Effects in Poly-Si Thin-Film transistors, IEEE transistors on Electron Devices, VOL.56, NO.11, (2009)
[14]Yoshiaki Toyota, Effects of the Timing of AC Stress on Device Degradation Produced by Trap States in Low-Temperature Polycrystalline-Silicon TFTs, IEEE transistors on Electron Devices, VOL. 52, NO. 8, (2005)
[15]In-TAK Cho, Charge trapping and detrapping characteristics in amorphous InGaZnO TFTs under static and dynamic stresses, IOP, semicond. Sci.Technol.24, (2009)
[16]Ming-Yen Tsai, Investigating the degradation behavior under hot carrier stress for InGaZnO TFTs with symmetric and asymmetric structures, Thin Solid Films 528
[17]Kook Chul Moon, The Study of Hot-Carrier Stress on Poly-Si TFT employing C-V Measurement, IEEE transistors on Electron Devices, VOL.52, NO.4, (2005)
[18]Shen De WANG, Drain/Gate-Voltage-Dependent On-Current and Off-Current Instabilities in Polycrystalline Silicon Thin-Film Transistors under Electrical Stress, Jpn. J. Appl. Phys., Vol. 44, No. 9A, (2005)
[19]Ming-Yen Tsai, Asymmetric structure-induced hot-electron injection under hot-carrier stress in a-InGaZnO thin film transistor, Appl. Phys. Lett. 103, 143508 , (2013)
[20]Kwang-Hee Lee, The effect of moisture on the photon-enhanced negative bias thermal instability in Ga-In-Zn-O thin film transistors, Appl. Phys. Lett. 95, 232106, (2009)
[21]Ming-Yen Tsai, High temperature-induced abnormal suppression of sub-threshold swing and on-current degradations under hot-carrier stress in a-InGaZnO thin film transistors, Appl. Phys. Lett. 103, 012101 (2013)
[22]Md Delwar Hossain, Time-Temperature dependence of positive gate bias stress and recovery in amorphous indium-gallium-zinc-oxide thin-film-transistors, Appl. Phys. Lett. 98, 153511, (2011)
[23]Ayumu Sato, Amorphous In-Ga-ZnO coplanar homojunction thin-film transistor, Appl. Phys. Lett. 94,133502, (2009)
[24]Devin A. Mourey, Thermal Effects in Oxide TFTs, IEEE. Device Research Conference (DRC), (2010)
[25]Ya-Hsiang Tai, Degradation of Capacitance-Voltage Characteristics Induced by Self-Heating Effect in Poly-Si TFTs, Electrochemical and solid-state Letters, 9(6)G208-G210,(2006)
[26]Satoshi Urakawa, Thermal analysis of amorphous oxide thin-film transistor degraded by combination of joule heating and hot carrier effect, Appl. Phys. Lett. 102, 053506 (2013)
[27]Tien-Yu Hsieh, Self-Heating-Effect-Induced Degradation Behaviors in a-InGaZnO Thin-Film Transistors, IEEE transistors on Electron Devices, VOL.34, NO.1, (2013)
[28]Tien-Yu Hsieh, Systematic Investigations on Self-Heating-Effect-Induced Degradation Behavior in a-InGaZnO Thin-Film Transistors, IEEE transistors on Electron Devices, VOL.59, NO.12, (2012)
[29]Kazushige Takechi, Dependence of Self-Heating Effects on Operation Conditions and Device Structures for Polycrystalline Silicon TFTs, IEEE transistors on Electron Devices, VOL.53, NO.2, (2006)
[30]Mami FUJII, Thermal Analysis of Degradation in Ga2O3–In2O3–ZnO Thin-Film Transistors, Jpn. J. Appl. Phys., Vol. 47, No. 8 (2008)
[31]Takashi Fuyukia, Thermal degradation of low temperature poly-Si TFT, Thin Solid Films 487 (2005)
[32]Mallory Mativenga, High current stress effects in amorphous-InGaZnO4 thin-film transistors, Appl. Phys. Lett. 102, 023503 (2013)
[33] Satoshi Inoue, Analysis of Degradation phenomenon Caused by Self-Heating in Low-Temperature-Processed Polycrystalline Silicon Thin Film Transistors, J.Appl.Phys.Vol.41, (2002)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code