Responsive image
博碩士論文 etd-0518114-200608 詳細資訊
Title page for etd-0518114-200608
論文名稱
Title
車際通訊多媒體串流服務品質控制機制之研究
QoS Control Mechanism for Multimedia Streaming Services in VANET
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-04
繳交日期
Date of Submission
2014-06-20
關鍵字
Keywords
車載網路、專用短距離通信、服務品質、車載資通訊系統、協同傳輸
VANETs, DSRC, Telematics, QoS, Cooperative Transmission
統計
Statistics
本論文已被瀏覽 5670 次,被下載 332
The thesis/dissertation has been browsed 5670 times, has been downloaded 332 times.
中文摘要
隨著資訊科技與運算技術的快速進步,整合型應用與無所不在的行動計算科技環境,將相關科技技術應用在智慧交通系統上,發展成為「車載資通訊系統」(Telematics),其應用在車輛上的服務重點,包括行車安全、視聽娛樂、車況與道路的即時訊息傳播等。然而,在車輛上配備的資訊設備與個人電腦設備比較下,車輛上的設備其運算資源服務仍然受到限制,若透過車輛的設備來進行通訊和提供整合應用服務,勢必需消耗更多的運算時間與資源,造成若透過車輛上的設備所提供的服務效能較低,同時需消耗更多電力的資源。車載網路是車載資通訊服務系統(Telematics)中的主要研究議題之一,而車載網路和專用短距離通信(DSRC)之間為無線通訊,彼此之間的行動性與調適性變得越來越重要,因此車際網路有一些重要的研究議題值得探討,包括如何降低頻寬的使用量、減少網路的抖動變化(Jitter)與降低封包遺失率等,以確保服務品質。因車輛與車輛之間的通訊是屬於短距離的傳輸,所以車輛間的相對距離與行駛速度有很大關聯性。而如何在車際間與車路間(Vehicle to vehicle, vehicle to roadside)能平順的傳送多媒體串流服務會是一大挑戰,其研究議題,包括:多媒體伺服器至車輛間傳輸路徑網路頻寬使用的流暢性、使用者端設備的資源等級(包括: memory, buffer, computing capacity等)、車際間雙向路由的建立、車路間資料合作傳輸的效能以及如何確保達到網路服務品質(QoS)等。因此,本論文提出一套 “車際通訊多媒體串流服務品質控制機制”,主要在探討車際通訊時,針對傳送多媒體串流服務,能即時提供智慧型的資源適應與調變性機制,此機制包括4個子模組,包括:(1) 多媒體的QoS調適機制:主要是基於行動設備的現有可用頻寬和資源限制,即時調整其傳送機制,以符合需求並確保服務的品質;(2) 網路感知傳輸調配控制機制:導入網路分層編碼與分層傳輸技術,採用網路感知機制,針對現有的網路狀況,適時調整其傳送服務內容,以符合使用者的需求;(3) 車際間的網路雙向傳送機制:導入網路雙向傳送概念,應用在車輛間通訊,能快速建立網路連線與快速回復網路連線中斷等問題,以及(4) 車路間的協同傳輸機制:在車路間通訊傳輸服務時,可透過車輛與車輛間的協同合作機制,達到傳送不中斷的網路服務,並達到服務品質保證。
Abstract
With rapid progresses in mobile computing technologies, the integrated and ubiquitous computing environment has been developed into Telematics services, which focuses on the safety, entertainment and information of vehicles. Vehicular ad-hoc network (VANET) is one of well-known environments where Telematics is applied. Compared with personal computers, the communication capability of on-board devices in vehicles is still limited due to their high mobility. Therefore, how to efficiently utilize the limited communication capability of an on-board device is one of the main challenges on Telematics. To improve the service quality of Telematics, the coordination between wired networks and mobile networks becomes more and more important. However, some features in VANET such as low-bandwidths, high jitters, high packets loss rates and so on make it difficult to guarantee service quality. Furthermore, inter-vehicle communication is short range transmissions. Links between vehicles are difficult to maintain. How to ease the impact of intermittent communications is one of major issues in VANET. This dissertation focuses on the multimedia streaming service for the VANET and proposes a mechanism to improve the service quality of multimedia streaming. The novel mechanism named “QoS control mechanism for multimedia streaming services in VANET” is proposed in the dissertation, which is comprised of four sub-mechanisms: (1) Multimedia QoS Adaptation Module: It makes decision for the adjustment of QoS request based on available bandwidth and resource constraints on the mobile devices; (2) Network-Aware Transmission Adaptation Controller: Layered-coding scheme is employed and base layers and enhancement layers are well scheduled based on their individual features; (3) Bi-directional Routing Protocol for V2V Communication: fast route discovery and local repair routing protocol is proposed to improve the performance of multi-hop V2V communications, and (4) Cooperative Transmission for V2R Communications: involving buddy vehicles with the consideration of collisions to improve the total throughput in a RSU.
目次 Table of Contents
論文審定書 i
Acknowledgements iii
摘要 iv
Table of Contents vii
List of Figures viii
List of Tables x
List of Symbols xi
Abbreviations xiv
1. Introduction 1
2. Related Works 4
2.1 Telematics 4
2.2 Multimedia Streaming 7
2.3 Vehicular Ad-Hoc Networks (VANET) 10
2.4 IEEE802.11p/1609 15
2.5 Dedicated Short Range Communication (DSRC) 18
2.6 Delay Tolerant Network 19
2.7 Wireless Channel Model 22
2.8 Bandwidth Estimation Mechanism for Mobile Networks 26
3. The Architecture and Methodology of the Research 29
3.1 Multimedia QoS Adaptation Module 30
3.2 Network-Aware Transmission Adaptation Mechanism 34
3.3 Bi-directional Routing Protocol for V2V Communication 42
3.4 Cooperative Transmission for V2R Communications 55
4. Simulation Results 69
4.1 Simulation Results of Network-Aware Transmission Adaptation Mechanism 69
4.2 Simulation Results of Bi-directional Routing Protocol 74
4.3 Simulation Results of Cooperative Transmission mechanism 77
5. Conclusion 85
Reference 87
Appendix 92
A. Formula 92
參考文獻 References
[1] Abey Abraham and Jebapriya S, “Routing strategies in Delay Tolerant Networks: A Survey”. International Journal of Computer Applications, vol. 42, no. 19, 2012, pp. 44-48.
[2] Ai Hua Ho, Yao H. Ho, and Kien A. Hua, “A Connectionless Approach to Mobile Ad Hoc Networks in Street Environments”. Proceedings of IEEE Intelligent Vehicles Symposium (IVS 2005), Nevada, USA , June 2005, pp. 575-582.
[3] Ai Hua Ho, Yao H. Ho, and Kien A. Hua, “Dynamic route diversion in vehicular networks”. International Conference on Telecommunications, June 2008, pp. 1-8.
[4] Al-Karaki, J.N. and Kamal, A.E., “Routing techniques in wireless sensor networks: a survey”. IEEE Wireless Communications, vol. 1, no. 6, 2004, pp. 6-28.
[5] ASTM E2213-03 Standard, “Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems — 5 GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications”. 2010.
[6] Bishop, R., “A Survey of Intelligent Vehicle Applications Worldwide”. Proceedings of the IEEE Intelligent Vehicles Symposium, 2000, pp. 25-30.
[7] Burgess, J., Gallagher, B., Jensen, D., and Levine, B.N., “MaxProp: Routing for vehicle-based disruption-tolerant networks”. 25th IEEE International Conference on Computer Communications. Proceedings, 2006, pp. 1-11.
[8] Burleigh, S., Hooke, A., Torgerson, L., Fall, K., Cerf, V., Durst, B., Scott, K., and Weiss, H., “Delay-Tolerant Networking: An Approach to Interplanetary Internet”. IEEE Communications Magazine, vol. 41, no. 6, 2003, pp. 128-136.
[9] Capone, A., Fratta, L., and Martignon, F, “Bandwidth Estimation Schemes for TCP over Wireless Networks”. IEEE Transactions on Mobile Computing, vol. 3, no. 2, 2004, pp. 129-143.
[10] Chennikara-Varghese, J., Wai Chen, Altintas, O., and Shengwei Cai, “Survey of Routing Protocols for Inter-Vehicle Communications”. Third Annual International Conference on Mobile and Ubiquitous Systems: Networking & Services, 2006, pp. 1-5.
[11] Ching-Ping Tsai, Hsu-Yung Kung, Mei-Hsien Lin, Wei-Kuang Lai, and Hsien-Chang Chen, “Computing Resources and Multimedia QoS Controls for Mobile Appliances”. The International Conference on Digital Information and Communication Technology and Its Applications Communications in Computer and Information Science(DICTAP 2011), PART I, CCIS 166, 2011, pp 93-105.
[12] Danlei Yu and Young-Bae Ko, “FFRDV: Fastest-ferry routing in dtn-enabled vehicular ad hoc networks”. 11th International Conference on Advanced Communication Technology (ICACT ’09), vol. 02, 2009, pp. 1410-1414.
[13] Dapeng Wu and Negi, R., “A wireless channel model for support of quality of service”. IEEE Global Telecommunications Conference (GLOBECOM), vol. 1, 2001, pp. 695-699.
[14] Delay Tolerant Networking Research Group, http://www.dtnrg.org/wiki/Docs.
[15] Euisin Lee, Eun-Kyu Lee, Gerla, M., and Oh, S.Y. “Vehicular Cloud Networking: Archtecture and Design Principles”. IEEE Communications Magazine, Vol. 52, No. 2, 2014, pp. 148-155.
[16] Fan Li and Yu Wang, “Routing in vehicular ad hoc networks: A survey”. IEEE Vehicular Technology Magazine, vol. 2, no. 2, June 2007, pp. 12-22.
[17] Franck, L. and Gil-Castineira, F., “Using Delay Tolerant Networks for Car2Car Communications”. IEEE International Symposium on Industrial Electronics (ISIE 2007), 2007, pp. 2573-2578.
[18] Girard, A.R., de Sousa, J.B., and Hedrick, J.K., “An Overview of Emerging Results in Networked Multi-Vehicle Systems”. Proceedings of the 40th IEEE Conference on Decision and Control, vol. 2, 2001, pp. 1485-1490.
[19] H. Schulzrinne and S. Casner, “RTP Profile for Audio and Video Conferences with Minimal Control”. RFC 3551, http://www.ietf.org/rfc/rfc3551.txt, July 2003.
[20] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming Protocol (RTSP)”. RFC 2326, http://www.ietf.org/rfc/rfc2326.txt, April 1998.
[21] Hartenstein, H. and Laberteaux, K.P., “A Tutorial Survey on Vehicular Ad Hoc Networks”. IEEE Communications Magazine, vol. 46, no. 6, June 2008, pp. 164-171.
[22] Heung Ki Lee, Hall, V., Ki Hwan Yum, Kyoung III Kim, and Eun Jung Kim, “Bandwidth Estimation in Wireless Lans for Multimedia Streaming Services”. IEEE International Conference on Multimedia and Expo, 2006, pp. 1181-1184.
[23] http://www.mathworks.com/help/vision/ref/psnr.html
[24] Hung-Chin Jang and Sheng-Chih Chuang, “Cooperative Transmission Aid in Intermittent Broken Connection on VANET”. International Symposium on Pervasive Systems, Algorithms, and Networks, 2009, pp.620-624.
[25] I. F. Akyildiz, Ö. B. Akan, C. Chen, J. Fang, and W. Su, “Interplanetary Internet: State-of-the-Art and Research Challenges”. Computer Networks, vol. 43, 2003, pp. 75-112.
[26] IEEE P802.11p/D7.0, “Wireless Access in Vehicular Environments (WAVE) comments”. 2009.
[27] IEEE Std. 1609.1/ D0.6, “IEEE Draft Standard for Wireless Access in Vehicular Environments (WAVE) – Management & Networking Service Extensions for Resource Class”. 2009.
[28] IEEE Std. 1609.11/D8, “IEEE Draft Standard for Wireless Access in Vehicular Environments (WAVE) – Over-the-Air Data Exchange Protocol for Intelligent Transportation Systems (ITS)”. 2010.
[29] IEEE Std. 1609.2, “IEEE Standard for Wireless Access in Vehicular Environments–Security Services for Applications and Management Messages”. 2013.
[30] IEEE Std. 1609.3/D8, “IEEE Draft Standard for Wireless Access in Vehicular Environments (WAVE) – Networking Services”. 2010.
[31] IEEE Std. 1609.4/D9, “IEEE Draft Standard for Wireless Access in Vehicular Environments (WAVE) – Multi-channel Operation”. 2010.
[32] IEEE WG, IEEE 802.1lp/D2.01, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment: Wireless Access in Vehicular Environments”. 2010.
[33] J Burgess, J., Gallagher, B., Jensen, D. , and Levine, B.N., “MaxProp: Routing for vehicle-based disruption-tolerant networks”. 25th IEEE International Conference on Computer Communications (INFOCOM 2006), 2006, pp. 1-11.
[34] J. Luo and J. P. Hubaux, “A survey of research in inter-vehicle communications”. Embedded Security in Cars, 2006, pp. 111-122.
[35] Jenkins, A., Kuzminsky, S., Gifford, K.K., Pitts, R.L., and Nichols, K., “Delay/Disruption-Tolerant Networking: Flight Test Results from the International Space Station”. IEEE Aerospace Conference, 2010, pp. 1-8.
[36] Jim Partan, Jim Kurose, and Brian Neil Levine, “A Survey of Practical Issues in Underwater Networks”. ACM Mobile Computing and Communications Review, vol. 11, no. 4, 2007, pp. 23-33.
[37] K. Abrougui, A. Boukerche, and R.W.N. Pazzi, “Design and Evaluation of Context-Aware and Location-Based Service Discovery Protocols for Vehicular Networks”. IEEE Transactions on Intelligent Transportation Systems, vol.12, no. 3, 2011, pp.717-735.
[38] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Internets”. ACM Proceedings of theconference on Applications, technologies, architectures, and protocols for computer communications (SIGCOMM '03), 2003, pp. 27-34.
[39] Kelvin Nichols, Mark Holbrook, Lee Pitts, Kevin Gifford, Andrew Jenkins, and Sebastian Kuzminsky, “DTN Implementation and Utilization Options on the International Space Station”. American Institute of Aeronautics and Astronautics, 2010, pp. 1-13.
[40] Kenney, J.B., “Dedicated Short-Range Communications (DSRC) Standards in the United States”. IEEE Journals & Magazines, vol. 99, no. 7, 2011, pp. 1162-1182.
[41] L. Blazevic, S. Giordano, and J.-Y. Le Boudec, “Self Organized Terminode Routing”. Cluster Computing, 2001.
[42] Lee, K.C., and Gerla, M., “Opportunistic vehicular routing”. Wireless Conference (EW), 2010 European, pp. 873-880.
[43] Lee, K.C., Uichin Lee, and Gerla, M., “Geo-Opportunistic Routing for Vehicular Networks”. IEEE Communications Magazine, vol. 48, no. 5, 2010, pp.164-170.
[44] Lloyd Wood, Will Ivancic, Wesley M. Eddy, Dave Stewart, James Northam, Chris Jackson, and Alex da Silva Curiel, “Use of the Delay-Tolerant Networking Bundle Protocol from Space”. The 59th International Astronautical Congress, 2008, pp. 1-11.
[45] M. J. Khabbaz, C. M. Assi, and W. F. Fawaz, “Disruption-tolerant networking: A comprehensive survey on recent developments and persisting challenges”. IEEE Communications Surveys & Tutorials, vol. 14, no. 2, 2012, pp. 607-640.
[46] Mehran Abolhasan, Tadeusz Wysocki, and Eryk Dutkiewicz, “A review of routing protocols for mobile ad hoc networks”. Ad Hoc Networks, vol. 2, no. 1, 2004, pp. 1-22.
[47] Meng Guo, Ammar, M.H. , and Zegura, E.W., “V3: A vehicle-to-vehicle live video streaming architecture”. Third IEEE International Conference on Pervasive Computing and Communications, 2005, pp. 171-180.
[48] Morgan, Y.L. “Notes on DSRC & WAVE Standards Suite: Its Architecture, Design, and Characteristics”. IEEE Communications Surveys & Tutorials, vol. 12, no. 4, 2010, pp. 504-518.
[49] Negru, D., Ahmed, T., and Mehaoua, A, “Adaptive audio-video streaming solution over IP mobile environments”. IEEE Wireless Communications and Networking Conference (WCNC 2006), vol. 4, April 2006, pp. 2156-2161.
[50] Nekovee, M. and Bogason, B.B., “Reliable and effcient information dissemination in intermittently connected vehicular adhoc networks”. IEEE Vehicular Technology Conference, 2007, pp. 2486-2490.
[51] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan Peh, and Daniel Rubenstein, “Energy-Efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences with ZebraNet”. ACM Proceedings of the 10th international conference on Architectural support for programming languages and operating systems, vol. 37, no. 10, 2002, pp. 96-107.
[52] Ruhai Wang, Sch. of Electron. & Inf. Eng., Soochow Univ., Suzhou China, Xuan Wu, Tiaotiao Wang, and Xueguan Liu “TCP Convergence Layer-Based Operation of DTN for Long-Delay Cislunar Communications”. IEEE Systems Journal, vol. 4, no. 3, 2010, pp385-395.
[53] Puneet Kumar and Ashish Kumar, “Simulation Based Analysis of DSR, LAR and DREAM Routing Protocol for Mobile Ad hoc Networks”. MIT International Journal of Computer Science & Information Technology, vol. 3, no. 2, 2013, pp. 58-62.
[54] Shah, R.C., Roy, S., Jain, S., and Brunette, W., “Data MULEs: Modeling a Three-Tier Architecture for Sparse Sensor Networks”. IEEE International Workshop on Sensor Network Protocols and Applications, 2003, pp. 30-41.
[55] Shittu, W.A., Bajoga, B.G., Anwar, F., and Salami, M.J.E., “Prediction of received signal power and propagation path loss in open/rural environments using modified Free-Space loss and Hata models”. IEEE RF and Microwave Conference, 2008, pp. 126-130.
[56] Sichitiu, M.L. and Kihl, M., “Inter-vehicle communication systems: a survey”. IEEE Communications Surveys & Tutorials, vol. 10, no. 2, 2008, pp. 88-105.
[57] Task Group p, “IEEE P802.11p: Wireless Access in Vehicular Environments (WAVE)”. IEEE Computer Society, 2006.
[58] The Network Simulator-ns-2, http://www.isi.edu/nsnam/ns/, 2011.
[59] Thiagarajah, S., Ali, B.M., and Ismail, M., “Empirical UWB path loss models for typical office environments”. IEEE 7th Malaysia International Conference on Communication, vol. 2, 2005, pp. 1023-1028.
[60] Toor, Y., Muhlethaler, P., and Laouiti, A., “Vehicle Ad Hoc Networks: Applications and Related Technical Issues”. IEEE Communications Surveys &Tutorials, vol. 10, no. 3, 2008, pp. 74-88.
[61] Tsugawa, S., “Inter-Vehicle Communications and their Applications to Intelligent Vehicles: an Overview”. IEEE Intelligent Vehicles Symposium, vol. 2, 2002, pp. 564-569.
[62] Turkmani, A.M.D. and de Toledo, A.F., “Modelling of radio transmissions into and within multistorey buildings at 900, 1800 and 2300 MHz”. IEE Communications, Speech and Vision, vol. 140, no. 6, 1993, pp. 462-470.
[63] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, and H. Weiss, “Delay-Tolerant Networking Architecture”. RFC 4838, April 2007.
[64] Willke, T.L., Tientrakool, P., and Maxemchuk, N.F., “A Survey of inter-Vehicle Communication Protocols and Their Applications”. IEEE Communications Surveys & Tutorials, vol. 11 , no. 2, 2009, pp. 3-20.
[65] Yu Lin, Shiduan Cheng, Wendong Wang, and Yuehui Jin, “Measurement-based TFRC: Improving TFRC in Heterogeneous Mobile Networks”. IEEE Transactions on Wireless Communications, vol. 5, no. 8, 2006, pp. 1971-1975.
[66] Yue Cao and Zhili Sun, “Routing in Delay/Disruption Tolerant Networks: A Taxonomy, Survey and Challenges”. IEEE Communications Surveys & Tutorials, vol. 15, no. 2, 2013, pp. 654-677.
[67] Zhensheng Zhang, “Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: overview and challenges”. IEEE Communications Surveys & Tutorials, vol. 8, no. 1, 2006, pp. 24-37.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code