Responsive image
博碩士論文 etd-0519111-212439 詳細資訊
Title page for etd-0519111-212439
論文名稱
Title
場控型量子井元件整合垂直式光耦合器之全光波長轉換器
All-optical wavelength converter by field-driven quantum well device integrated with vertical waveguide directional coupler
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
172
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-05-16
繳交日期
Date of Submission
2011-05-19
關鍵字
Keywords
全光波長轉換器
all-optical wavelength converter, field-driven device
統計
Statistics
本論文已被瀏覽 5669 次,被下載 837
The thesis/dissertation has been browsed 5669 times, has been downloaded 837 times.
中文摘要
本論文中,利用場控型量子井元件完成了高速與高效率的全光波長轉換器。所採用的的是一種全新的量子井材料,InGaAsP/InGaAlAs被採用來改善高電場做用下QCSE的效應。如此一來全光訊號處理過程的效率與頻寬都可以有好的提升。因此利用此種材料加上電場做用可以克服慢速增益恢復時間的SOA所造成的影響。當然也可以避免光纖的色散與低效率對於全光訊號處理過程的影響。EO與OE的實驗結果呈現40GHz以上的頻寬,因此全光的訊號轉換也可以達到40GHz以上。40Gb/s的訊號也被用來驗證訊號經過元件處理過後的眼圖與誤碼率,實驗結果僅僅有0.5dB的好損,當然這足以證明InGaAsP/InGaAlAs非常適合全光訊號轉換的工作。另外也光電流響應頻譜也證明了載子響應時間在此材料裡僅僅10ps,甚至更低。本論文的實驗部分也利用短脈衝激發元件,利用自相關儀量測的結果是6.4ps。作者採用量子井的設計並且經過多項實驗,證明了此元件與材料非常適合用於高速網路例如100Gb/s的網路系統。
Abstract
In present dissertation, field-driven quantum well (QW) device is proposed to obtain high-speed and high-efficiency all-optical wavelength converter (AOWC). A new type QW material, InGaAsP/InGaAlAs, is employed to improve not only quantum confined Stark effect, but also carrier life time during high electric field excitation. The bandwidth as well as efficiency can be enhanced. Thus, the slow gain recovery mechanism (~100ps) from conventional semiconductor optical amplifier (SOA)-based AOWC can be overcome. The dispersion- and efficient- limited fiber-based AOWC (~10ps) can also be avoided. -3dB frequency bandwidth exceeding 40GHz for both electrical-to-optical and photocurrent response has been observed from InGaAsP/InGaAlAs waveguide of AOWC, leading to above 40GHz bandwidth in optical-to-optical response. A 40 Gb/s measurement setup is finally used for testing eye-diagram and bit-error-ratio in order to verify the data transmission of AOWC. Low power penalty with 0.5 dB comparing with back-to-back system performance is measured, suggesting InGaAsP /InGaAlAs waveguide is applicable to all-optical processing. By exciting short optical pump pulse in such waveguide, as short as 6.4ps probe pulse is observed, breaking through 10ps order in conventional type of QW and thus indicating the plausibility of performing 100Gb/s all optical processing.
目次 Table of Contents
Chapter 1 Introduction...01
Chapter 2 Cross-absorption modulation and photocarrier lifetime of all-optical wavelength converter
2.1 Self-electrooptic effect…17
2.2 Cross-absorption modulation in quantum well…20
2.2.1 Quantum Confined Stark Shift…21
2.2.2 Material band gap design…22
2.2.3 Quantum well layer structure…28
2.2.4 Cross-absorption modulation…43
2.3 Photocarrier lifetime of quantum well…46
2.3.1 Photocarrier lifetime model…47
2.3.2 Photocurrent measurement…52
2.3.3 Photocurrent response…57
2.4 Summary…59
Chapter 3 Efficient coupling for all-optical wavelength converter
3.1 Narrowly optical waveguide and vertical waveguide directional coupler…65
3.1.1 Optical properties of epitaxial layers…68
3.1.2 Narrowly optical waveguide for AOWC…70
3.1.3 Vertical waveguide directional coupler…72
3.2 Efficient coupling for high-speed AOWC…74
3.3 Summary…77
Chapter 4 High-speed waveguide for all-optical wavelength converter
4.1 PIN and coplanar waveguide equivalent circuit model …79
4.1.1 PIN waveguide equivalent circuit…80
4.1.2 Coplanar waveguide equivalent circuit…92
4.2 Microwave and photocurrent response for all-optical wavelength converter …98
4.2.1 Electrical to electrical response…98
4.2.2 Electrical to optical response…102
4.2.3 All optical response and photocurrent response…105
4.3 Summary…113
Chapter 5 Fabrication and Measurements
5.1 Device fabrication…115
5.2 High-speed characterization…120
5.3 Optical-to-optical characterization…128
Chapter 6 Summary and Future work…139
Appendix A Photocarrier lifetime…144
Appendix B InGaAsP and InGaAlAs bulk-type material optical index…146
Appendix C Transmission matrix method…151
Appendix D Coplanar waveguide(CPW) Model…153
Appendix E Self-consistent solution…157
參考文獻 References
Chapter 1
[1] M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly Nonlinear Dispersion-Shifted Fibers and Their Application to Broadband Wavelength Converter,” optical fiber technology, vol. 4, pp. 204-214, 1998
[2] M. Dinu F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” applied physics letters, vol. 82, no. 18, pp. 2954-2956, May 2003.
[3] K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-Optical Efficient Wavelength Conversion Using Silicon Photonic Wire Waveguide,” IEEE photonics technology letters, vol. 18, no. 9, pp. 1046-1048, May 2006.
[4] Shanliang Liu and Hongjun Zheng, “Measurement of nonlinear coefficient of optical fiber based on small chirped soliton transmission,” chinese optics letters, vol. 6, no. 7, pp. 533-535, Jul. 2008.
[5] Ying-Hao Kuo, Haisheng Rong, Vanessa Sih, Shengbo Xu, and Mario Paniccia, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguide,” optics express, vol. 14, no. 24, pp. 11721-11727, Nov. 2006.
[6] Jonathon S. Barton, Milan L. Maˇsanovic, Matthew N. Sysak, John M. Hutchinson, Erik J. Skogen, Daniel J. Blumenthal and Larry A. Coldren, ”2.5Gb/s Error-Free Wavelength Conversion Using a Monolithically Integrated Widely Tunable SGDBR-SOA-MZ Transmitter and Integrated Photodetector,” IEEE photonics technology letters, vol. 16, no. 6, pp. 1531-1533, Jun. 2004.
[7] M.N. Sysak, J.W. Raring, J.S. Barton, M. Dummer, A. Tauke-Pedretti, H.N. Poulsen, D.J. Blumenthal and L.A. Coldren, “ Single-chip, widely-tunable 10Gbit.s photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver,” electronics letters, vol. 42, no. 11, May 2006.
[8] Tauke-Pedretti, M. Dummer, J.S. Barton, M.N. Sysak, J.W. Raring, J. Klamkin and L.A. Coldren, “Widely tunable 10Gbit/s separate absorption and modulation Mach-Zehnder wavelength converter,” electronics letters, vol. 43, no. 10, May 2007.
[9] Masaharu Hattori, Kohsuke Nishimura, Ryo Inohara, and Masashi Usami, “Bidirectional Data Injection Operation of Hybrid Integrated SOA-MZI All-Optical Wavelength Converter,” journal of lightwave technology, vol. 25, no. 2, pp. 512-519, Feb. 2007.
[10] Kohsuke NISHIMURA, Munefumi TSURUSAWA and Masashi USAMI, “First Demonstration of 40Gbps Wavelength Conversion with No Pattern Effect Utilizing Cross-Phase Modulation in an Electroabsorption Waveguide,” Jpn. J. Appl. Phys., vol. 41, part 1, no. 2B, pp. 1178-1181, Feb. 2002.
[11] Atsushi Matsumoto, Kohsuke Nishimura, Katsuyuki Utaka and Masashi Usami, “Operational Design on High-Speed Semiconductor Optical Amplifier With Assist Light for Application to Wavelength Converters Using Cross-Phase Modulation,” IEEE journal of quantum electronics, vol. 42, no. 3, pp. 313-323, Mar. 2006.
[12] Surinder Singh, R.S. Kaler, “All optical wavelength converters based on cross phase modulation in SOA-MZI configuration,” optic optics, vol. 118, pp. 390-394, 2007.
[13] Ho-Jin Song, Jeong Seon Lee, and Jong-In Song, “Signal Up-Conversion by Using a Cross-Phase-Modulation in All-Optical SOA-MZI Wavelength Converter,” IEEE photonics technology letters, vol. 16, no. 2, pp. 593-595, Feb. 2004.
[14] Yong-Soo Jeon, Jeung-Mo Kang, Tae-Young Kim, Sang-Kook Han, and Seok Lee, “Investigation of Input Power Dynamic Range Enhancement of a Cross-Phase Modulation Wavelength Converter by Pre-amplification,” microwave and optical technology letters, vol. 36, no. 2, pp. 131-134, Jan. 2003.
[15] K. Nishimura, R. Inohara, M. Tsurusawa and M. Usami, “80Gbit/s wavelength conversion using MQW electroabsorption modulator in delayed-interferometric configuration,” electronics letters, vol. 39, no. 10, pp. 792-794, May 2003.
[16] Bengt-Erik Olsson, Lavanya Rau, and Daniel J. Blumenthal, “WDM to OTDM Multiplexing Using an Ultrafast All-optical Wavelength Converter,” IEEE photonics technology letters, vol.13, no.9, pp.1005-1007, Sep. 2001.
[17] K. K. Chow and C. Shu, “All-optical signal regeneration with wavelength multicasting at 6×10 Gb/s using a single electroabsorption modulator,” optics express, vol. 12, no. 13, pp. 3050-3054, Jun. 2004.
[18] Jianjun Yu, Zhensheng Jia, and Gee Kung Chang, “All-optical Mixer Based on Cross-Absorption Modulation in Electroabsorption Modulator,” IEEE photonics technology letters, vol. 17, no. 11, pp. 2421-2123, Nov. 2005.
[19] Hwan Seok Chung, Ryo Inohara, Kohsuke Nishimura, and Masashi Usami, “40-Gb/s NRZ Wavelength Conversion With 3R Regeneration Using an EA Modulator and SOA Polarization-Discriminating Delay Interferometer,” IEEE photonics technology letters, vol. 18, no. 2, pp. 337-339, Jan. 2006.
[20] L. F. K. Lui, Lixin Xu, C. C. Lee, P. K. A. Wai, H.Y. Tam and C. Lu, “All-Optical Clock Recovery Using Erbium-Doped Fiber Laser Incorporating an Electroabsorption Modulator and a Linear Optical Amplifier,” IEEE photonics technology letters, vol. 19, no. 10, pp. 720-722, May 2007.
[21] Mark Fox, David A. B. Miller, Gabriela Livescu, J. E. Cunningham and William Y. Jan, “Quantum Well Carrier Sweep Out: Relation to Electroabsorption and Exciton Saturation,” IEEE journal of quantum electronics, vol. 27, no. 10, pp. 2281-2295, Oct. 1991.
[22] H. Schneider and K.V. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs Multiple-quantum-well structure,” physical review B, vol. 38, no. 9, pp. 6160-6165, Sept. 1988.
[23] Sune Hojfeldt and Jesper Mork, “Modeling of Carrier Dynamics in Quantum-Well Electroabsorption Modulators,” IEEE journal of selected topics in quantum electronics, vol. 8, no. 6, pp. 1265-1276, Nov. /Dec. 2002.
[24] Kohsuke Nishimura, Munefumi Tsurusawa and Masashi Usami, “First demonstration of 40 Gbps wavelength conversion with no pattern effect utilizing cross-phase modulation in an electroabsorption waveguide,” 2001 International Conference on Indium Phosphide and Related Materials (13th IPRM)
[25] K. Nishimura, R. Inohara, M. Tsurusawa and M. Usami, “80Gbit/s wavelength conversion using MQW electroabsorption modulator in delayed-interferometric configuration,” electronics letters, vol. 39, no. 10, pp. 792-794, May 2003.
[26] N. El Dahdah, R. Coquille, B. Charbonnier, E. Pincemin, C. Kazmierski, J. Decobert, A. Vedadi, G. Aubin, and A. Ramdane, “All-Optical Wavelength Conversion by EAM With Shifted Bandpass Filter for High Bit-Rate Networks,” IEEE photonics technology letters, vol. 18, no. 1, pp. 61-63, Jan. 2006.
[27] Ying-Hao Kuo, Haisheng Rong, Vanessa Sih, Shengbo Xu, and Mario Paniccial, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” optics express, vol. 14, no. 24, pp. 11721-11726, Nov. 2006.
Chapter 2
[1] T. Otani, T. Miyazaki, and S. Yamamoto, “Optical 3R Regenerator Using Wavelength Converters Based on Electroabsorption Modulator for All-Optical Network Applications,” IEEE photonics technology letters, vol. 12, no. 4, pp. 431-433, Apr. 2000.
[2] N. Cheng and J. C. Cartledge, “Measurement-Based Model for Cross-Absorption Modulation in an MQW Electroabsorption Modulator,” journal of lightwave technology, vol. 22, no. 7, pp. 1805-1810, Jul. 2004.
[3] L. Zhou and D.W.E. Allsopp, “Wavelength conversion in electroabsorption modulators by cross bias modulation,” electronics letters, vol. 41, no. 9, Arp. 2005.
[4] H. Schneider and K.V. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs Multiple-quantum-well structure,” physical review B, vol. 38, no. 9, pp. 6160-6165, Sept. 1988.
A. Larsson, Peter A. Andrekson, Sverre T. Eng and Amnon Yariv, “Tunable Superlattice p-i-n Photodetectors: Characteristics, Theory, and Applications,” IEEE journal of quantum electronics, vol. 24, no. 5, pp. 787-800, May 1988.
[5] Atsushi Tackeuchi, Shunichi Muto, Tsuguo Inata and Toshio Fujii, “Fast Recovery of Excitonic Absorption Peaks in Tunneling Bi-Quantum-Well Structures,” Japanese journal of applied physics, vol. 28, no. 7, pp. 1098-1100, Jul. 1989.
[6] E. T. Yu, M. K. Jackson, and T. C. Mc Gill, “Hole tunneling times in GaAs/AlAs double-barrier structures,” Appl. Phys. Lett., vol. 55, no. 8, pp. 744-746, Aug. 1989.
[7] T. B. Norris, “Tunneling escape time of electrons from a quantum well under the influence of an electric field,” Appl. Phys. Lett., vol. 54, no. 1, pp. 60-62, Jan. 1989.
A. Mark Fox, David A. B. Miller, Gabriela Livescu, J. E. Cunningham, and William Y. Jan, “Quantum Well Carrier Sweep Out: Relation to Electroabsorption and Exciton Saturation,” IEEE of quantum electronics, vol. 27, no. 10, pp. 2281-2295, Oct. 1991.
[8] J. A. Cavailles D. A. B. Miller, and J. E. Cunningham, “Simultaneous measurement of electron and hole escape times from biased single quantum wells,” Appl. Phys. Lett., vol. 61, no. 4, pp. 426-429, Jul. 1992.
[9] Yumin Zhang and Houzhi Zheng, “Tunneling escape time of electrons from a quantum well with Γ-Χ mixing effect,” Appl. Phys. Lett., vol. 65, no. 8, pp. 1036-1038, Aug. 1994.
[10] Atsushi Tackeuchi, Takamasa Kurod, Shunichi Muto, Osamu Wada, “Picosecond electron-spin relaxation in GaAs/AlGaAs quantum wells and InGaAs/InP quantum wells,” physica B, vol. 272, pp. 318-323, 1999.
[11] K. Durinyan, S. Petrosyan, “Tunneling escape time of electrons from a quantum well confined by δ-like barriers,” philosophical magazine B, vol. 81, no. 9, pp. 1201-1208, 2001.
[12] Sune Hojfeldt and Jesper Mork, “Modeling of Carrier Dynamics in Quantum-Well Electroabsorption Modulators,” IEEE journal of selected topics in quantum electronics, vol. 8, no. 6, pp. 1265-1276, Nov./Dec. 2002.
[13] Sune Hojfeldt, Francis Romstad, and Jesper Mork, “Absorption Recovery in Strongly Saturated Quantum-Well Electroabsorption Modulators,” IEEE photonics technology letters, vol. 15, no. 5, pp. 676-678, May 2003.
[14] Valentin V. Nikolaev and Eugene A. Avrutin, “Photocarrier Escape Time in Quantum-Well Light-Absorbing Devices: Effects of Electric Field and Well Parameters,” IEEE journal of quantum electronics, vol. 39, no. 12, pp. 1653-1660, Dec. 2003.
[15] N. El Dahdah, G. Aubin, J.-C. Harmand, and A. Ramdane, “Ultrafast InGaAs/InGaAlAs multiple-quantum-well electro-absorption modulator for wavelength conversion at high bit rates,” Applied Physics Letters, vol.84, no. 21, pp. 4268-4270, May 2004.
[16] Dong-Soo Shin, “Reduction in Escape Times of Photogenerated Charge Carriers with Asymmetric Intrastep Quantum Wells and Subsequent Improvement in Saturation Optical Intensity,” Japanese Journal of Applied Physics, vol. 45, no. 12, pp. 9063-9065, 2006.
[17] D. A. B. Miller, D. S. Chemla, and T. C. Damen, “Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect,” Physical Review Letters, vol. 53, no. 22, pp. 2173-2176, Nov. 1984.
[18] D. A. B. Miler, D. S. Chemla, and T. C. Damen, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Physical Review B, vol. 32, no. 2, pp. 1043-1060, Jul. 1985.
A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, J. E. Henry and W. Y. Jan, “Exciton saturation in electrically biased quantum wells,” Appl. Phys. Lett., vol. 57, no. 22, pp. 2315-2317, Nov. 1990.
[19] Jean Aristide Cavaillks, David A. B. Miller, J. E. Cunningham, Patrick Li Kam Wa, and Alan Miller, “Simultaneous Measurements of Electron and Hole Sweep-Out from Quantum Wells and Modeling of Photoinduced Field Screening Dynamics,” IEEE journal of quantum electronics, vol. 28, no. 10, pp. 2486-2497, Oct. 1992.
[20] G. D. Boyd, J. A. Cavailles, L. M. F. Chirovsky, and D. A. B. Miller, “Wavelength dependence of saturation and thermal effects in multiple quantum well modulators,” Appl. Phys. Lett., vol. 63, no. 13, pp. 1716-1717, Sep. 1993.
[21] G. L. Li, S. A. Pappert, P. Mages, C. K. Sun, W. S. C. Chang, and P. K. L. Yu, “High-Saturation High-Speed Traveling-Wave InGaAsP-InP Electroabsorption Modulator,” IEEE photonics technology letters, vol. 13, no. 10, pp. 1076-1078, Oct. 2001.
[22] Y B Cheng, J Q Pan,W X Chen, F Zhou and W Wang, “High-power electroabsorption modulator for radio over fiber system,” Journal of Physics D, vol. 40, pp. 4120-4122, Jun. 2007.
[23] X. B. Xie, I. Shubin, W. S. C. Chang, and P. K. L. Yu, “Analysis of linearity of highly saturated electroabsorption modulator link due to photocurrent feedback effect,” optics express, vol. 15, no. 14, pp. 8713-8718, Jun. 2007.
[24] David A. B. Miller, Daniel S. Chemla, Theodore C. Damen, Thomas H. Wood, Charles A. Burrus, Arthur C. Gossard, and William Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE journal of quantum electronics, vol. QE-21, no. 9, pp. 1462-1476, Sep. 1985.
[25] Anthony L. Lentine, H. Scott Hinton, David A. B. Miller, Jill E. Henty, J. e. Cunningham, and LEO M. F. Chirovsky, “Symmetric Self-Electrooptic Effect Device: Optical Set-Reset Latch, Differential Logic Gate, and Differential Modulator/Deterctor,” IEEE journal of quantum electronics, vol. 25, no. 8, pp. 1928-1936, Aug. 1989.
[26] Michael E. Prise, N. C. Craft, R. E. LaMarche, M. M. Downs, S. J. Walker, L. A. D’Asaro, and L. M. F. Chirovsky, “Module for optical logic circuits using symmetric self-electrooptic effect devices,” Applied optics, vol. 29, no. 14, pp. 2164-2170, May 1990.
[27] Anthony L. lentine, David A. B. Miller, Leo M. F. Chirovsky, and L. Atthur D’Asaro, “Optimization of Absorption in Symmetric Self-Electrooptic Effect Devices: A Systems Perspective,” IEEE journal of quantum electronics, vol. 27, no. 11, pp. 2431-2439, Nov. 1991.
[28] David A. B. Miller, “Novel Analog Self-Electrooptic-Effect Devices,” IEEE journal of quantum electronics, vol. 29, no. 2, pp. 678-698, Feb. 1993.
[29] Anthony L. Lentine, David A. B. Miller, “Evolution of the SEED Technology: Bistable Logic Gates to Optoelectronic Smart Pixels,” IEEE journal of quantum electronics, vol. 29, no. 2, pp. 655-669, Feb. 1993.
[30] G. D. Boyd, J. A. Cavailles, L. M. F. Chirovsky, and D. A. B. Miller, “Wavelength dependence of saturation and thermal effects in multiple quantum well modulators,” Appl. Phys. Lett., vol. 63, no. 13, pp. 1715-1717, Sep. 1993.
[31] S. L. Chuang, “Physics of optoelectronic devices,” New York: Wiley, 1995.
[32] J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and Experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs Long-Wavelength Strained Quantum-Well Lasers,” IEEE journal of quantum electronics, vol. 35, no. 5, pp. 771-782, May 1999.
[33] Walter A. Harrison. “Elementary theory of heterojunctions,” J. Vac. Scl. Technol., vol. 14, no. 4, pp. 1016-1021, Jul./Aug. 1977.
[34] H. Kroemer, “Quantum Mechanics: For Engineering, Material Science, and Applied Physics, Prentice Hall,1994 (chapter five).
[35] Mee K. Chin, P. K. L. Yu, and William S. C. Chang, “Optimization of Multiple Quantum Well Structures for Waveguide Electroabsorption Modulators,” IEEE journal of quantum electronics, vol. 27, no. 3, pp. 696-701, Mar. 1991.
[36] R. J. Elliott, “Intensity of Optical Absorption by Excitons,” Physical Review, vol. 108, no. 6, pp. 1384-1389, Dec. 1957.
[37] T. Ido, H. Sano, S. Tanaka, and H. Inoue, “Frequency-Domain Measurement of Carrier Escape Times in MQW Electro-Absorption Optical Modulators,” IEEE photonics technology letters, vol. 7, no. 12, pp. 1421-1423, Dec. 1995.
[38] M. Nadeem Akram, O. Kjebon, M. Chacinski, R. Schatz, J. Berggren, F. Olsson, S. Lourdudoss, and A. Berrier, “Experimental characterization of high-speed 1.55 μm buried heterostructure InGaAsP/InGaAlAs quantum-well lasers,” J. Opt. Soc. Am. B, vol. 26, no. 2, pp. 318-328, Feb. 2009.
Chapter 3
[1] Fang-Zheng Lin, Yi-Jen Chiu, Shun-An Tsai, and Tsu-Hsiu Wu, “Laterally tapered undercut active waveguide fabricated by simple wet etching method for vertical waveguide directional coupler,” optics express, vol. 16, no. 11, pp. 7588-7594, May 2008.
[2] S. L. Chuang, “Physics of optoelectronic devices,” New York: Wiley, 1995.
[3] V. Vusirikala, S. S. Saini, R. R. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP Laser Arrays with Integrated-Mode Expanders Fabricated Using a Single Epitaxial Growth,” IEEE journal of selected topics in quantum electronics, vol. 3, no. 6, pp. 1332-1343, Dec. 1997.
[4] Yi-Jen Chiu, Tsu-Hsiu Wu, Wen-Chin Cheng, F. J. Lin, and John E. Bowers, “Enhanced Performance in Traveling-Wave Electroabsorption Modulators Based on Undercut-Etching the Active-Region”, IEEE photonics technology letters, vol. 17, no. 10, pp.2065-2067, Oct. 2005.
Chapter 4
[1] Shengzhong Zhang, “Traveling-wave Electroabsorption Modulators,” Ph D. dissertation, UCSB, Apr. 1999.
[2] Tsu-Hsiu Wu, Yi-Jen Chiu, and Fang-Zheng Lin, “High-Speed (60 GHz) and Low-Voltage-Driving Electroabsorption Modulator Using Two-Consecutive-Steps Selective-Undercut-Wet Etching Waveguide,” IEEE photonics technology letters, vol. 20, no. 12, pp. 1261-1263, Jul. 2008.
[3] P. A.Rizzi, ”Microwave Engineering Passive Circuits,” Prentice Hall, Appendix C and D, 1988.
[4] G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-Speed Traveling-Wave Electroabsorption Modulator- Design and Analysis,” IEEE transactions on microwave theory and techniques, vol. 47, no. 7, pp. 1177-1183, Jul. 1999.
[5] T. Ido, H. Sano, S. Tanaka, and H. Inoue, “Frequency-Domain Measurement of Carrier Escape Times in MQW Electro-Absorption Optical Modulators,” IEEE photonics technology letters, vol. 7, no. 12, pp. 1421-1423, Dec. 1995.
[6] Yi-Jen Chiu, “Sub-Terahertz Traveling-Wave-Low-Temperature Grown-GaAs P-I-N Photodetector,” Ph D. dissertation, UCSB, May 1999.
Chapter 5
[1] F. J. Lin, “Monolithic Integration of Optical Spot-Size Converter and High-Speed Electroabsorption Modulator Using Laterally Tapered Undercut Waveguide,” Ph D. dissertation, NSYSU, Jul. 2009.
[2] Tsu-Hsiu Wu, Yi-Jen Chiu, and Fang-Zheng Lin, “High-Speed (60 GHz) and Low-Voltage-Driving Electroabsorption Modulator Using Two-Consecutive-Steps Selective-Undercut-Wet Etching Waveguide,” IEEE photonics technology letters, vol. 20, no. 12, pp. 1261-1263, Jul. 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code