Responsive image
博碩士論文 etd-0519113-144636 詳細資訊
Title page for etd-0519113-144636
論文名稱
Title
以銀奈米粒子與銀前驅物作為噴印墨水之應用
Application of Silver Nanoparticles and Precursor as Printing Inks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
111
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-18
繳交日期
Date of Submission
2013-06-19
關鍵字
Keywords
銀奈米粒子、繞曲、噴印、墨水、化學還原
Ag nanoparticle, flexible, inkjet printing, ink, chemical reduction
統計
Statistics
本論文已被瀏覽 5726 次,被下載 106
The thesis/dissertation has been browsed 5726 times, has been downloaded 106 times.
中文摘要
導電金屬的特性可應用於可繞式軟性電路板,適用範圍從大尺寸電子產品到低階產品應用,我們藉由室溫化學還原方式,創造出軟性基材(PET)基板上的導電銀薄膜與銀線,並詳述一步驟合成與光譜鑑定可控制尺寸的銀奈米粒子,包含穿透式電子顯微鏡 (TEM) 、傅立葉轉換紅外線光譜儀 (FTIR)、熱重分析儀 (TGA)、光電子能譜儀 (XPS)、同步輻射X光繞射 (SR-XRD) 都被使用來鑑定月桂酸保護之銀奈米粒子其特性。
銀薄膜與銀線路以月桂酸保護之銀奈米粒子的薄膜與線路經由還原浸泡生成,藉由旋轉塗佈與使用商用噴印機台Epson T50噴印繪圖方式,將以環己烷為溶劑之銀奈米粒子懸浮液 (10% wt) 噴印與塗佈到可繞式軟性基材PET基板上,接下來以80% 聯胺水溶液浸泡還原,以此處理後的銀膜與其他化學處理方法比較具有更低的電阻率,例如其他以有機金屬為前驅物的銀鹽類,我們的研究使用奈米粒子為前驅物也許可以被解釋具有較低的電阻。
新穎的銀噴印墨水適合用於噴墨列印導電金屬於可繞曲的PI基材上並利用燒結製作出大尺寸的電子元件做低耗費的應用,新式的銀前驅物噴印導電圖案使用分子式為[Ag(dien)](tmhd), 其中 tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionato 與 dien = diethylenetriamine 是以簡易合成與環保的方法合成出,加入乙基纖維素與正己胺適當的調整有機溶劑系統的黏度與表面張力。
高重量百分比含量的銀墨水適合被用於噴印技術,銀圖案藉由熱處理鍛燒形成,並利用旋轉塗佈或是壓電式噴印技術將其噴印在可繞曲式PI基材上,使用的銀錯合物(60 wt%) 溶解在 hexylamine (39 wt%) 並含 ethyl cellulose (1 wt%) 混合溶液黏度為9-11 mPa s 並在空氣下於150-250℃溫度下加熱處理,銀圖案的特性鑑定藉由場發射掃描式電子顯微鏡 (SEM)、傅立葉轉換紅外線光譜儀 (FTIR)、熱重分析儀 (TGA)、光電子能譜儀 (XPS)、同步輻射X光繞射 (SR-XRD) 進行分析,
其電性與其他研究文獻比較,例如使用溶於水相之鹽類墨水,我們所研究的溶於有機溶劑之高銀含量墨水被說明是一個較低電阻率的材料。
Abstract
Conductive metallic features that are flexible could have applications in integrated circuits, ranging from large-area electronics to low-end applications. Here, we show the creation of conductive silver thin film and wire on the transparent flexible polyethylene terephthalate (PET) substrate by a room-temperature chemical reduction process. One-step synthesis and spectroscopic characterizations of size-controlled silver nanoparticles are also described. Transmission electron microscopy, FT-IR, thermal gravimetric-mass analysis, X-ray photoelectron spectroscopy and synchrotron radiation x-ray diffraction were used to characterize the dodecanoate-protected silver nanoparticles. Silver metal film and wire were produced by soaking the dodecanoate-protected silver nanoparticle film and wire that were prepared, respectively, by spin-coating and by directly drawing with a commercial Epson T50 inkjet printer onto the flexible PET substrate using Ag nanoparticles suspended in cyclohexane (10 % by weight) as the ink in an aqueous solution containing 80% N2H4. The resistivities of our Ag films are actually lower when they are compared to the Ag thin films prepared by other conventional chemical routes, such as using silver salts as metallo-organic precursors. We suggest that the advantage of using nanoparticles as precursor may be an explanation for the lower resistivity.
The novelty of this study is laboratory formulation of silver ink adapted for inkjet printing of conductive metallic features on the flexible polyimids (PI) substrate that could have applications in integrated circuits, ranging from large-area electronics to low-end applications. New silver precursor for printing conductive patterns with empirical formula of [Ag(dien)](tmhd), where tmhd = 2,2,6,6-tetramethyl-3,5-heptane-
dionato and dien = diethylenetriamine, was synthesized by a simple and environmental friendly method. The viscosity and surface tension of the organic solvent system were adequately adjusted by adding ethyl cellulose and hexylamine, yielding a high wt% Ag ink that is suitable for inkjet printing. Silver patterns were produced by the thermal annealing of freshly prepared silver features that were prepared, respectively, by spin-coating and by directly drawing with a piezoelectric inkjet printer onto the flexible PI substrate using silver precursor (60 wt%) dissolved in hexylamine (39 wt%) and ethyl cellulose (1 wt%) with viscosity of 9-11 mPa s in air at 150-250 C. The silver patterns were characterized by means of scanning electron microscopy, FT-IR, thermal gravimetric-mass analysis, X-ray photoelectron spectroscopy and synchrotron radiation x-ray diffraction. The resistivities of our silver patterns are actually lower when they are compared to those prepared by other research groups, such as using water-based silver salts as inks. We suggest that the advantage of the high wt% silver ink in organic
solvent based system may be an explanation for the lower resistivity.
目次 Table of Contents
Index
Chapter 1 : Introduction………………..........................................1
Chapter 2 : Experimental methods
2.1 Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on the transparent flexible PET substrate at room-temperature
2.1.1 Materials…………………………………………………..8
2.1.2 Silver nanoparticles of Ag-C11H23CO2 and Ag-C17H35CO2
………………………………………………………8
2.1.3 Deprotection by chemical reduction to form silver features
at room temperature…………………………………..9
2.1.4 Characterizations……………………………………….....9
2.2 A solution-based β-diketonate silver ink for direct-injection
printing highly conductive features on a flexible substrate
2.2.1 Materials..……....……………………………………..12
2.2.2 Preparation of silver salt [Ag(dien)](tmhd)……………..12
2.2.3 Preparation of silver ink for spin-coating on PI substrate...
…………………………………………………………..12
2.2.4 Preparation of silver ink for inkjet-printing on PI substrate
…………………………………………………………..13
2.2.5 Characterization………………………………………....16
2.2.6 X-ray diffraction determination………………………...17
Chapter 3 : Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on the transparent flexible PET substrate at room-temperature
3.1. UV-vis and IR spectroscopic analyses of Ag MPCs…19
3.2. XPS measurements of Ag-C11H23CO2 nanoparticles.....21
3.3. TEM images………………...…………………………...27
3.4. Desorption behavior of Ag-C11H23CO2 nanoparticles by
thermal analysis-mass spectroscopy…………………….31
3.5. Deprotection of surfactant by room-temperature chemical
reduction process……..………………………………...34
Chapter 4 : A solution-based β-diketonate silver ink for direct-
injection printing highly conductive features on a flexible substrate
4.1. Synthesis and characterization of silver precursor with
empirical formula of [Ag(dien)](tmhd)…………………46
4.2. TGA thermograms of [Ag(dien)](tmhd) and silver ink…48
4.3. Effect of curing temperture on morphology and resistivity
of the resultant film……………………………………..50
4.4 Flexural resistance endurance measurement of conductive
silver film………………………………………………..56
4.5 Siver lines on PI substrate by inkjet-printing…………..60
Chapter 5 : Conclusion…………………………………………………64
Chapter 6 : References…………………………………………………66
Appendix : Supplementary Material…………………………………...71
參考文獻 References
[1] Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. Science 2000, 290, 2123.
[2] Liu, P.; Wu, Y.; Li, Y.; Ong, B. S.; Zhu, S. J. Am. Chem. Soc. 2006, 128, 4554.
[3] van Osch, T. H. J.; Perelaer, J.; de Laat, A. W. M.; Schubert, U. S. Adv. Mater. 2008, 20, 343.
[4] Ahn, B.Y.; Duoss, E. B.; Motala, M. J.; Guo, X.; Park, S-I.; Xiong, Y.; Yoon, J.; Nuzzo, R. G.; Rogers, J. A.; Lewis, J. A. Science 2009, 323, 1590.
[5] Jeong, S.; Song, H. C.; Lee, W. W.; Choi, Y.; Ryu, B-H. J. Appl. Phys. 2010, 108, 102805-1.
[6] Singh, M.; Haverinen, H. M.; Dhagat, P.; Jabbour, G.E. Adv. Mater. 2010 ,
22, 673.
[7] Kim, D.; Moon, J. Electrochem. Solid-State. Lett. 2005, 8, J30.
[8] Joo, S.; Baldwin, D. F. IEEE. Trans. Electron. Packag. Manuf. 2010, 33, 129.
[9] Jeong, S.; Song, H. C.; Lee, W. W.; Choi, Y.; Lee, S. S.; Ryu, B-H. J. Phys. Chem. C 2010, 114, 22277.
[10] Wu, Y.; Li, Y.; Ong, B. S.; Liu, P.; Cardner, S.; Chiang, B. Adv. Mater. 2005, 17, 184.
[11] Choi, T. Y.; Poulikakosa, D.; Grigoropoulos, C. P. Appl. Phys. Lett. 2004, 85, 13.
[12] Dong, T-Y.; Wu, H. H.; Hwang, C.; Song, J.M.; Chen, I. G.; Kao, T. H. Appl. Surf. Sci. 2009, 255, 3891.
[13] Kao, T. H.; Song, J. M.; Chen, I.G.; Dong, T-Y.; Hwang, W. S. Acta. Materialia. 2011, 59, 1184.
[14] Kao, T. H.; Song, J.M.; Chen, I.G.; Dong, T-Y.; Hwang, W. S. Nanotechnology 2007, 18, 435708.
[15] Kao, T. H.; Song, J. M.; Chen, I. G.; Wu, H. H.; Dong, T-Y. Nanotechnology 2006, 17, 1416.
[16] Kao, T. H.; Song, J. M.; Chen, I. G.; Dong, T-Y.; Hwang, W. S.; Lee, H. Y. Appl. Phys. Lett. 2009, 95, 131905.
[17] Dong, T-Y.; Wu, H. H.; Lin, M. C. Langmuir 2006, 22, 6754.
[18] Dong, T-Y.; Chen, W. T.; Wang, C. W.; Chen, C. P.; Chen, C. N.; Lin, M. C.; Song, J. M.; Chen, I. G.; Kao, T. H. Phys. Chem. Chem. Phys. 2009, 11, 6269.
[19] Levchenko, A. A.; Yee, C. K.; Parikh, A. N.; Navrotsky, A. Chem. Mater. 2005, 17, 5428.
[20] Choi, M. C.; Kim, Y.; Ha, C. S. Prog. Polym. Sci. 2008, 33, 581.
[21] Tarighat, R. S.; Goodarzi, A.; Mohajerzadeh, S.; Arvan, B.; Gaberi, M. R.; Fathipour, M. Proc. IEEE. 2005, 93, 1374.
[22] Lewis, J. S.; Weaver, M. S. IEEE. J. Sel. Top. Quantum. Electron. 2004, 10, 45.
[23] Makki, B. S.; Kargar, M.; Mohajerzadeh, S.; Maleki, T.; Shahrjerdi, D. Proceedings of the 15th International Conference on Microelectronics, ICM 2003, Dec. 9-11, 357.
[24] Shi, C. W. P.; Shan, X.; Tarapata, G.; Jachowicz, R.; Weremczuk, J.; Hui, H. T. Microsyst. Technol. 2011, 17, 661.
[25] Madaria, A. R.; Kumar, A.; Zhou, C. Nanotechnology 2011, 22, 245201.
[26] Liu, C. H.; Yu, X. Nanoscale. Res. Letters. 2011, 6, 75.
[27] Hu, L.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. ACS. Nano. 2010, 4, 2955.
[28] Tai, Y. L.; Yang, Z. G.; Li, Z. D. Appl. Surf. Sci. 2011, 257, 7096.
[29] Cheng, Y. T.; Uang, R. H.; Chiou, K.C. Microelec. Eng. 2011, 88, 929.
[30] Wang, Y.; Zheng, Y.; Huang, C. Z.; Xia, Y. J. Am. Chem. Soc. 2013, 135, 1941.
[31] Qiu, J.; Wu, Y-C.; Wang, Y-C.; Engelhard, M. H.; McElwee-White, L.; Wei, W. D. J. Am. Chem. Soc. 2013, 135, 38.
[32] Scholl, J. A.; Koh, A. L.; Dionne, J. A. Nature 2012, 483, 421.
[33] Jang, L. W.; Jeon, D. W.; Sahoo, T.; Polyakov, A. Y.; Saravanakumar, B.; Yu,
Y-T.; Cho, Y-H.; Yangc, J-K., Lee, I-H. J. Mater. Chem. 2012, 22, 21749.
[34] Jang, G. G.; Hawkridge, M. E.; Roper, D. K. J. Mater. Chem. 2012, 22, 21942.
[35] Reineck, P.; Lee, G. P.; Brick , D.; Karg, M.; Mulvaney, P.; Bach, U. Adv.
Mater. 2012, 24, 4750.
[36] Valeton, J. J. P.; Hermans, K.; Bastiaansen, C. W. M.; Broer, D. J.; Perelaer, J.;
Schubert, U. S.; Crawforde, G. P.; Smith, P. J. J. Mater. Chem. 2012, 20, 543.
[37] Ngo, S. C.; Banger, K. K.; Toscano, P. J.; Welch, J. T. Polyhedron. 2002,
21,1289.
[38] Lin, X. Z.; Teng, X.; Yang, H. Langmuir 2003, 19, 10081.
[39] Wang, W.; Efrima, S.; Regev, O. Langmuir 1998, 14, 602.
[40] Wang, W.; Chen, X.; Efrima, S. J. Phys. Chem. B 1999, 103, 7238.
[41] Yamamoto, M.; Nakamoto, M. J. Mater. Chem. 2003, 13, 2064.
[42] Rao, C. R. K.; Trivedi, D. C. Mater. Chem. Phys. 2006, 99, 354.
[43] Wu, N.; Fu, L.; Su, M.; Aslam, M.; Wong, K. C.; Dravid, V.P. Nano. Lett. 2004, 4, 383.
[44] Lee, K. J.; Lee, Y. I.; Shim, I. K.; Joung, J.; Oh, Y. S. J. Colloid. Interface. Sci. 2006, 304, 92.
[45] Szytula, A.; Fus, D.; Penc, B.; Jezierski, A. J. Alloys. Comp. 2001, 317-318, 340.
[46] Armelao, L.; Bertoncello, R.; Dominicis, M. D. Adv. Mater. 1997, 9, 736.
[47] Lide, D. R. CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 71st ed., 1990-1991.
[48] Parker, B.; Immaraporn, B.; Gellman, A. J. Langmuir 2001, 17, 6638.
[49] Gou, L.; Chipara, M.; Zaleski, J. M. Chem. Mater. 2007, 19, 1755.
[50] Weaver, J. F.; Hoflund, G. B. J. Phys. Chem. 1994, 98, 8519.
[51] Ramstedt, M.; Franklyn, P. Surf. Interface. Anal. 2010, 42, 855.
[52] Valeton, J. J. P.; Hermans, K.; Bastiaansen, C. W. M.; Broer, D. J.; Perelaer, J.; Schubert, U. S.; Crawford, G.P.; Smith, P. J. J. Mater. Chem. 2010, 20, 543.
[53] Gou, L.; Chipara, M.; Zaleski, J. M. Chem. Mater. 2007, 19, 1755.
[54] Weaver, J. F.; Hoflund, G. B. J. Phys. Chem. 1994, 98, 8519.
[55] Ramstedt, M.; Franklyn, P. Surf. Interface. Anal. 2010, 42, 855.
[56] Chen, Z.; Cotterell, B.; Wang, W.; Guenther, E.; Chua, S. J. Thin Solid Films
2001, 394, 202.
[57] Tsai, M. H.; Hwang, W. S.; Chou, H. H.; Hsieh, P. H. Nanotechnology 2008, 19,
335304.
[58] Chen, C. N.; Chen, C. P.; Dong, T.-Y.; Chang, T. C.; Chen, M. C.; Chen, H. T.;
Chen, I. G. Acta Mater. 2012, 60, 5914.
[59] Wu, J-T.; Hsu, S. L-C.; Tsai, M-H.; Hwang, W-S. J. Phys. Chem. C 2011, 115,
10940.
[60] Ankireddy, K.; Vunnam, S.; Kellara, J.; Cross, W. J. Mater. Chem. C 2013, 1,
572.
[61] Yang, W-D.; Liu, C-Y.; Zhang, Z-Y.; Liu, Y.; Nie, S-D. J. Mater. Chem. 2012,
22, 23012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code