Responsive image
博碩士論文 etd-0519118-113030 詳細資訊
Title page for etd-0519118-113030
論文名稱
Title
緩效釋放之凝膠藥物載體改善腫瘤酸性微環境並減緩免疫細胞促腫行為
Release of lactate oxidase from thermal hydrogel stimulate tumor-associated macrophages reversal from M2 to M1 phenotypes in tumor microenvironment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-12
繳交日期
Date of Submission
2018-07-17
關鍵字
Keywords
乳酸氧化酶、甲基纖維素水凝膠、腫瘤相關巨噬細胞、乳酸、腫瘤微環境
Lactate Oxidase, Tumor associated macrophages, Lactate, Tumor Microenvironment, Methylcellulose hydrogel
統計
Statistics
本論文已被瀏覽 5765 次,被下載 3
The thesis/dissertation has been browsed 5765 times, has been downloaded 3 times.
中文摘要
腫瘤微環境在腫瘤的生長過程中扮演的極為重要的角色,在這個特別的環境中,存在著缺氧、低pH以及高壓的問題,並且由癌細胞特殊的代謝模式-Warburg Effectn所造成乳酸大量堆積,使得腫瘤微環境形成酸中毒現象,其酸鹼值呈現pH 6.7-7.2。並且其代謝模式的副產物-乳酸,更會進一步調節免疫細胞的功能並促進腫瘤的侵襲及轉移。因此,將腫瘤微環境中的乳酸堆積現象消除將成為本研究之重點。本研究將設計一具有生物相容性之甲基纖維素(Methylcellulose, MC)凝膠載體包覆乳酸氧化酶(Lactate Oxidase from Aerococcus viridians, LOX)開發成具有溫度敏感性的藥物載體系統,在腫瘤微環境中進行持續性的釋藥,以緩解腫瘤微環境中乳酸大量堆積的現象。根據各項研究結果得知,在三天的作用下,包覆LOX的水凝膠經過吸水膨脹後,將LOX釋放於環境中,可以在pH 6.7的環境下氧化91.7 %的乳酸。除此之外,輔助腫瘤生長的M2型態腫瘤相關巨噬細胞轉換至抑制腫瘤生長的M1型態巨噬細胞其轉換效率以及M1型態巨噬細胞特有的NO和成功能分別增加16.46 %及18.97 %,並且由M2型態轉換為M1型態之巨噬細胞經實驗證實具有擊殺腫瘤細胞之功能。本研究之各項實驗結果皆顯示本研究設計之甲基纖維素水凝膠包覆乳酸氧化酶經過長時間的作用下可以達到回復自體免疫系統擊殺癌細胞的功能。
Abstract
Deregulated proliferation of tumor is generally associated with altered energy metabolism. A high rate of anaerobic glycolysis in solid tumors contributes to an acidification of pH to 6.7–7.2 in the tumor microenvironment due to lactate accumulation. Lactate modulates immune cell function and promotes tumor invasion and metastasis. However, a particular challenge is to clean lactate in tumor microenvironment. Here we report exploitation of tumor lactate production in designing a methylcellulose (MC) hydrogel incorporating lactate oxidase (LOX), and MC-LOX hydrogel was used controlled the degree of swelling, water uptake and subsequent degradation of the hydrogels and release rate of LOX. After 3 days, MC-LOX hydrogel was exemplified by achieving 91.7 % lactate consumption at pH 6.7, compared with control groups. Furthermore, the conversion efficiency and unique NO synthase function of tumor-supportive macrophages (M2) to tumor-suppressive macrophages (M1) was increased 16.46 % and 18.97 %, respectively. This is relevant to optimizing parameters for immune medicine applications.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 viii
表目錄 x
第一章、前言 1
1.1 癌症 4
1.1.1 概況 5
1.1.2 治療方式 5
1.1.2.1 外科手術治療 5
1.1.2.2 化學治療 6
1.1.2.3 放射線治療 7
1.1.2.4 標靶治療 8
1.1.2.5 免疫治療 9
1.2 腫瘤微環境 11
1.2.1 缺氧環境(Hypoxia) 12
1.2.2 低pH環境(Low pH) 13
1.2.3 高壓環境(High Pressure) 13
1.2.4 腫瘤細胞對特殊環境之適應 14
1.3 腫瘤微環境中的免疫機制-腫瘤相關巨噬細胞(Tumor-associated Macrophages, TAM) 14
1.3.1 M1型態腫瘤相關巨噬細胞 16
1.3.2 M2型態腫瘤相關巨噬細胞 17
1.3.3 酸性環境對腫瘤相關巨噬細胞之影響 18
1.4 乳酸氧化酶(Lactate Oxidase, LOX) 19
1.5 甲基纖維素(Methyl Cellulose)溫敏性水凝膠 20
1.6 研究動機與目的 21
第二章 材料方法 23
2.1 儀器與藥品 23
2.2 甲基纖維素凝膠製備 25
2.2.1 0.5倍磷酸鹽緩衝溶液(Phosphate Buffered Saline)配製 25
2.2.2 16 %(W‧V-1)甲基纖維素粉末 26
2.3 L-乳酸調整培養液的酸鹼值 26
2.4 小鼠巨噬細胞RAW 264.7培養 27
2.4.1 腫瘤相關巨噬細胞M1型極化 27
2.4.2 腫瘤相關巨噬細胞M2型極化 28
2.5 細胞免疫螢光定量分析 28
2.5.1 細胞收取 28
2.5.2 螢光抗體染色 28
2.6 細胞免疫螢光定性分析 29
2.6.1 細胞樣品準備 29
2.6.2 螢光抗體染色 29
2.7 MTS細胞活性測試(MTS assay) 30
2.8 LIVE/DEAD細胞活性測試(LIVE/DEAD Viability/Cytotoxicity Kit) 31
2.9 LOX氧化乳酸能力檢測 32
2.10 腫瘤相關巨噬細胞M1型功能測試 32
2.11 體外實驗測試腫瘤相關巨噬細胞對腫瘤細胞之影響 34
第三章 結果與討論 35
3.1 實驗流程圖 35
3.2 L-乳酸調整培養液之酸鹼值滴定 36
3.3 材料的生物相容性測試 36
3.4 包覆LOX之水凝膠其藥物釋放能力檢測 38
3.5 酸性環境對於小鼠巨噬細胞RAW 264.7之細胞活性測試 39
3.6 小鼠巨噬細胞RAW 264.7極化 40
3.7 酸性環境對於M1及M2型小鼠巨噬細胞RAW 264.7極化之影響 42
3.8 以乳酸調控培養液酸鹼值對於M0型小鼠巨噬細胞RAW 264.7之影響 44
3.9 不同酸鹼值之環境於長時間下對M1型小鼠巨噬細胞RAW 264.7之影響 46
3.10 不同酸鹼值之環境於長時間下對M2型小鼠巨噬細胞RAW 264.7之影響 47
3.11 LOX水凝膠改變培養液乳酸含量後對小鼠巨噬細胞RAW 264.7之影響 49
3.12 M1型小鼠巨噬細胞RAW 264.7功能測試 51
3.13 體外實驗測試腫瘤相關巨噬細胞對腫瘤細胞之影響 54
第四章 結論與討論 55
參考文獻 57
參考文獻 References
[1] 中華民國衛生福利部, 中華民國衛生福利部 105年國人死因統計結果分析, 中華民國衛生福利部 2016.
[2] B.W. Stewart and P. Kleihues, World Cancer Report 2014, Lyon: IARC Press 2014.
[3] K. Miller, R. Siegel, C. Lin, A. Mariotto, J. Kramer, J. Rowland, K. Stein, R. Alteri, A. Jemal, Cancer treatment and survivorship statistics, 2016, CA-A Cancer Journal for Clinicians 66 (4) (2016) 271-289.
[4] T.L. Whiteside, The tumor microenvironment and its role in promoting tumor growth, Oncogene 27 (2008) 5904-5912.
[5] J.A. Joyce, Therapeutic targeting of the tumor microenvironment, Cancer Cell 7 (6) (2005) 513-520.
[6] S. Grivennikov, F. Greten, M. Karin, Immunity, Inflammation, and Cancer, Cell 140 (6) (2010) 883-899.
[7] D.F. Quail, J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis, Nature Medicine 19 (11) (2013) 1423-1437.
[8] A. Mantovani, S. Sozzani, M. Locati, P. Allavena, A. Sica, Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes, Trends in Immunology 23 (11) (2002) 549-555.
[9] F. Martinez, A. Sica, A. Mantovani, M. Locati, Macrophage activation and polarization, Frontiers in Bioscience-Landmark 13 (2008) 453-461.
[10] T. Ohashi, T. Akazawa, M. Aoki, B. Kuze, K. Mizuta, Y. Ito, N. Inoue, Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumor immunoreactivity, International Journal of Cancer 133 (5) (2013) 1107-1118.
[11] O.R. Colegio, N.Q. Chu, A.L. Szabo, T. Chu, A.M. Rhebergen, V. Jairam, N. Cyrus, C.E. Brokowski, S.C. Eisenbarth, G.M. Phillips, G.W. Cline, A.J. Phillips, R. Medzhitov, Functional polarization of tumour-associated macrophages by tumour-derived lactic acid, Nature 513 (7519) (2014).
[12] R. Cairns, I. Harris, T. Mak, Regulation of cancer cell metabolism, Nature Reviews Cancer 11 (2) (2011) 85-89.
[13] H. Christofk, M. Vander Heiden, M. Harris, A. Ramanathan, R. Gerszten, R. Wei, M. Fleming, S. Schreiber, L. Cantley, The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth, Nature 452 (7184) (2008) 230-U74.
[14] P. Ward, C. Thompson, Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate, Cancer Cell 21 (3) (2012) 297-308.
[15] B. Qian, J. Pollard, Macrophage Diversity Enhances Tumor Progression and Metastasis, Cell 141 (1) (2010) 39-51.
[16] C. Chang, J. Liao, L. Kuo, Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity, Caner Research 61 (3) (2001) 1100-1106.
[17] S. Negrini, V.G. Gorgoulis, T.D. Halazonetis, Genomic instability — an evolving hallmark of cancer, Nature Reviews Molecular Cell Biology 11 (2010) 220-228.
[18] D. Hanahan, R.A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell 144 (2011) 646-674.
[19] A.B. Miller, B. Hoogstraten, M. Staquet, A. Winkler, Reporting results of cancer treatment, Cancer 47 (1) (1981) 207-214.
[20] K. Strebhardt, A. Ullrich, Paul Ehrlich's magic bullet concept: 100 years of progress, Nature Reviews Cancer 8 (6) (2008) 473-480.
[21] L.S. Goodman, M.M. Wintrobe, W. Dameshek, M.J. Goodman, A. Gilman, M.T. McLennan, Nitrogen Mustard Therapy : Use of Methyl-Bis(Beta-Chloroethyl)amine Hydrochloride and Tris(Beta-Chloroethyl)amine Hydrochloride for Hodgkin's Disease, Lymphosarcoma, Leukemia and Certain Allied and Miscellaneous Disorders, JAMA 105 (1946) 475-476.
[22] W. Matts, J. Hartley, K. Kohn, DNA-Sequence Selectivity of Guanine-N7 Alkylation by Nitrogen Mustards, Nucleic Acids Research 14 (7) (1986) 2971-2987.
[23] S. Chaney, A. Sancar, DNA repair: Enzymatic mechanisms and relevance to drug response, Journal of the National Cancer Institute 88 (19) (1996) 1346-1360.
[24] J.S. Butler and P.J. Sadler, Targeted delivery of platinum-based anticancer complexes, Current Opinion in Chemical Biology 17 (2) (2013) 175-188.
[25] C. Chien, J. Yan, W. Chiu, T. Wu, C. Liu, S. Lin, Caged Pt nanoclusters exhibiting corrodibility to exert tumor-inside activation for anticancer chemotherapeutics, Advanced Materials 25 (36) (2013) 5067-5073.
[26] H. Hurwitz, L. Fehrenbacher, W. Novotny, T. Cartwright, J. Hainsworth, W. Heim, J. Berlin, A. Baron, S. Griffing, E. Holmgren, N. Ferrara, G. Fyfe, B. Rogers, R. Ross, F. Kabbinavar, Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer, New England Journal of Medicine 350 (23) (2004) 2335-2342.
[27] O. Abe, R. Abe, K. Enomoto, K. Kikuchi, H. Koyama, H. Masuda, Y. Nomura, K.Sakai, K. Sugimachi, T. Tominaga, J. Uchino, M. Yoshida, Effects of Chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-Year survival: An overview of the randomised trials, Lancet 365 (9472) (2005) 1687-1717.
[28] R. Baskar, C. Address, K.A. Lee, R. Yeo, K.W. Yeoh, Cancer and radiation therapy: current advances and future directions, International Journal of Medical Sciences 9 (3) (2012) 193-199.
[29] R. Baskar, J. Dai, N. Wenlong, R. Yeo, K.W. Yeoh, Biological response of cancer cells to radiation treatment, Front Mol Biosci 1 (24) (2014) 1-9.
[30] S. Bhide, C. Nutting, Recent advances in radiotherapy, BMC Med 8 (25) (2010) 1-5.
[31] G.G. Steel, M.J. Peckham, Exploitable mechanisms in combined radiotherapy-chemotherapy: The concept of additivity, International Journal of Radiation Oncology Biology Physics 5 (1) (1979) 85-91.
[32] G. Demetri, M. von Mehren, C. Blanke, A. Van den Abbeele, B. Eisenberg, P. Roberts, M. Heinrich, D. Tuveson, S. Singer, M. Janicek, J. Fletcher, S. Silverman, S. Silberman, R. Capdeville, B. Kiese, B. Peng, S. Dimitrijevic, B. Druker, C. Corless, C. Fletcher, H. Joensuu, Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors, New England Journal of Medicine 347 (7) (2002) 472-480.
[33] S.G. O'Brien, F. Guilhot, R.A. Larson, I. Gathmann, M. Baccarani, F. Cervantes, J.J. Cornelissen, T. Fischer, A. Hochhaus, T. Hughes, K. Lechner, J.L. Nielsen, P. Rousselot, J. Reiffers, G. Saglio, J. Shephers, B. Simonsson, A. Gratwohl, J.M. Goldman, H. Kantarjian, K. Taylor, G. Verhoef, A.E. Bolton, R. Capdeville, B.J. Druker, Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia, New England Journal of Medicine 348 (11) (2003) 994-1004.
[34] D. Peer, J. Karp, S. Hong, O. FaroKHzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy, Nature Nanotechnology 2 (12) (2007) 751-760.
[35] G.L. Semenza, Targeting HIF-1 For Cancer Therapy, Nature Reviews 3 (2003) 721-732.
[36] H. Farmer, N. McCabe, C. Lord, et.al, Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy, Nature 434 (7035) (2005) 917-921.
[37] 中華民國衛生福利部中央健康保險署, 癌症藥費統計附表, 2016.
[38] B.J. Druker, F. Guilhot, S.G. O'Brien, I. Gathmann, H. Kantarjian, N. Gattermann, M.W.N. Deininger, R.T. Silver, J.M. Goldman, R.M. Stone, F. Cervantes, A. Hochhaus, B.L. Powell, J.L. Gabrilove, P. Rousselot, J. Reiffers, J.J. Cornelissen, T. Hughes, H. Agis, T. Fisher, G. Verhoef, J. Shepherd, G. Saglio, A. Gratwohl, J.L. Nielsen, J.P. Radich, B. Simonsson, K. Taylor, M. Baccarani, C.S. Pharm, L. Letvak and R.A. Larson, Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia, New England Journal of Medicine 355 (23) (2006) 2408-2417.
[39] F.S. Hodi, S.J. O'Day, D.F. McDermott, R.W. Weber, J.A. Sosman, J.B. Haanen, R. Gonzalez, C. Robert, D. Schadendorf, J.C. Hassel, W. Akerley. A.J. van den Eertwegh, J. Lutzky, P. Lorigan, J.M. Vaubel, G.P. Linette, D. Hogg, C.H. Ottensmeier, C. Lebbé, C. Peschel, I. Quirt, J.I. Clark, J.D. Wolchok, J.S. Weber, J. Tian, M.J. Yellin, G.M. Nichol, A. Hoos, W.J. Urba, Improved survival with ipilimumab in patients with metastatic melanoma, New England Journal of Medicine 363 (8) (2010) 711-723.
[40] P.C. Tumeh, C.L. Harview, J.H. Yearley, I.P. Shintaku, E.J.M. Taylor, L. Robert, B. Chmielowski, M. Spasic, G. Henry, V. Ciobanu, A.N. West, M. Carmona, C. Kivork, E. Seja, G. Cherry, A.J. Gutierrez, T.R. Grogan, C. Mateus, G. Tomasic, J.A. Glaspy, R.O. Emerson, H. Robins, R.H. Pierce, D.A. Elashoff, C. Robert, A. Ribas, PD-1 blockade induces responses by inhibiting adaptive immune resistance, Nature 515 (7528) (2014) 568.
[41] J.D. Wolchok, H. Kluger, M.K. Callahan, M.A. Postow, N.A. Rizvi, A.M. Lesokhin, N.H. Segal, C.E. Ariyan, R.A. Gordon, K. Reed, M.M. Burke, A. Caldwell, S.A. Kronenberg, B.U. Agunwamba, X. Zhang, I. Lowy, H.D. Inzunza, W. Feely, C.E. Horak, Q. Hong, A.J. Korman, J.M. Wigginton, A. Gupta, M. Sznol, Nivolumab plus Ipilimumab in Advanced Melanoma, New England Journal of Medicine 369 (2) (2013) 122-133.
[42] J.E, Rosenberg, J. Hoffman-Censits, T. Powles, M.S. van der Heijden, A.V. Balar, A. Necchi, N. Dawson, P.H. O'Donnell, A. Balmanoukian, Y. Loriot, S. Srinivas, M.M. Retz, P. Grivas, R.W. Joseph, M.D. Galsky, M.T. Fleming, D.P. Petrylak, J.L. Perez-Gracia, H.A. Burris, D. Castellano, C. Canil, J. Bellmunt, D. Bajorin, D. Nickles, R. Bourgon, G.M. Frampton, N. Cui, S. Mariathasan, O. Abidoye, G.D. Fine, R. Dreicer, Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial, Lancet 387 (10031) (2016) 1909-1920.
[43] I. Mellman, G. Coukos, G. Dranoff, Cancer immunotherapy comes of age, Nature 480 (7378) (2011) 480-489.
[44] J. Sudimack, R. Lee, Targeted drug delivery via the folate receptor, Advanced Drug Delivery Reviews 41 (2) (2000) 147-162.
[45] M.M. Gubin, X. Zhang, H. Schuster, E. Caron, J.P. Ward, T. Noguchi, Y. Ivanova, J. Hundal, C.D. Arthur, W.J. Krebber, G.E. Mulder, M. Toebes, M.D. Vesely, S.S. Lam, A.J. Korman, J.P. Allison, G.J. Freeman, A.H. Sharpe, E.L. Pearce, T.N. Schumacher, R. Aebersold, H.G. Rammensee, C.J. Melief, E.R. Mardis, W.E. Gillanders, M.N. Artyomov, R.D. Schreiber, Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens, Nature 515 (7528) (2014) 577.
[46] L. Weiner, R. Surana, S. Wang, Monoclonal antibodies: versatile platforms for cancer immunotherapy, Nature Reviews Immunology 10 (5) (2010) 317-327.
[47] L. Galluzzi, E. Vacchelli, J. Bravo-San Pedro, et.al, Classification of current anticancer immunotherapies, Oncotarget 5 (24) (2014) 12472-12508.
[48] J. Park, S.H. Wrzesinski, E. Stern, M. Look, J. Criscione, R. Ragheb, S.M. Jay, S.L. Demento, A. Agawu, L.P. Licona, A.F. Ferrandino, D. Gonzalez, A. Habermann, R.A. Flavell, T.M. Fahmy, Combination delivery of TGF-beta inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy, Nature Materials 11 (10) (2012) 895-905.
[49] C. Eguizabal, O. Zenarruzabeitia, J. Monge, S. Santos, M.A. Vesga, N. Maruri, A. Arrieta, M. Riñón, E. Tamayo-Orbegozo, L. Amo, S. Larrucea, F. Borrego, Natural killer cells for cancer immunotherapy: pluripotent stem cells-derived NK cells as an immunotherapeutic perspective, Frontiers in Immunology 5 (439) (2015) 1-10.
[50] M. Smyth, S. Ngiow, A. Ribas, M. Teng, Combination cancer immunotherapies tailored to the tumour microenvironment, Nature Reviews Clinical Oncology 13 (3) (2016) 143-158.
[51] D. Lindau, P. Gielen, M. Kroesen, P. Wesseling, G. Adema, The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells, Immunology 138 (2) (2013) 105-115.
[52] M. Noman, G. Desantis, B. Janji, M. Hasmim, S. Karray, P. Dessen, V. Bronte, S. Chouaib, PD-L1 is a novel direct target of HIF-1 alpha., and its blockade under hypoxia enhanced MDSC-mediated T cell activation, Journal of Experimental Medicine 211 (5) (2014) 781-790.
[53] M. Crowther, N. Brown, E. Bishop, C. Lewis, Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors, Journal of Leukocyte Biology 70 (4) (2001) 478-490.
[54] Y. Mao, E. Keller, D. Garfield, K. Shen, J. Wang, Stromal cells in tumor microenvironment and breast cancer, Cancer and Matastasis Reviews 32 (1-2) (2013) 202-215.
[55] C. Wykoff, N. Beasley, P. Watson, K. Turner, J. Pastorek, A. Sibtain, G. Wilson, H. Turley, K. Talks, P. Maxwell, C. Pugh, P. Ratcliffe, A. Harris, Hypoxia-inducible expression of tumor-associated carbonic anhydrases, Cancer Research 60 (24) (2000) 7075-7083.
[56] J. Joyce, J. Pollard, Microenvironmental regulation of metastasis, Nature Reviews Cancer 9 (4) (2009) 239-252.
[57] Y. Luo, H. Zhou, J. Krueger, C. Kaplan, S. Lee, C. Dolman, D. Markowitz, W. Wu, C. Liu, R. Reisfeld, R. Xiang, Targeting tumor-associated macrophages as a novel strategy against breast cancer, Journal of Clinical Investigation 116 (8) (2006) 2132-2141.
[58] H. Chang, B. Liu, Y. Qi, Y. Zhou, Y. Chen, K. Pan, W. Li, X. Zhou, W. Ma, C. Fu, Y. Qi, L. Liu, Y. Gao, Blocking of the PD-1/PD-L1 interaction by a D-Peptide antagonist for cancer immunotherapy, Angewamdte Chemie-Onternational Edition 54 (40) (2015) 11760-11764.
[59] R. Thomlinson, L. Gray, The histological structure of some human lung cancers and the possible implications for radiotherapy, British Journal of Cancer 9 (4) (1955) 539.
[60] P. Friedl, K. Wolf, Tumour-cell invasion and migration: Diversity and escape mechanisms, Nature Reviews Cancer 3 (5) (2003) 362-374.
[61] S. Lehmann, V. Boekhorst, J. Odenthal, R. Bianchi, S. van Helvert, K. Ikenberg, O. Ilina, S. Stoma, J. Xandry, L. Jiang, R. Grenman, M. Rudin, P. Friedl, Hypoxia Induces a hif-1-dependent transition from collective-to-amoeboid dissemination in epithelial cancer cells, Current Biology 27 (3) (2017) 392-400.
[62] L. Gerweck, K. Seetharaman, Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer, Cancer Research 56 (6) (1996) 1194-1198.
[63] D. Schmaljohann, Thermo- and pH-responsive polymers in drug delivery, Advanced Drug Delivery Reviews 58 (15) (2006) 1655-1670.
[64] I. Tannock, D. Rotin, Acid pH in tumors and its potential for therapeutic exploitation, Cancer Research 49 (16) (1989) 4373-4384.
[65] G. Helmlinger, F. Yuan, M. Dellian, R. Jain, Interstitial pH and pO(2) gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation, Nature Medicine 3 (2) (1997) 177-182.
[66] E. Lee, Z. Gao, Y. Bae, Recent progress in tumor pH targeting nanotechnology, Journal of Controlled Release 132 (3) (2008) 164-170.
[67] M. Heiden, L. Cantley, C. Thompson, Understanding the Warburg Effect: The metabolic requirements of cell proliferation, Science 324 (5930) (2009) 1029-1033.
[68] R. Gatenby, R. Gillies, Why do cancers have high aerobic glycolysis?, Nature Reviews Cancer 4 (11) (2004) 891-899.
[69] J. Fang, H. Nakamura, H. Maeda, The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect, Advanced Drug Delivery Reviews 63 (3) (2011) 136-151.
[70] R. Jain, E. Di Tomaso, D. Duda, J. Loeffler, A. Sorensen, T. Batchelor, Angiogenesis in brain tumours, Nature Reviews Neuroscience 8 (8) (2007) 610-622.
[71] T. Lammers, F. Kiessling, W. Hennink, G. Storm, Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress, Journal of Controlled Release 161 (2) (2012) 175-187.
[72] A. Soeda, M. Park, D. Lee, A. Mintz, A. Androutsellis-Theotokis, R.D. McKay, J. Engh, T. Iwama, T. Kunisada, A.B. Kassam, I.F. Pollack, D.M. Park, Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1 alpha, Oncogene 28 (45) (2009) 3949-3959.
[73] H. Cui, B. Seubert, E. Stahl, H.Dietz, U. Reuning, L. Moreno-Leon, M. Ilie, P. Hofman, H. Nagase, B. Mari, A. Krüger, Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes, Oncogene 34 (28) (2015) 3640-3650.
[74] H. Gonzalez-King, N. Garcia, I. Ontoria-Oviedo, M. Ciria, J. Montero, P. Sepulveda, Hypoxia Inducible Factor-1 alpha Potentiates Jagged 1-Mediated Angiogenesis by Mesenchymal Stem Cell-Derived Exosomes, Stem Cells 35 (7) (2017) 1747-1759.
[75] D. Poitz, A. Augstein, K. Hesse, M. Christoph, K. Ibrahim, R. Braun-Dullaeus, R. Strasser, A. Schmeisser, Regulation of the HIF-system in human macrophages - Differential regulation of HIF-alpha subunits under sustained hypoxia, Molecular Immunology 57 (2) (2014) 226-235.
[76] T. Whiteside, Tumor-Derived Exosomes and Their Role in Cancer Progression, Advances in Clinical Chemistry, 74 (2016) 103-141.
[77] H. Nishikawa, Immune suppression in tumor microenvironment, Cancer Science, 2018.
[78] R. Schreiber, L. Old, M. Smyth, Cancer Immunoediting: Integrating Immunity's Roles in Cancer Suppression and Promotion, Science 331 (6024) (2011) 1565-1570.
[79] C. Carmona-Fontaine, M. Deforet, L. Akkari, C. Thompson, J. Joyce, J. Xavier, Metabolic origins of spatial organization in the tumor microenvironment, PNAS 114 (11) (2017) 2934-2939.
[80] L. Fang, J. Hodge, F. Saaoud, J. Wang, S. Iwanowycz, Y. Wang, Y. Hui, T. Evans, B. Razani, D. Fan, Transcriptional factor EB regulates macrophage polarization in the tumor microenvironment, Oncoimmunology 6 (5) (2017).
[81] W. Ohashi, K. Hattori, Y. Hattori, Control of Macrophage Dynamics as a Potential Therapeutic Approach for Clinical Disorders Involving Chronic Inflammation, Journal of Pharmacology and Experimental Therapeutics 354 (3) (2015) 240-250.
[82] B. Brune, N. Dehne, N. Grossmann, M. Jung, D. Namgaladze, T. Schmid, A. von Knethen, A. Weigert, Redox Control of Inflammation in Macrophages, Antioxidants & Redox Signaling 19 (6) (2013) 595-637.
[83] F. Klug, H. Prakash, P. Huber, Low-Dose Irradiation Programs Macrophage Differentiation to an iNOS(+)/M1 Phenotype that Orchestrates Effective T Cell Immunotherapy, Cancer Cell 24 (5) (2013) 589-602.
[84] B.J.R. Whittle, Role of iNOS in Gut Inflammation and Injury, Drug News & Perspectives 12 (3) (1999) 157.
[85] S.S. Bohlson, S.D. O'Conner, H.J. Hulsebus, M.M. Ho, D.A. Fraser, Complement, C1q, and C1q-Related Molecules Regulate Macrophage Polarization, Frontiers in Immunology (2014) 1-7.
[86] H.G. Jin, C. Wan, Z.W. Zou, G.F. Zhao, L.L. Zhang, Y.Y. Geng, T. Chen, A. Huang, F.G. Jiang, J.P. Feng, J.F. Lovell, J. Chen, G. Wu, K.Y. Yang, Tumor Ablation and Therapeutic Immunity Induction by an Injectable Peptide Hydrogel, ACS Nano 12 (4) (2018) 3295-3310.
[87] Y. Qian, S.Qiao, Y.F. Dai, G.Q. Xu, B. Dai, L. Lu, X. Yu, Q.M. Luo, Z.H. Zhang, Molecular-Targted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages, ACS Nano 11 (9) (2017) 9536-9549.
[88] O. Colegio, Lactic acid polarizes macrophages to a tumor-promoting state, Oncoimmunology 5 (3) (2016).
[89] Y. Liu, C. Chen, F.Q. Cao, L.P. Bai, Y.P. Luo, Lactic acid regulates phenotype polarization and function of macrophages in tumor microenvironment, Basic&Clinical Medicine 34 (6) (2014).
[90] V. Bronte, Macrophage response to lactic acid Tumor cells hijack macrophages via lactic acid, Immunology and Cell Biology 92 (8) (2014) 647-649.
[91] T. Lawrence, G. Natoli, Transcriptional regulation of macrophage polarization: enabling diversity with identity, Nature Reviews Immunology 11 (2011) 750-761.
[92] M. Gerard, A. Chaubey, B. Malhotra, Application of conducting polymers to biosensors, Biosensors & Bioelectronics 17 (5) (2002) 345-359.
[93] E. Dempsey, D. Diamond, M. Smyth, G. Urban, G. Jobst, I. Moser, E. Verpoorte, A. Manz, H. Widmer, K. Rabenstein, R. Freaney, Design and development of a miniaturised total chemical analysis system for on-line lactate and glucose monitoring in biological samples, Analytica Chimicaacta 346 (3) (1997) 341-349.
[94] M. Takahashi, M. Shimazaki, Formation of junction zones in thermoreversible methylcellulose gels, Journal of Polymer Science Part B-Polymer Physics 39 (9) (2001) 943-946.
[95] K. Kobayashi, C. Huang, T. Lodge, Thermoreversible gelation of aqueous methylcellulose solutions, Macromolecules 32 (21) (1999) 7070-7077.
[96] J. Van den Bossche, J. Baardman, N. Otto, S. van der Velden, A. Neele, S. van den Berg, R. Luque-Martin, H. Chen, M. Boshuizen, M. Ahmed, M. Hoeksema, A. de Vos, M. de Winther, Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages, Cell Reports 17 (3) (2016) 684-696.
[97] A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, M. Locati, The chemokine system in diverse forms of macrophage activation and polarization, Trends in Immunology 25 (12) (2004) 677-686.
[98] A. Sica, A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, Journal of Clinical Investigation 122 (3) (2012) 787-795.
[99] F. Aktan, iNOS-mediated nitric oxide production and its regulation, Life Sciences 75 (6) (2004) 639-653.
[100] C. Bogdan, Nitric oxide and the immune response, Nature Immunology 2 (10) (2001) 907-916.
[101] A. Sica, P. Larghi, A. Mancino, L. Rubino, C. Porta, M. Totaro, M. Rimoldi, S. Biswas, P. Allavena, A. Mantovani, Macrophage polarization in tumour progression, Seminars in Cancer Biology 18 (5) (2008) 349-355.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code