Responsive image
博碩士論文 etd-0520113-193715 詳細資訊
Title page for etd-0520113-193715
論文名稱
Title
丁二酸二丁酯共聚丁二酸-1,4-環己烷二甲基酯之非等溫結晶行為
Nonisothermal Crystallization Behaviors of Poly(butylene succinate-co-1,4-cyclohexanedimethylene succinate)s
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
111
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-19
繳交日期
Date of Submission
2013-07-29
關鍵字
Keywords
非等溫結晶、二維紅外線光譜儀、小角度X光散射、傅利葉轉換紅外線光譜儀、熔融現象、脂肪-脂環族共聚酯
nonisothermal crystallization, SAXS, FTIR, aliphatic–alicyclic copolyester, melting behavior, 2D IR
統計
Statistics
本論文已被瀏覽 5765 次,被下載 319
The thesis/dissertation has been browsed 5765 times, has been downloaded 319 times.
中文摘要
本研究主要包括兩部分。第一部分,材料為聚丁二酸二丁酯及含少量丁二酸-1,4-環己烷二甲基酯之兩種聚丁二酸二丁酯共聚酯(PBCSu9505, PBCSu9010)。由核磁共振分析 (1HNMR) 光譜得知,此兩種共聚酯其丁二酸-1,4-環己烷二甲基酯含量分別為5.7及12.0 mol%,而針對丁二酸-1,4-環己烷二甲基酯之順反異構物含量來分析,順式比例約70.5%。利用示差掃描熱卡計(DSC)與可控溫偏光顯微鏡(PLM)以不同降溫速率來討論非等溫結晶行為。在DSC的部分,利用多種非等溫結晶動力學模組來探討不同降溫速率與丁二酸-1,4-環己烷二甲基酯的含量對結晶速率參數的影響,而在PLM的部分,以非等溫結晶所量測之球晶成長速率利用Laurizen-Hoffman方程式估計三種樣品之regime II到regime III之轉換溫度。當非等溫結晶完成後,利用廣角X光繞射(WAXD)及小角度X光散射(SAXS)探討不同降溫速率與丁二酸-1,4-環己烷二甲基酯的含量對結晶構造及結晶層板的影響。
透過以上的分析可以發現,增加降溫速率則結晶溫區將變廣並增加結晶速度。針對結晶溫區變廣,由層板結構分析可以發現層板大小分布會隨增加降溫速率而變廣;針對結晶速度增加,平均層板大小將隨增加降溫速率而變小,主要是因為增加降溫速率會使結晶在過冷度較大的條件下生長,雖然成長速度快但也比較沒有完整性使平均結晶層板大小降低。隨後,以DSC升溫將不同降溫速率所得之非等溫結晶熔融,並討論多重熔峰現象與結晶層板大小的關係。此外,加入少量的丁二酸-1,4-環己烷二甲基酯會抑制聚丁二酸二丁酯的結晶能力。以WAXD對結晶構造分析,我們認為丁二酸-1,4-環己烷二甲基酯並不會參與結晶,換句話說,結晶發生時丁二酸-1,4-環己烷二甲基酯將會被排除在結晶層之外。
第二部分將透過可控溫傅利葉轉換紅外線光譜儀(Temperature-resolved FTIR)探討層板結構的形成。首先針對三種樣品在其結晶成長的狀態下(非等溫結晶成長)觀察CH及C=O鍵吸收區間(3050-2800cm-1、1800-1650cm-1)特徵峰的變化情形並做定性分析。在CH吸收區間,當丁二酸-1,4-環己烷二甲基酯含量增加時,約在2854cm-1 的吸收強度有明顯上升而此特徵峰我們認為是1,4-環己烷二甲基上的C-H單鍵所貢獻的。當結晶成長時,屬於非晶態的C-H2在2962與2858cm-1皆發生特徵峰分裂行為(crystal field splitting),這種現象是因為C-H2處在不同環境下(結晶或非晶態)而使特徵峰有所位移。在C=O吸收區間,由C=O受不同環境下而使特徵峰有所位移之原理判定層板由結晶層、非晶層及邊界層所組成,而此邊界層為結晶層與非晶層的交界處。利用二維紅外線光譜儀相關性分析(2D-IR correlation analysis)發現,當丁二酸-1,4-環己烷二甲基酯含量增加時所形成之邊界層變得不明顯,藉由升溫觀察C=O吸收區間變化情形,我們發現邊界層的熱穩定性也變得更差。我們認為當丁二酸-1,4-環己烷二甲基酯含量增加而影響邊界層,與第一部分所提到結晶發生時丁二酸-1,4-環己烷二甲基酯會被排除在結晶層之外有關連性,而此議題也將在本研究中討論。
Abstract
Poly(butylene succinate-co-1,4-cyclohexanedimethylene succinate) [PBCSu] were synthesized via a two-stage condensation reaction. PBCSu9505 and PBCSu9010 were characterized as having 5.6 and 12 mol% 1,4-cyclohexanedimethylene succinate (CS) units, respectively, by 1H NMR. Copolymers were characterized as random, based on 13C NMR spectra. A differential scanning calorimeter (DSC) and a polarized light microscope (PLM) were adapted to study the nonisothermal crystallization and melting behaviors of these copolymers. DSC data were analyzed via modified Avrami, Ozawa, and Mo models, respectively. Morphologies and growth of spherulites were monitored under PLM experiments at constant cooling rates. Isothermal growth rates obtained via nonisothermal method were analyzed using secondary nucleation theory. The regime transition temperature from II to III was found at 85.2 and 79.6 °C for PBCSu9505 and PBCSu9010, respectively. The results of PLM and DSC demonstrate that incorporation of minor CS units into PBSu inhibits the crystallization rate and crystallinity of the resulting copolyester. Small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD) were used to analyze the lamellar and crystal structures of nonisothermally crystallized copolymers, respectively. Long period (L) and crystal thickness (lc) were found to decrease with increasing the cooling rate. However, the peak positions of WAXD patterns do not change with various cooling rates or the amount of CS units. It revealed that there was only one crystal form in this study and CS units were excluded from the crystal lamellae.
Temperature-resolved FTIR was used to monitor the spectral variations during the nonisothermal crystallization process of PBSu and PBCSu copolymers. Different wavenumber regions (C-H and C=O stretching) were compared by second derivatives and two dimensional (2D) correlation analysis. The characteristic bands of crystalline and amorphous were identified in each region. In addition, C=O stretching region was also monitored to study the melting process. It was observed that the melting- recrystallization-remelting process occurred at boundary phase between the crystalline and amorphous regions. By 2D synchronous correlation analysis, it was found that the intensity change at 1723 cm-1, which is assigned to boundary phase, decreases with increasing the amount of CS units. It revealed that the crystallinity of boundary phase was restricted by the CS units excluded from the crystal lamellae. Thus, the thermal stability of boundary phase decreased with increasing the amount of CS units
目次 Table of Contents
誌謝 II
摘要 III
Abstract V
Contents VI
List of Figures X
List of Tables XIV
Chapter 1 Introduction 1
1.1 Backgrounds 1
1.2 Motivation and objectives 2
Chapter 2 Literature Review and Theoretical Approaches 4
2.1 Related researches about poly(butylene succinate) and its copolymers 4
2.1.1 Crystallization structure and conformation of poly(butylene succinate 4
2.1.2 Poly(butylene succinate) homopolymer 4
2.1.3 Copolymerization of poly(butylene succinate) 6
2.2 Development of 1,4-cyclohexanedimethanol 7
2.2.1 Related researches of 1,4-cyclohexanedimethanol 7
2.2.2 Related researches of poly(butylene succinate-co-1,4-cyclohexanedime- thylene succinate) 9
2.3 Nonisothermal crystallization kinetics 10
2.3.1 Avrami model 11
2.3.2 Ozawa model 12
2.3.3 Mo model 12
2.3.4 Kinetic analysis of growth rates of spherulite 13
2.4 Multiple melting behavior 14
2.4.1 Melting-recrystallization-remelting 14
2.4.2 Dual morphology 15
2.4.3 Hybrid theory 15
2.5 Small angle X-ray scattering theory 15
2.6 Temperature-resolved FTIR 16
2.7 Related researches boundary phase 17
Chapter 3 Experimental 19
3.1 Materials and basic properties 19
3.2 Samples preparation 19
3.3 Instruments 19
3.4 Determination of cis/trans conformation for 1,4-cyclohexanedimethanol using 1H NMR 20
3.5 Measurement of growth rate and observation of morphology using PLM via nonisothermal crystallization method 21
3.6 Investigation of nonisothermal crystallization behavior using DSC 21
3.7 Investigation of crystal structure following nonisothermal crystallization using WAXD 22
3.8 Investigation of crystal lamellae following nonisothermal crystallization using SAXS 22
3.9 Investigation nonisothermal crystallization behavior using temperature- resolved FTIR 23
3.10 Investigation of multiple melting behavior using temperature-resolved FTIR 23
3.11 2D IR correlation analysis 24
3.12 Research procedures 25
Chapter 4 Results and Discussion 26
4.1 Analysis of cis/trans conformation of 1,4-cyclohexanedimethanol for PBCSu copolymer 26
4.2 Growth rates and morphology 26
4.2.1 Determination of growth rate by nonisothermal crystallization method 26
4.2.2 Kinetic analysis of growth rate of spherulites 27
4.2.3 Morphology of spherulites 28
4.3 Nonisothermal crystallization 29
4.3.1 Crystallization behavior 29
4.3.2 Analysis of Avrami model 30
4.3.3 Analysis of Ozawa model 31
4.3.4 Analysis of Mo model 31
4.4 WAXS analysis 32
4.5 SAXS analysis 32
4.5.1 1-D SAXS profiles 32
4.5.2 Lorentz-corrected SAXS profiles 33
4.5.3 1-D correlation function analysis 35
4.6 Melting behavior 35
4.7 Temperature-resolved FTIR analysis 37
4.7.1 Characterization 37
4.7.1.1 CH stretching region 37
4.7.1.2 C=O stretching region 38
4.7.2 2D IR correlation analysis 41
4.7.3 Melting behavior at C=O stretching region 43
Chapter 5 Conclusions 46
References 84
Appendix 92
參考文獻 References
[1] Iwata, T.; Doi, Y. Crystal structure and biodegradation of aliphatic polyester crystals.
Macromol Chem Phys 1999, 200, 2429–2442.
[2] Abe, H.; Doi, Y.; Aoki, H. Akehata, T. Solid–state structures and enzymatic degradabilities for melt-crystallized films of copolymers of (R)-3-hydroxybutyric acid with different hydroxyalkanoic acids. Macromolecules 1998, 31, 1791–1797.
[3] Cao, A.; Okamura, T.; Nakayamy, K. Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co-ethylene succinate)s and poly(butylene succinate-co-diethylene glycol succinate)s. Polym Degrad Stab 2002, 78, 107–117.
[4] Kibler, C. J.; Bell, A.; Smith, J. G. Polyester of 1,4-cyclohexanedimethanol. J Polym Sci Part A 1964, 2, 2115–2125.
[5] Chatani, Y.; Hasegawa, R.; Tadokoro, H. ポリテトラメチレンサクツネ–トの分子および結晶構造. Polym Prepr Jpn 1971, 20, 420.
[6] Ihn, K. J.; Yoo, E. S.; Im, S. S. Structure and morphology of poly(tetramethylene succinate) crystals. Macromolecules 1995, 28, 2460–2464.
[7] Ichikawa, Y.; Suzuki, J.; Washiyama, J.; Moteki, Y.; Noguchi, K.; Okuyama, K. Crystal transition mechanisms in poly(tetramethylene succinate). Polymer J 1995, 27, 1230–1238.
[8] Yoo, E. S.; Im, S. S. Melting behavior of poly(butylene succinate) during heating scan by DSC. J Polym Sci Part B: Polym Phys 1999, 37, 1357–1366.
[9] Wang, X.; Zhou, J.; Li, L. Multiple melting behavior of poly(butylene succinate). Eur Polym J 2007, 43, 3163–3170.
[10] Yasuniwa, M.; Satou, T. Multiple Melting Behavior of Poly(butylene succinate). I. Thermal Analysis of Melt-Crystallized Sample. J Polym Sci Part B: Polym Phys 2002, 40, 2411–2420.
[11] Gan, Z. H.; Abe, H.; Kurokawa, H.; Doi, Y. Solid-State microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules 2001, 2, 605–613.
[12] Kibler, C. J.; Bell, A.; Smith, J. G. (Eastman Kodak Co.) LINEAR POLYESTERS AND POLYESTER-AMIDES FROM 1,4-CYCLOHEXANEDIMETHANOL. U.S. Patent 2,901,466, 1959.
[13] Hasek, R. H.; Knowles, M. B.; Tenn, K. (Eastman Kodak Co.) PREPARATION OF TRANS-1,4- CYCLOHEXANEDIMETHANOL. U.S. Patent 2,917,549, 1959.
[14] Nathalie, G. V.; Antxon, M. D. I,; Sebastian, M. G. Poly(ethylene-co-1,4- cyclohexylenedimethylene terephthalate) Copolyesters Obtained by Ring Opening Polymerization. J Polym Sci Part A: Polym Chem 2009, 47, 5954–5966.
[15] Turner, S. R. Development of Amorphous Copolyesters Based on 1,4-Cyclohexane- dimethanol. J Polym Sci Part A: Polym Chem 2004, 42, 5847–5852.
[16] Ki, H. C.; Park, O. O. Synthesis, characterization and biodegradability of the biodegradable aliphatic–aromatic random copolyesters. Polymer 2001, 42, 1849–1861.
[17] Jung, I. K.; Lee, K. H.; Chin, I. J.; Yoon, J. S.; Kim, M. N. Properties of Biodegradable Copolyesters of Succinic Acid-1,4-Butanediol/Succinic Acid-1,4- Cyclohexanedimethanol. J Appl Polym Sci 1999, 72, 553–561.
[18] Tsai, Y.; Jheng, L. C.; Hung, C. Y. Synthesis, properties and enzymatic hydrolysis of biodegradable alicyclic/aliphatic copolyesters based on 1,3/1,4-cyclohexane- dimethanol. Polym Degrad Stab 2010, 95, 72–78.
[19] Lu, S. F.; Chen, M.; Shih, Y. C.; Chen, C. H. Nonisothermal crystallization kinetics of biodegradable poly (butylene succinate‐co‐propylene succinate)s. J Polym Sci Part B: Polym Phys 2010, 48, 1299–1308.
[20] Lu, J. S.; Chen, M.; Shih, Y. C.; Chen, C. H. Nonisothermal crystallization kinetics of novel biodegradable poly(butylene succinate-co-2-methyl-1,3-propylene succinate)s. J Polym Res 2011, 18, 1527–1537.
[21] Jeziorny, A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer 1978, 19, 1142–1144.
[22] Ozawa, T. Kinetics of non-isothermal crystallization. Polymer 1971, 37, 568–575.
[23] Liu, T. X.; Mo, Z. S.; Wang, S. G.; Zhang, H. F. Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone). Polym Eng Sci 1997, 37, 568–575.
[24] Hoffman, J. D.; Davis, G. T.; Laurizen, Jr J. I. Treatise on solid state chemistry, Plenum Press: New York, 1976; vol 3, Chapter 7.
[25] Lee, Y.; Porter, R. S. Double-Melting Behavior of Poly(ether ether ketone). Macromolecules 1987, 20, 1336–1341.
[26] Wang, Z. G.; Hsiao, B.S.; Sauer, B. B.; Kampert, W. G. The nature of secondary crystallization in poly(ethylene terephthalate). Polymer 1999, 40, 4615–4627.
[27] Yoo, E. S.; Im, S. S. Melting Behavior of Poly(butylene succinate) Heating Scan DSC. J Polym Sci Part B: Polym Phys 1999, 37, 1357–1366.
[28] Papageorgiou, G. Z.; Bikiaris, D. N. Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer 2005, 46, 12081–12092.
[29] Chung, J. S.; Cebe, P. Melting behavior of poly(phenylene sulphide): 2. Multiple stage melt crystallization. Polymer 1992, 33, 2325–2333.
[30] Janumak, J. J.; Cheng, S. Z. D.; Zhang, A. Isotacticity effect on crystallization and melting in polypropylene fractions: 3. Overall crystallization and melting behavior. Polymer 1992, 33, 728–735.
[31] Wei, C. L.; Chen, M.; Yu, F. E. Temperature modulated DSC and DSC studies on the origin of double melting peaks in poly(ether ether ketone). Polymer 2003, 44, 8185–8193.
[32] Vonk, C. G.; Kortleve, G. X-RAY SMALL-ANGLE SCATTERING OF BULK POLYETHYLENE. 2. ANALYSES OF SCATTERING CURVE. Kolloid-Z 1967, 220, 19–24.
[33] Strobl, G. R.; Schneider, M. Direct evaluation of the electron density correlation function of partially crystalline polymers. J Polym Sci Part B: Polym Phys 1980, 18, 1343–1359.
[34] Hamerton, L.; Pielichowski, J.; Pielichowski, K. A study of the thermal degradation of poly(vinyl chloride) in the presence of carbazole and potassium carbazole using t.g.a./FTi.r.. Polymer 1994, 35, 336–338.
[35] Sevegney, M. S.; Kannan, R. M.; Siedle, A, R.; Percha, P. A. FTIR Spectroscopic Investigation of Thermal Effects in Semi-Syndiotactic Polypropylene. J Polym Sci Part B: Polym Phys 2006, 43, 439–461.
[36] Yan, C.; Zhang, Y.; Hu, Y.; Ozaki, Y.; Shen, D.; Gan, Z.; Yan, S.; Takahashi, I. Melt Crystallization and Crystal Transition of Poly(butylene adipate) Revealed by Infrared Spectroscopy. J Phys Chem B 2008, 112, 3311–3314.
[37] Hu, Y.; Zhang, J.; Sato, H.; Noda, I.; Ozaki, Y. Multiple melting behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) investigated by differential scanning calorimetry and infrared spectroscopy. Polymer 2007, 48, 4777–4785.
[38] Ruland, W. The evalution of the small-angle scattering of lamellar two-phase systems by means of interface distribution functions. Kolloid-Z 1977, 255, 417–427.
[39] Koberstein, J. T.; Morra, B.; Stein, R. S. The Determination of Diffuse-Boundary Thickness of Polymers by Small-Angle X-ray Scattering. J Appl Cryst 1980, 13, 34–45.
[40] Santa Cruz, C.; Stribeck, N.; Zachmann.; Balta Calleja, F. J. Novel Aspects in the Structure of Poly(ethy1ene terephthalate) As Revealed by Means of Small-Angle X-ray Scattering. Macromolecules 1991, 24, 5980–5990.
[41] Zhu, Bo.; He, Y.; Nishida, H.; Yazawa, K.; Ishii, N.; Kasuya, K.; Inoue, Y. Crystalline-Structure-Dependent Enzymatic Degradation of Polymorphic Poly(3- hydroxypropionate). Biomacromolecules 2008, 9, 1221–1228.
[42] Torchia, D. N. The Measurement of Proton- Enhanced Carbon- 13 T1 Values by a Method Which Suppresses Artifacts. J Magn Reson 1978, 30, 613–616.
[43] Chen, M.; Chung, C. T. Analysis of crystallization kinetics of poly (ether ether ketone) by a nonisothermal method. J Polym Sci Part B: Polym Phys 1998, 36, 2393–2399.
[44] Di Lorenzo, M. L.; Cimmino, S.; Silvestre, C. Nonisothermal crystallization of isotactic polypropylene blended with poly (α-pinene). 2. Growth rates. Marcomolecules 2000, 33, 3828–3932.
[45] Tsai, C. J.; Chen, M.; Lu, H. Y.; Chang, W. C.; Chen, C. H. Crystal growth rates and master curves of poly (ethylene succinate) and its copolyesters using a nonisothermal method. J Polym Sci Part B: Polym Phys 2010, 48, 932–939.
[46] Kellar, A. The spherulitic structure of crystalline polymers. 2. The problem of molecular orientation in polymer spherulites. J Polym Sci 1955, 17, 351–364.
[47] Leonardo, C. L.; Garth, L. W. Non-isothermal crystallization kinetics of poly(p-phenylene sulphide). Polymer, 1989, 30, 882–887.
[48] Won, J. C.; Fulchiron, R.; Douillard, A.; Chabert, B.; Varlfct, J.; Chomier, D. The crystallization kinetics of polyamide 66 in non‐isothermal and isothermal conditions: effect of nucleating agent and pressure. Polym Eng Sci, 2000, 40, 2058–2071.
[49] Sanchez, I. C.; Eby, R. K. Thermodynamics and Crystallization of Random Copolymers. Marcomolecules 1975, 8, 638–641.
[50] Diaz-Celorio, E.; Franco, L.; Puiggali, J. Nonisothermal Crystallization Behavior of a Biodegradable Segmented Copolymer Constituted by Glycolide and Trimethylene Carbonate Units. J Appl Polym Sci 2011, 119, 1548–1559.
[51] Chiu, H. J.; Shu, W. J. Lamellar Morphology of Poly(3-hydroxybutyrate-co- 3-hydroxyvalerate)/Poly(methyl methacrylate) Blends Probed by Small Angle X-ray Scattering. J Polym Res 2005, 12, 149–157.
[52] Wang, Z. G.; Wang, X.; Hsiao, B. S.; Andjelic, S.; Jamiolkowski, D.; McDivitt, J.; Fischer, J.; Zhou, J.; Han, C. C. Time-resolved isothermal crystallization of absorbable PGA-co-PLA copolymer by synchrotron small-angle X-ray scattering and wide-angle X-ray diffraction. Polymer 2001, 42, 8965–8973.
[53] Liang, Z.; Pan, P.; Zhu, B.; Dong, T.; Hua, L.; Inoue, Y. Crystalline Phase of Isomorphic Poly(hexamethylene sebacate-co-hexamethylene adipate) Copolyester: Effects of Comonomer Composition and Crystallization Temperature. Macromolecules 2010, 43, 2925–2932.
[54] Cai, Y.; Lv, J.; Feng, J. Spectral Characterization of Four Kinds of Biodegradable Plastics: Poly(Lactic Acid), Poly(Butylene Adipate-co-Terephthalate), Poly (Hydroxybutyrate-co-Hydroxyvalerate) and Poly (Butylene Succinate) with FTIR and Raman Spectroscopy. J Polym Environ 2013, 21, 108–114.
[55] Sato, H.; Murakami, R.; Padermshoke, A.; Hirose, F.; Senda, K.; Noda, I.; Ozaki, Y. Infrared Spectroscopy Studies of CH…O Hydrogen Bondings and Thermal Behavior of Biodegradable Poly(hydroxyalkanoate). Macromolecules 2004, 37, 7203–7213.
[56] Zhang, J.; Sato, H.; Noda, I.; Ozaki, Y. Conformation Rearrangement and Molecular Dynamics of Poly(3-hydroxybutyrate) during the Melt-Crystallization Process Investigated by Infrared and Two-Dimensional Infrared Correlation Spectroscopy. Macromolecules 2005, 38, 4274–4281.
[57] Boldeskul, I. E.; Tsymbal, I. F.; Ryltsev, E. V.; Latajka, Z.; Barnes, A. J. Reversal of the usual v(C-H/D) spectral shift of haloforms in some hydrogen-bonded complexes. J Mol Struct 1997, 436-437, 167–171.
[58] Harada, T.; Yoshida, H.; Ohno, K.; Matsuura, H. Conformational stabilities of 1-methoxy-2-(methylthio)ethane and relevant intramolecular CH…O interaction studied by matrix-isolation infrared spectroscopy and density functional calculations. Chem Phys Lett 2002, 362, 453–460.
[59] Matsuura, H.; Yoshida, H.; Hieda, M.; Yamanaka, S.; Harada, T. Experimental Evidence for Intramolecular Blue-Shifting CH…O Hydrogen Bonding by Matrix-Isolation Infrared Spectroscopy. J Am Chem Soc 2003, 125, 13910–13911.
[60] Yoshie, N.; Oike, Y.; Kasuya, K.; Doi, Y.; Inoue, Y. Change of Surface Structure of Poly(3-hydroxybutyrate) Film upon Enzymatic Hydrolysis by PHB Depolymerase. Biomacromolecules 2002, 3, 1320–1326.
[61] Xu, J.; Guo, B. H.; Yang, R.; Wu, Q.; Chen, G. Q.; Zhang, Z. M. In situ FTIR study on melting and crystallization of polyhydroxyalkanoates. Polymer 2002, 43, 6893–6899.
[62] Zhu, B.; He, Y.; Asakawa, N.; Yoshie, N.; Nishida, H.; Inoue, Y. Polymorphic Crystallization and Melting-Recrystallization Behavior of Poly(3-hydroxypropionate). Macromolecules 2005, 38, 6455–6465.
[63] Noda, I. Two-Dimensional Infrared Spectroscopy. J Am Chem Soc 1989, 111, 8116–8118.
[64] Noda, I. Generalized Two-Dimensional Correlation Method Applicable to Infrared, Raman, and Other Types of Spectroscopy. Appl Spectrosc 1993, 47, 1329–1336.
[65] Ichikawa, Y.; Kondo, H.; Igarashi, Y.; Noguchi, K.; Okuyama, K.; Washiyama, J. Crystal structures of a and b forms of poly(tetramethylene succinate). Polymer 2000, 41, 4719–4727.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code