Responsive image
博碩士論文 etd-0520114-164408 詳細資訊
Title page for etd-0520114-164408
論文名稱
Title
弧菌噬菌體 ΦA318 RNA 聚合酶的表現
Expression of the Vibrio phage ΦA318 RNA polymerase
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
141
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-05-30
繳交日期
Date of Submission
2014-06-25
關鍵字
Keywords
RNA 聚合酶、弧菌噬菌體、噬菌體啟動子
Vibrio Bacteriophage, phage Promoters, RNA polymerase
統計
Statistics
本論文已被瀏覽 5661 次,被下載 0
The thesis/dissertation has been browsed 5661 times, has been downloaded 0 times.
中文摘要
  海水養殖業中弧菌為主要的微生物病原,致死率近於100%。ΦA318 是我們研究室新發現的弧菌噬菌體,其能高效率地溶裂宿主溶藻弧菌 (Vibrio alginolyticus ATCC 17749)。經全基因體分析,推測其所產生 RNA 聚合酶 (RNAP) 的活性有別於 T7、SP6、K11噬菌體。為了大量製備 RNAP 以供研究其生化特性及生技應用,本研究選殖 ΦA318 RNAP,將poly-His 融接在它的N端,以利純化。獲得的選殖株 pEB172-1D 生產 RNAP 可達總蛋白之30% 以上。經過純化後的 RNAP 在最高比活性為 365 U/mg (37oC)。RNAP 之最佳 promoter 為 TTTTCTCCTATAGGGCAACTTTATT,具特異性,因此 RNAP 可供生技應用。同時也篩選 RNAP 的結晶條件,結果顯示有三種晶型,分別是微晶、針狀晶型、斜方晶型。據此,將可進一步解出此 RNAP 的原子結構。
Abstract
  In aquaculture Vibrio is a major microbial pathogen, Highest death rate may be 100%. ΦA318 is a newly discovered Vibrio phage in our lab, which is characterized by with high efficiency to lyze its host Vibrio alginolyticus (ATCC 17749). After the whole genome analysis, presumably its RNA polymerase (RNAP) activity differs from the T7, SP6 and K11 phages. In order to express RNAP for biochemical characterization and bio-reagent usage. I cloned ΦA318 RNAP, which was fused with a poly-His at its N-terminus to facilitate protein purification. The purified RNAP has the highest specific activity of 365 U/mg at 37oC. The best promoter for this RNAP was TTTTCTCCTATAGGGCAACTTTATT, which is unique and suitable for bio-reagent market. I also screened RNAP crystallization conditions. The results showed three crystal forms: microcrystalline, needles, and orthorombic crystal form. It will be further used to resolve the atomic structure of this RNAP.
目次 Table of Contents
目錄
謝誌 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vii
圖目錄 viii
壹、 前言 1
 一、水產養殖的威脅 1
 二、弧菌感染 2
 三、抗生素與抗藥菌 9
 四、噬菌體療法 9
 五、弧菌噬菌體 ΦA318的簡介 13
 六、噬菌體 RNA 聚合酶選殖 14
 七、研究目的 15
貳、 材料與方法 16
 一、 宿主細菌培養 16
 二、 噬菌體效價之測定 (phage titer) 16
 三、單株噬菌體的分離 17
 四、噬菌體與菌種(選殖株)冷凍保存法 18
 五、弧菌生長曲線測試 18
 六、宿主溶裂 (bacteriolysis) 曲線測試 18
 七、弧菌噬菌體之增殖 (amplification) 19
 八、超高速離心噬菌體純化法 19
 九、流式光度計分析 20
 十、穿透式電子顯微鏡觀察負染色弧菌噬菌體樣本 20
 十一、噬菌體核酸萃取 21
 十二、DNA電泳製備與分析(DNA agarose gel electrophoresis) 22
 十三、限制性內切酶之分析 (Restriction endonuclease analysis) 23
 十四、質體的抽取 23
 十五、純化膠體中之DNA 24
 十六、TA cloning 26
 十七、勝任細胞(competent cell) 的製作 26
 十八、 細胞轉型 (transformation)  27
 十九、Insert聚合酶鏈鎖反應(PCR) 28
 二十、菌落聚合酶鏈鎖反應 (colony-PCR) 28
 二十一、基因定序 30
 二十二、大腸桿菌表現弧菌噬菌體 ΦA318 RNA 聚合酶 (Vibrio phage ΦA318 RNA polymerase)  30
 二十三、ΦA318 RNA 聚合酶之純化 (墊糖離心法) 32
 二十四、使用 Ni-NTA column 純化 poly-His tagged pEB172-1 BL21(DE3) 32
 二十五、蛋白質定量 (Lowry 法) 33
 二十六、蛋白質電泳 34
 二十七、ΦA318 RNA polymerase 活性分析 36
 二十八、結晶方法 (Crystallization) 37
參、 結果 39
 一、ΦA318 溶裂曲線 39
 二、ΦA318純化條件 39
 三、穿透式電子顯微鏡觀察弧菌噬菌體ΦA318型態 40
 四、pY31 菌落 PCR 40
 五、pY318 定序結果 41
 六、pEB 選殖前準備 41
 七、pEB17 菌落 PCR 42
 八、pEB17 選殖株分析 42
 九、pEB17 蛋白質表現 43
 十、pEB172-1D 誘導表現 ΦA318 RNA 聚合酶及純化 44
 十一、使用 Ni-NTA column 純化 poly-His tagged pEB172-1D 45
 十二、不同 IPTG 濃度對 ΦA318 RNA 聚合酶表現的影響 46
 十三、ΦA318 RNA polymerase 活性分析 46
 十四、ΦA318 RNA polymerase初步結晶結果 48
肆、 討論 49
 一、弧菌噬菌體 ΦA318的增殖最佳化時間 49
 二、ΦA318純化條件 49
 三、ΦA318 RNAP 最佳化的表現條件 49
 四、pEB172-1D 純化條件 50
 五、利用Ni-NTA column 純化 poly-His tagged pEB172-1D 50
 六、活性分析 51
 七、初步結晶探討 51
 八、未來展望 52
伍、 參考文獻 53
陸、圖表 59
附錄 117
 附錄A、選殖質體圖與序列 117
 附錄B、ATP 活性分析之波長 122
 附錄C、ATP 分析之反應機構 123
 附錄D、活性分析之計算公式 125
 附錄E、結晶條件 127
表目錄
 Table 1 The list of primers 59
 Table 2 The conditions for PCR reactions 59
圖目錄
 Fig. 1 Lysis curves of V. alginolyticus by Vibriophage ΦA318 60
 Fig. 2 Sedimentation profiles of vibriophage ΦA318 in a Sucrose gradient centrifugation 61
 Fig. 3 Electron microscopy (EM) analysis of negatively stained preparation of purified vibriophages 62
 Fig. 4 The cloning strategy of pY318 63
 Fig. 5 Colony PCR for pY311-pY3112 64
 Fig. 6A pY318 Sequencing M13F(-40) forward primer 66
 Fig. 6B pY318 Sequencing by M13R(-24) reverse primer 68
 Fig. 7 The cloning strategy of pEB 69
 Fig. 8A Agarose gel electrophoresis for DNA 70
 Fig. 8B Restriction of pET28a(+) 71
 Fig. 9 PCR for ΦA318 RNAP 72
 Fig. 10 Colony PCR for different colonies from pEB171-178 and 171H-178H 73
 Fig. 11A pEB17 plasmid DNA 74
 Fig. 11B pEB17 plasmid DNA was digested with NdeI 75
 Fig. 11C pEB17 plasmid DNA was digested with BamHI and SalI 76
 Fig. 12 pEB sequence detail 77
 Fig. 13A pEB172 Sequencing by T7P forward primer 79
 Fig. 13B pEB172 Sequencing by T7T reverse primer 81
 Fig. 13C pEB172 Sequencing by RNAPF24 forward primer 83
 Fig. 13D pEB172 Sequencing by RNAPR20 reverse primer 86
 Fig. 13E pEB172 Sequencing by TF24 forward primer 88
 Fig. 13F pEB172 Sequencing by TR22 reverse primer 90
 Fig. 14A pEB173 Sequencing by T7P forward primer 92
 Fig. 14B pEB173 Sequencing by T7T reverse primer 94
 Fig. 14C pEB173 Sequencing by RNAPF24 forward primer 96
 Fig. 14D pEB173 Sequencing by RNAPR20 reverse primer 98
 Fig. 14E pEB173 Sequencing by TF24 forward primer 100
 Fig. 14F pEB173 Sequencing by TR22 reverse primer 102
 Fig. 15 The SDS-PAGE analysis of pEB172 expression in BL21 competent cell 103
 Fig. 16 The SDS-PAGE analysis of pEB172 expression in BL21(DE3) competent cell 104
 Fig. 17 The SDS-PAGE analysis of pEB173 expression in BL21 competent cell 105
 Fig. 18 The SDS-PAGE analysis of pEB173 expression in BL21(DE3) competent cell 106
 Fig. 19 The tome course of pEB172 expression in BL21(DE3) competent cell 107
 Fig. 20A Induction of pEB172-1 bearing BL21(DE3) cells before purification 108
 Fig. 20B SDS-PAGE analysis for purification of poly-His tagged RNAP from pEB172-1D bearing BL21(DE3) 109
 Fig. 20C RNAP from 28k suspension was further purified by Ni–NTA column 110
 Fig. 21 Effects of inducer concentration on the expression of ΦA318 RNA polymerase 111
 Fig. 22A Activity assay of the RNAP purification process 112
 Fig. 22B Activity assay of the 609-E6 by different In vitro transcription time 113
 Fig. 22C Activity assay of the 609-E6 by different temperatures in vitro transcription 114
 Fig. 22D Activity assay of the 609-E6 by different ΦA318 promoters in vitro transcription at 37oC, 3 hours 115
 Fig. 23 Crystals of ΦA318 RNA polymerase expressed from construct pEB172-1D 116
參考文獻 References
  王筱婷。2003。石斑皮膚菌Aeromonas hydrophila 之特性研究。國立中山大學海洋生物科技暨資源研究所,碩士論文。
  蕭靜伶。2007。水產養殖場分離菌之抗四環素基因。國立中山大學海洋生物科技暨資源研究所,碩士論文。
  沙志一。2012。行政院農業委員會漁業署2012 年年報。行政院農業委員會漁業署。
  Almeida A., Cunha A., Gomes N.C., Alves E., Costa L., Faustino M.A. (2009). Phage therapy and photodynamic therapy: low environmental impact approaches to inactivate microorganisms in fish farming plants. Mar Drugs. 7(3), 268-313.
  Amaro C, Biosca E.G., Esteve C, Fouz B., Toranzo A.E. (1992). Comparative study of phenotypic and virulence properties in Vibrio vulnificus biotypes 1 and 2 obtained from a European eel farm experiencing mortahties. Diseases of Aquatic Organisms. 13, 29-35.
  Anderson M.A., Whitlock J.E., Harwood V.J. (2006). Diversity and distribution of Escherichia coli genotypes and antibiotic resistance phenotypes in feces of humans, cattle, and horses. Appl Environ Microbiol. 72(11):6914-22.
  Angulo L., Lopez J.E., Vicente J.A., Saborido A.M. (1994). Haemorrhagic areas in the mouth of farmed turbot, Scophthalmus maximus (L.). Journal of Fish Diseases. 17, 163-169.
  Austin B. and Austin D. A. (2007). Bacterial fish pathogens diseases of farmed and wild fish. Fourth edition. Praxis publishing. ch4, 136-147.
  Austin B., Stobie M., Robertson P.A.W., Glass H.G., Stark J.R., Mudarris M. (1993). Vibrio alginolyticus: The cause of gill disease leading to progressive low-level mortahties among juvenile turbot, Scophthalmus maximus L., in a Scottish aquarium. Journal of Fish Diseases. 16, 277-280.
  Balebona M.C., Zorrilla I., Morinigo M.A., Borrego J.J. (1998). Survey of bacterial pathogens affecting farmed gilt-head sea bream (Sparus aurata L.) in southwestern Spain from 1990 to 1996. Aquaculture. 166, 19-35.
  Benediktsdottir E., Helgason S., Sigurjonsdottir H. (1998). Vibrio spp. isolated from salmonids with shallow skin lesions and reared at low temperature. Journal of Fish Diseases. 21, 19-28.
  Benediktsdottir E., Verdonck L., Sproer C, Helgason S., Swings J. (2000). Characterization of Vibrio viscosus and Vibrio wodanis isolated from different geographical locations: A proposal for re-classification of Vibrio viscosus as Moritella viscosa comb. nov. International Journal of Systematic and Evolutionary Microbiology. 50, 479-488.
  Beutin L., Strauch E., Fischer I. (1999). Isolation of Shigella sonnei lysogenic for a bacteriophage encoding gene for production of Shiga toxin. Lancet.1;353(9163):1498.
  Boyd E.F., Heilpern A.J., Waldor M.K.(2000). Molecular analyses of a putative CTXphi precursor and evidence for independent acquisition of distinct CTX(phi)s by toxigenic Vibrio cholerae. J Bacteriol. 182(19):5530-8.
  Broudy T.B., Fischetti V.A. (2003). In vivo lysogenic conversion of Tox(-) Streptococcus pyogenes to Tox(+) with Lysogenic Streptococci or free phage. Infect Immun. 71(7):3782-6.
  Brüssow H., Canchaya C., Hardt WD. (2004). Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 68(3):560-602
  Colwell R. R. and Grimes D. J. (1984). Vibrio diseases of marine fish populations. Helgolander Meeresunters. 37, 265-287.
  Davis B.M., Waldor M.K. (2000). CTXphi contains a hybrid genome derived from tandemly integrated elements. Proc Natl Acad Sci U S A. 18;97(15):8572-7.
  Davis B.M., Waldor M.K. (2003). Filamentous phages linked to virulence of Vibrio cholerae. Curr Opin Microbiol. 6(1):35-42.
  Diggles B.K., Carson J., Hine P.M., Hickman R.W., Tait M.J. (2000). Vibrio species associated with mortahties in hatchery-reared turbot (Colistium nudipinnis) and brill (C. guntheri) in New Zealand. Aquaculture. 183, 1-12.
  Egidius E., Andersen K., Causen E., Raa J. (1981). Cold water vibriosis or "Hitra disease" in Norwegian salmonid farming. Journal of Fish Diseases. 4, 353-354.
  Egidius E., Wiik R., Andersen K., Hoff K.A., Hjeltnes B. (1986). Vibrio salmonicida sp. nov., a new fish pathogen. International Journal of Systematic Bacteriology. 36, 518-520.
  Esteve C, Amaro C, Garay E., Santos Y., Toranzo A.E. (1995). Pathogenicity of live bacteria and extracellular products of motile Aeromonas isolated from eels. Journal of Applied Bacteriology. 78, 555-562.
  Eklund M.W., Poysky F.T., Reed S.M., Smith C.A. (1971). Bacteriophage and the toxigenicity of Clostridium botulinum type C. Science. 30;172(3982):480-2.
  Fouz B., Larsen J.L., Amaro C. (2006). Vibrio vulnificus serovar A: An emerging pathogen in European anguilliculture. Journal of Fish Diseases. 29, 285-291.
  Gauger E., Smolowitz R., Uhlinger K., Casey J., Gomez-Chiarri M. (2006). Vibrio harveyi and other bacterial pathogens in cultured summer flounder, Paralichthys dentatus. Aquaculture. 260, 10-20.
  Grimes D.J., Gruber S.H., May E.B. (1985). Experimental infection of lemon sharks, Negaprion brevirostris (Poey), with Vibrio species. Journal of Fish Diseases. 8, 173-180.
  Harbell S.O., Hodgins H.O., Schiewe M.H. (1979). Studies on the pathology of vibriosis in coho salmon (Oncorhynchus kisutch). Journal of Fish Diseases. 2, 527-535.
  Ishimaru K., Akagawa-Matsushita M., Muroga K. (1996). Vibrio ichthyoenteri sp. nov., a pathogen of Japaneses flounder (Paralichthys olivaceus). International Journal of Systematic Bacteriology. 46, 155-159.
  Jensen S., Samuelsen O.B., Andersen K., Torkildsen L., Lambert C, Choquet G., Paillard C., Bergh O. (2003). Characterization of strains of Vibrio splendidus and V. tapetis isolated from corkwing wrasse Symphodus melops suff'ering vibriosis. Diseases of Aquatic Organisms. 53, 25-31.
  Kennedy WP., Momand JR., Yin YW. (2007). Mechanism for de novo RNA synthesis and initiating nucleotide specificity by t7 RNA polymerase. J. Mol. Biol. 370, 256–268.
  Kiiyukia C, Nakajima A., Nakai T., Muroga K., Kawakami H., Hashimoto H. (1992). Vibrio cholerae non-01 isolated from ayu fish (Plecoglossus altivelis) in Japan. Applied and Environmental Microbiology. 58, 3078-3082.
  Kim D.-H., Han H.-J., Kim S.-M., Lee D.-C., Park S.-I. (2004). Bacterial enteritis and the development of the larval digestive tract in olive flounder, Paralichthys olivaceus (Temminck & Schlegel). Journal of Fish Diseases. 27, 497-505.
  Lamas J., Anadon R., Devesa S., Toranzo A.E. (1990). Visceral neoplasia and epidermal papillomas in cultured turbot Scophthalmus maximus. Diseases of Aquatic Organisms. 8, 179-187.
  Lei Q., Yin-Geng W., Zheng Z., Shao-Li Y. (2006). The first report on fin rot disease of cultured turbot Scophthalmus maximus in China. Journal of Aquatic Animal Health. 18, 83-89.
  Levin B.R., Bull J.J. (2004). Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol. 2(2):166-73.
  Liao I.C., Huang T.S., Tsai W.S., Hsueh C.M., Chang S.L., Leano E.M. (2004). Cobia culture in Taiwan: current status and problems. Aquaculture. 237, 155-165.
  Lin Y.R, Chiu C.W., Chang F.Y., Lin C.S. (2012) . Characterization of a new phage, termed ϕA318, which is specific for Vibrio alginolyticus. Archives of Virology. Volume 157, Issue 5, pp 917-926.
  Liu H., Izumi S., Wakabayashi H. (2001). Detection of Flavobacterium psychrophilum in various organs of ayu Plecoglossus altivelis by in situ hybridization. Fish Pathology. 36, 7-11.
  Lunder T., Evensen O., Holstad G., Hastein T. (1995). "Winter ulcer" in the Atlantic salmon Salmo salar. Pathological and bacteriological investigations and transmission experiments. Diseases of Aquatic Organisms. 23(1), 39-49.
  Lupiani B., Dopazo C.P., Ledo A., Fouz B., Barja J.L., Hetrick, F.M., Toranzo A.E. (1989). New syndrome of mixed bacterial and viral etiology in cultured turbot Scophthalmus maximus. Journal of Aquatic Animal Health. 1, 197-204.
  McGrath S., Fitzgerald G.F., van Sinderen D. (2004). The impact of bacteriophage genomics. Curr Opin Biotechnol. 15(2):94-9.
  Mesyanzhinov V.V., Robben J., Grymonprez B., Kostyuchenko V.A., Bourkaltseva M.V., Sykilinda NN., Krylov V.N., Volckaert G. (2002). The genome of bacteriophage phiKZ of Pseudomonas aeruginosa. J. Mol. Biol. 15;317(1):1-19.
  Morris JG Jr. (2003). Cholera and other types of vibriosis: a story of human pandemics and oysters on the half shell. Clin Infect Dis.37(2), 272-80.
  Myhr E., Larsen J.L., Lillehaug A., Gudding R., Heum M., Hastein T. (1991). Characterization of Vibrio anguillarum and closely related species isolated from farmed fish in Norway. Applied and Environmental Microbiology. 57, 2156-2151.
  Nair G.B., Ramamurthy T., Bhattacharya S.K., Dutta B., Takeda Y., Sack D.A. (2007). Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin Microbiol Rev., 20(1), 39-48.
  Nasu H., Iida T., Sugahara T., Yamaichi Y., Park KS., Yokoyama K., Makino K., Shinagawa H., Honda T. (2000). A filamentous phage associated with recent pandemic Vibrio parahaemolyticus O3:K6 strains. J Clin Microbiol. 38(6), 2156-61.
  Petersen A., Andersen J.S., Kaewmak T., Somsiri T., Dalsgaard A. (2002). Impact of integrated fish farming on antimicrobial resistance in a pond environment. Appl Environ Microbiol. 68(12):6036-42.
  Rajan P.R., Lopez C., Lin J.H.Y., Yang H.L. (2001). Vibrio alginolyticus infection in cobia (Rachycentron canadum) cultured in Taiwan. Bull. Eur. Ass. Fish Pathol. 21(6), 228-234.
  Ransom D.P., Lannan C.N., Rohovec J.S., Fryer J.L. (1984). Comparison of histopathology caused by Vibrio anguillarum and Vibrio ordalii and three species of Pacific salmon. Journal of Fish Diseases. 7, 107-115.
  Salte R., Rorvik K.A., Reed E., Norberg K. (1994). Winter ulcers of the skin in Atlantic salmon, Salmo salar L.: Pathogenesis and possible aetiology. Journal of Fish Diseases. 17, 661-665.
  Shao Z.J. (2001). Aquaculture pharmaceuticals and biologicals: current perspectives and future possibilities. Adv Drug Delivery Rev. 50(3), 229-43.
  Strauch E., Lurz R., Beutin L.(2001). Characterization of a Shiga toxin-encoding temperate bacteriophage of Shigella sonnei. Infect Immun. 69(12):7588-95.
  Strauch E., Schaudinn C., Beutin L.(2004). First-time isolation and characterization of a bacteriophage encoding the Shiga toxin 2c variant, which is globally spread in strains of Escherichia coli O157. Infect Immun. 72(12):7030-9.
  Thompson F.L., Hoste B., Vandemeulebroecke K., Engelbeen K., Denys R., Swings J. (2002). Vibrio trachuri Iwamoto et al. 1995 is a junior synonym of Vibrio harveyi (Johnson & Shunk 1936) Baumann et al. 1981. International Journal of Systematic and Evolutionary Microbiology. 52, 973-976.
  Thomson R., Macpherson H.L., Riaza A., Birkbeck T.H. (2005). Vibrio splendidus type 1 as a cause of mortalities in hatchery-reared larval turbot, Scophthalmus maximus (L.). Journal of Applied Microbiology. 99, 243-250.
  Toranzo Alicia E., Magarinos Beatriz, Romalde Jesus L. (2005). A review of the main bacterial fish diseases in mariculture systems. Aquaculture. 246, 37– 61.
  Villamil L., Figueras A., Toranzo A.E., Planas M., Novoa B. (2003). Isolation of a highly pathogenic Vibrio pelagius strain associated with mass mortahties of turbot, Scophthalmus maximus (L.) larvae. Journal of Fish Diseases. 26, 293-303.
  Yii K.C., Yang T.I., Lee K.K. (1997). Isolation and characterization of Vibrio carchariae, a causative agent of gastroenteritis in the groupers, Epinephelus coioides. Current Microbiology. 25, 109-115.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.142.96.146
論文開放下載的時間是 校外不公開

Your IP address is 3.142.96.146
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code