Responsive image
博碩士論文 etd-0520118-082221 詳細資訊
Title page for etd-0520118-082221
論文名稱
Title
使用榫眼結構電容於拆分、合併與三級切換開關技術之低功率十位元連續漸進暫存器式類比數位轉換器實作
Implementation of a 10-bit SAR ADC With Merge, Split, and Tri-Level Switching using Mortise-Tenon Structure Capacitor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-28
繳交日期
Date of Submission
2018-06-25
關鍵字
Keywords
逐漸逼近式類比數位轉換器、寄生效應最小化、榫眼結構、虛擬輸入對、低電壓、三級切換開關、拆分合併開關
Successive Approximation Register ADC, Merge and Split Switching, Dummy Input Pair, Parasitic Minimization, Low Voltage, Mortise-Tenon structure, Tri-level Switching
統計
Statistics
本論文已被瀏覽 5637 次,被下載 0
The thesis/dissertation has been browsed 5637 times, has been downloaded 0 times.
中文摘要
本論文採用TSMC 90nm製程技術,提供一個在操作電壓0.5V下,取樣頻率每秒50萬次、10位元應用於生物訊號的逐漸逼近式類比數位轉換器。此電路可以應用於物聯網相關的感測器或監控裝置上,達到小面積、低功秏與低成本的目標。
在逐漸逼近式類比數位轉換器設計中,為了能讓拆分合併架構提供的效能更上一層樓,因此使用了降低電容陣列功率消耗的設計。另外也使用了動態鎖存型比較器的架構,以減少靜態功率消耗。另外,在電容設計方面,採用了榫眼結構的 MOM 電容,利用減少單位電容的寄生電容效應、分佈式的連接單位電容,這樣可以減少電容陣列中的開關能量消耗,更可以改善電容陣列面積過大的問題。
本論文最終提出一個輸入訊號為 500 Ks/s,SNDR 為 56.11 dB,有效位數為 9.028 位元,微分非線性誤差 (DNL) 為 0.412/-0.435 LSB,積分非線性誤差 (INL) 為 0.590/-0.767 LSB,所消耗的功率為 1.5003μW。
Abstract
This thesis presents a 10-bit 500 KS/s Successive Approximation Register Analog-to-Digital Converter (SAR ADC) for biomedical application with a 0.5 V supply voltage which is implemented by using the TSMC 90nm process technology. The circuit can be applied to the sensors or monitoring device related to the Internet-of-Things (IoT). This design can achieve the purpose of low area, low power and low cost.
In order to provide a better performance and the reduced DAC switching energy, the merge and split (MS) switching architecture is implemented. The dynamic latching comparators are used to reduce the static power consumption. A MOM capacitor with a Mortise-Tenon structure is used to reduce the parasitic capacitance effect in a single capacitor and the distributed connected unit capacitors. They can reduce the switching energy consumption in the capacitor array and improve the overlarge area of the capacitor array problem.
The simulated results show that the sampling rate can be 500Ks/s, the SNDR is 56.11 dB, and ENOB is 9.028 bit. The DNL and INL are 0.412/-0.435 LSB and 0.590/-0.767 LSB, respectively. The power consumption is 1.5003μW.
目次 Table of Contents
論文審定書..................................................................................................................... i
中文摘要........................................................................................................................ ii
Abstract ........................................................................................................................ iii
目錄 ............................................................................................................................. iv
圖目錄........................................................................................................................ viii
表目錄.......................................................................................................................... xii
Chapter 1. 緒論 ............................................................................................................. 1
1.1 背景.................................................................................................................... 1
1.2 研究動機與目標................................................................................................ 3
1.3 論文組織架構.................................................................................................... 4
Chapter 2. 基本架構與原理 ......................................................................................... 5
2.1 類比數位轉換器基本原理................................................................................ 5
2.2 常見的類比數位轉換器架構............................................................................ 6
2.2.1. 快閃式類比數位轉換器 (Flash ADC) ............................................. 6
2.2.2. 兩階段式類比數位轉換器 (Two Step ADC) .................................. 7
2.2.3. 二元搜尋式類比數位轉換器 (Binary Search ADC) ....................... 8
2.2.4. 管線式類比數位轉換器 (Pipeline ADC) ........................................ 9
2.3 連續漸進式類比數位轉換器 (Successive Approximation ADC) ................ 11
2.3.1. 傳統式連續漸進式類比數位轉換器 (Conventional SAR ADC) . 13
2.3.2. 單調式連續漸進式類比數位轉換器 (Monotonic SAR ADC). .... 15
2.3.3. 平均充電式連續漸進式類比數位轉換器 (Charge-Average Switching SAR ADC).................................................................................. 17
2.3.4. 拆分合併式類比數位轉換器 (Merge and Split SAR ADC) ......... 18
2.3.5. 連續漸進式類比數位轉換器之架構比較...................................... 19
2.4 類比數位轉換器的特性參數.......................................................................... 21
2.4.1. 動態效能 (Dynamic Performance) ................................................. 21
2.4.2. 靜態效能 (Static Performance) ...................................................... 23
2.4.3. 其他相關參數.................................................................................. 25
Chapter 3. 目標架構電路設計介紹 ........................................................................... 30
3.1 設計考量.......................................................................................................... 30
3.2 新型榫眼結構電容(Mortise-Tenon Structure) ............................................... 30
3.3 比例電容佈局生成.......................................................................................... 33
3.3.1. 電容陣列的大小計算...................................................................... 34
3.3.2. 電容放置及全局佈線...................................................................... 34
3.3.3. 詳細的佈線...................................................................................... 40
3.4 應用於拆分合併式與三級開關之電容陣列.................................................. 41
3.5 切換能量分析.................................................................................................. 43
3.5.1. 電容陣列開關能量分析.................................................................. 43
3.5.2. 應用於SAR ADC之架構開關能量分析 ...................................... 44
Chapter 4. 目標類比數位轉換器之實現 ................................................................... 49
4.1 取樣保持電路 (Sample and Hold Circuit, S/H) ............................................. 52
4.1.1. 簡易型取樣保持電路...................................................................... 53
4.1.2. 導通電阻Ron設計考量................................................................... 54
4.1.3. 傳統拔靴式開關 (Bootstrapped Switch) ....................................... 54
4.1.4. 兩階段拔靴式開關 (Two-step Bootstrapped Switch) ................... 56
4.1.5. 取樣保持電路之佈局...................................................................... 58
4.2 比較器 (Comparator) ...................................................................................... 59
4.2.1. 比較器電路設計.............................................................................. 59
4.2.2. 比較器之佈局.................................................................................. 62
4.3 時脈產生器 (Clock Generator) ...................................................................... 63
4.3.1. D型正反器 (D Flip-Flop) .............................................................. 64
4.3.2. 時脈產生器設計.............................................................................. 65
4.3.3. 時脈產生器之佈局.......................................................................... 66
4.4 邏輯控制電路 (SAR Control Logic).............................................................. 67
4.4.1. 電容陣列數位類比轉換器邏輯控制電路 (CDAC Control Logic) 67
4.4.2. 拔靴式開關 (Bootstrapped Switch) ............................................... 69
4.4.3. 拆分合併開關 (Merge and Split Switch) ....................................... 70
4.5 單位電容與電容陣列佈局設計...................................................................... 72
4.5.1. MOS電容 (Metal-Oxide-Semiconductor Capacitor) ..................... 72
4.5.2. MIM電容 (Metal-Insulator-Metal Capacitor) ............................... 73
4.5.3. MOM電容 (Metal-Oxide-Metal Capacitor) .................................. 73
4.5.4. 電容陣列 (Capacitor Array) ........................................................... 77
4.6 數位訊號同步輸出電路D-latch..................................................................... 79
4.7 類比數位轉換器之全電路佈局...................................................................... 80
Chapter 5. 效能與模擬結果 ....................................................................................... 82
5.1 快速傅立葉轉換測試 (Fast Fourier Transform, FTT) .................................. 82
5.2 模擬結果與比較分析...................................................................................... 84
5.2.1. 靜態分析.......................................................................................... 86
5.2.2. 動態分析.......................................................................................... 89
5.2.3. 規格表比較...................................................................................... 90
Chapter 6. 結論 ........................................................................................................... 92
6.1 結論.................................................................................................................. 92
6.2 未來展望.......................................................................................................... 92
6.3 待改進之處...................................................................................................... 93
參考文獻...................................................................................................................... 98
參考文獻 References
[1] R. J. Baker, "CMOS Circuit Design, Layout, and Simulation," 3rd ed. John Wiley & Sons, Inc., 2011
[2] D. A. John, K.Martin, "Analog Integrated Circuit Design," John Wiley & Sons, Inc., 1997
[3] N. C. Chen, P. Y. Chou, H. Graeb, and M. P. Hung Lin, "High-density MOM capacitor array with novel mortise-tenon structure for low-power SAR ADC," Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pp. 1757-1762, Lausanne, 2017.
[4] M. P. Hung Lin, Y. T. He, W. H. Hsiao, R. G. Chang, S. Y. Lee, "Common-Centroid Capacitor Layout Generation Considering Device Matching and Parasitic Minimization," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 991 - 1002, June 2013.
[5] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, "Optimization by Simulated Annealing", Science, vol. 220, no. 4598, pp. 671-680, 1983.
[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, MA, Cambridge: MIT Press, 2009.
[7] L. A. Wolsey, G. L. Nemhauser, Integer and Combinatorial Optimization, New York: Wiley-Interscience, 1999.
[8] Y. K. Chen, M. L. Liu, "Three-layer channel routing", IEEE Trans. Comput.-Aided Des., vol. 3, no. 2, pp. 156-163, Apr. 1984.
[9] R.Hedayati, "A Study of Successive Approximation Registers and Implementation of an Ultra-low Power 10-bit SAR ADC in 65 nm CMOS Technology", Master thesis, Linköping University, Department of Electrical Engineering, Electronic Devices, pp. 47-61, 2011.
[10] L. Sumanen, M. Waltari and K. Halonen, "A mismatch insensitive CMOS dynamic comparator for pipeline A/D converters," IEEE International Conference on Electronics, Circuits and Systems, vol. 1, pp. 32-35, Dec. 2000.
[11] R. Lotfi, M. Taherzadeh-Sani, M. Y. Azizi, O. Shoaei, "A 1-V MOSFET-only fully-differential dynamic comparator for use in low-voltage pipelined A/D converters," International Symposium of Signals, Circuits and Systems, vol 2, pp.377- 380, July 2003.
[12] Jin-Yi Lin and Chih-Cheng Hsieh, "A 0.3 V 10-bit 1.17 f SAR ADC With Merge and Split Switching in 90 nm CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp.70-79, Jan. 2015.
[13] Kuan-Ting Lin, and Kea-Tiong Tang, "A 0.5 V 1.28-MS/s 4.68-fJ/Conversion-Step SAR ADC With Energy-Efficient DAC and Trilevel Switching Scheme," IEEE Transactions on Very Large Scale Integation (VLSI) System, vol. 24, no. 4, pp.1441-1449, Apr. 2016.
[14] S. I. Chang, K. Al-Ashmouny, and E. Yoon, "A 0.5V 20fJ/Conversion-Step Rail-to-rail SAR ADC with Programmable Time-Delayed Control Units for Low-Power Biomedical Application," in Proc. IEEE ESSCIRC, pp. 339–342, Sep. 2011.
[15] S. M. Mayur, "Design of novel multiplexer based thermometer to binary code encoder for 4 bit flash ADC," in 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 1006-1009, May. 2017
[16] K. Uyttenhove, M.S.J. Steyaert, "A 1.8-V 6-bit 1.3-GHz flash ADC in 0.25-/spl mu/m CMOS," IEEE Journal of Solid-State Circuits, Vol. 38, no. 7, pp. 1115-1122, July. 2003
[17] M. K. Adimulam, K. K. Movva, M.B Srinivas, "A low power, programmable 12-bit two step SAR-flash ADC for signal processing applications," 2017 30th IEEE International System-on-Chip Conference (SOCC), pp. 45-50, Sept. 2017
[18] Z. Cao, S. Yan, "A 52mW 10b 210MS/s two-step ADC for digital-IF receivers in 0.13μm CMOS," IEEE Custom Integrated Circuits Conference, pp. 309-312, Sept. 2008
[19] Y. Z. Lin, S. J. Chang, Y. T. Liu, C. C. Liu, G. Y. Huang, " An Asynchronous Binary-Search ADC Architecture With a Reduced Comparator Count," IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 1829-1837, Jan. 2010
[20] Y. H. Chung, C. H. Tsai, H. C. Yeh, "A 5-b 1-GS/s 2.7-mW binary-search ADC in 90nm digital CMOS," IEEE International System-on-Chip Conference (SOCC), pp. 25-29, Sept. 2015
[21] R. Loehr, M. Kempf, F. Ohnhaeuser, J. Roeber, R. Weigel, A. Baenisch, "Imple-mentation of a high-speed flash ADC for high-performance pipeline ADCs in an 180nm CMOS process," International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), pp. 317-322, Nov. 2015
[22] T. Sun, N. Wang, Q. Zhang, D. Yuan, H. Wang, "A dynamic power programma-ble 10-bit 20-MS/s pipeline ADC for ISM band wireless communication," 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Tech-nology, pp. 1-3, Nov. 2012
[23] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, "A 10-bit 50-M SAR ADC With a Monotonic Capacitor Switching Procedure," IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010.
[24] C. Y. Liou and C. C. Hsieh, "A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-average switching DAC in 90nm CMOS," IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp.280-281, Feb. 2013
[25] S. A. Mahmoud, T. B. Nazzal, "Sample and hold circuits for low-frequency signals in analog-to-digital converter," International Conference on Information and Communication Technology Research (ICTRC), pp. 36-39, May. 2015
[26] Y. Song, Z. M. Xue, P. C. Yan, J. Y. Zhang and L. Geng, "A 0.6-V 8.3-ENOB asynchronous SAR ADC for biomedical applications," Journal of Semiconductors, Vol. 35, No. 8, Aug. 2014
[27] W. Y. Pang, C. S. Wang, Y. K. Chang, N. K. Chou, and C. K. Wang, “A 10-bit 500-KS/s low power SAR ADC with splitting capacitor for bio-medical applications,” in Proc. IEEE Asian Solid-State Circuits Conference, pp. 149–152, Nov. 2009.
[28] R. Aparicio, A. Hajimiri, “Capacity limits and matching properties of integrated capacitors,” IEEE JSSC, vol. 37, no. 3, pp. 384–393, Mar. 2002.
[29] P. J. A. Harpe, C. Zhou, Y. Bi, N. P. van der Meijs, X. Wang, K. Philips, G. Dolmans, and H. de Groot, “A 26 μW 8 bit 10 MS/s asynchronous SAR ADC for low energy radios,” IEEE JSSC, vol. 46, no. 7, pp. 1585–1595, Jul. 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code