Responsive image
博碩士論文 etd-0521104-165853 詳細資訊
Title page for etd-0521104-165853
論文名稱
Title
高屏地區臭氧事件日光化學模式解析及氣象條件之探討
Photochemical modeling and analysis of meteorological parameters during ozone episodes in the Kao-Ping Area , Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
149
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-12-29
繳交日期
Date of Submission
2004-05-21
關鍵字
Keywords
臭氧、光化學模式、臭氧生成敏感性分析、氣象條件
Meteorological conditions, Ozone, Photochemical modeling
統計
Statistics
本論文已被瀏覽 5682 次,被下載 24
The thesis/dissertation has been browsed 5682 times, has been downloaded 24 times.
中文摘要
本研究係運用三維之光化學模式解析2000-2001年間高高屏地區臭氧事件日(O3>120 ppbv)之時空分佈情形,藉由模式模擬與實測值之比對探討模式之適切性,並透過減量模擬之方式分析NOx(氮氧化物)及VOC(揮發性有機物)對臭氧濃度影響之敏感性,配合軌跡模式追蹤分析可能之污染傳送途徑,加上氣象資料的蒐集,進一步分析氣象因子與臭氧事件日之關係。

就氣象條件來說,並沒有辦法由單一個氣象因子來解釋造成高臭氧事件日的原因,但陽光充足、低風速及地面高壓的系統下,就如同高屏地區秋季及冬末春初的氣象條件,特別容易發生臭氧事件日。而高屏地區秋季與冬季不論是最大混合層高度或最小混合層高度均是四季中最小的,應該是造成高屏地區秋季與冬季發生臭氧事件日頻率較高的原因之一。

為使模擬之臭氧逐時濃度更接近實測值,在光化模式模擬方面,本研究以調整邊界條件的方式加以探討,結果顯示將側面邊界層(lateral boundary conditions, LBC)分成二大時段做假設,第一個時段(06:00-20:00)之臭氧濃度為30 ppbv,第二個時段(20:00-06:00)之臭氧濃度為0 ppbv,頂層邊界層(top concentrations, TOP)=70 ppbv之設定條件,對於高屏地區的模擬較接近實際情況。高雄市進行不同程度之NOx或VOC(不含生物源VOC)減量模擬,所得之最高臭氧濃度減量曲線圖顯示,高雄市臭氧減量效應屬於VOC控制;再由高雄市的逆軌跡趨勢可知,因為高雄地區冬季主要是吹西北風及北風可判斷高雄市之污染物除自身產生之外,境外移入主要來自以北的高雄縣、台南縣市及屏東地區之傳送。


秋季是屏東地區臭氧污染較嚴重之季節,而屏東市本身並無重大污染源存在,主要可能因為西北風為潮州秋天盛行風之一,而高雄市及高雄縣的仁大工業區正好位於潮州的西北方,可能因此受到影響導致臭氧濃度升高,屏東可以說是位於污染源的下風處,而由減量模擬的敏感性分析來看,屏東市臭氧生成亦屬於NOx-sensitive,此與Sillman (1999)的研究結果相符,在污染排放區通常是以VOC-sensitive 居多,相反的在污染排放區的下風處通常會是NOx-sensitive。
Abstract
A three-dimensional (3D) photochemical grid model, CAMx-2.0 (1998), was employed to analyze the spatial and temporal variations of ambient ozone during ozone episodes (concentration of ozone > 120 ppbv) in the Kao-Ping airshed in 2000-2001. The sensitivity analyses of ozone concentrations to the emission reductions in volatile organic compounds (VOC) and nitrogen oxides (NOx) were performed, and the relationships between ozone concentrations and meteorological parameters were examined. Furthermore, the transport routes were studies using inverse trajectory method.

Examinations of meteorological parameters and ozone trends reveal that warm temperature, sufficient sunlight, low wind, and high surface pressure are distinct parameters that tend to trigger ozone episodes in Kao-Ping area in autumn and winter seasons. Seasonal patterns of surface ozone include a summer minimum with two maxima in autumn and late winter to the middle of spring, consistent with low mixing heights in autumn and winter and large mixing height in summer.

Predicted values of hourly ozone concentration agree reasonably well with measured data. The assessment of the effect of the initial and boundary conditions on the performance of the model revealed that the model can be improved by specifying an ozone concentration of 70 ppbv rather than 30 ppbv on the top boundary of the model, while separately considering the daytime and nighttime ozone concentration on the lateral boundary conditions. The sensitivity analysis shows a VOC-sensitive regime in Kaohsiung City. In addition to the locally emitted pollutants, the inverse trajectory analysis shows that most pollutants in Kaohsiung City come from Kaohsiung County, followed by Tainan County and Ping-Tung County.

In autumn, the air quality is worst in Ping-Tung County and ozone episodes occur most frequently. Because the prevailing wind is north or north-east wind in autumn, most pollutants are transported from the upwind areas, including Kaohsiung City and Kaohsiung County. The sensitivity analysis shows a NOx-sensitive regime for Ping-Tung city, consistent with Sillman’s results (1999), indicating that freshly emitted pollutants are typically (but not always) characterized by VOC-sensitive chemistry and evolve towards NOx-sensitive chemistry as the air parcels move downwind.
目次 Table of Contents
目 錄

謝 誌 I
中文摘要 II
英文摘要 IV
目 錄 V
表目錄 VII
圖目錄 VIII

第一章 前言 1-1
1.1 研究緣起 1-1
1.2 研究目的.. 1-2
1.3 研究架構.. 1-3

第二章 背景資料分析及文獻回顧 2-1
2.1 高高屏地區PSI變化趨勢 2-1
2.2 各類空氣污染物濃度變化趨勢 2-4
2.3 高高屏地區臭氧濃度變化趨勢 2-22
2.4 臭氧形成理論 2-29
2.4.1 NOx與VOC之光化學反應 2-29
2.5 光化學模式回顧 2-31

第三章 模式理論基礎 3-1
3.1 CAMx模式 3-1
3.1.1 制御方程式 3-1
3.1.2 模式輸入資料 3-5
3.2 臭氧來源分配技術(OSAT)理論基礎 3-16
3.3 軌跡模式 3-18
3.4 邊界條件設定 3-19
3.5 垂直擴散係數(Kv)設定 3-23

第四章 臭氧事件日地面層臭氧濃度與氣象條件之關係 4-1
4.1 綜觀地面天氣 4-2
4.2 天氣條件 4-4
4.3 混合層高度 4-7




第五章 結果與討論---高雄市案例 5-1
5.1 秋季案例 5-1
5.2 冬季案例 5-9
5.3 臭氧前趨物(Ozone-NOx)敏感性分析 5-17
5.3.1 監測數據分析 5-17
5.3.2 減量模擬分析 5-21
5.3.3 高雄市臭氧來源貢獻量分析 5-23
5.3.4 軌跡模擬分析 5-24

第六章 結果與討論---屏東地區案例 6-1
6.1 秋季案例 6-1
6.2 冬季案例 6-8
6.3 臭氧前趨物(Ozone-NOx)敏感性分析 6-15
6.3.1 監測數據分析 6-15
6.3.2 減量模擬分析 6-18
6.3.3 屏東地區境外移入貢獻量分析 6-21
6.3.4 軌跡模擬分析 6-27

第七章 結論與建議 7-1

參考文獻 參-1

表 目 錄

表2.3-1 各縣市每日最大臭氧收集完成度表 2-22
表3.1-1 CAMx 所提供的化學機制 3-4
表3.1-2 CAMx輸入資料一覽表 3-5
表3.1-3 CAMx 土地使用分類 3-8
表3.1-4 中央氣象局所屬氣象站一覽表 3-10
表3.1-5 各縣市排放量 3-13
表3.1-6 模擬區域內環保署空氣品質監測站一覽表 3-14
表3.4-1 各物種邊界條件濃度值 3-20
表3.4-2 不同臭氧濃度邊界條件設定比較表 3-20
表3.5-1 垂直擴散係數(Kv)設定表 3-23
表3.5-2 不同Kv值模擬與實測值相關性分析 3-25
表4-1 各地發生高O3之氣象條件 4-1
表5.3-1 高雄市臭氧平均來源分配一覽表(冬季2001/1/18) 5-23
表5.3-2 高雄市臭氧平均來源分配一覽表(秋季2000/9/20) 5-23



圖 目 錄

圖1.3-1 研究架構流程圖 1-3
圖2.1-1 高屏地區空氣品質現況(84年~92年) 2-1
圖2.1-2 台灣地區歷年各空品區PSI 大於100日數百分比 2-2
圖2.1-3 屏東縣一般測站85年至89年PSI>100指標污染物
逐月變化圖 2-2
圖2.1-4 高雄市一般測站85年至89年PSI>100指標污染物
逐月變化圖(不含三民站) 2-3
圖2.1-5 高雄縣一般測站84至90年5月PSI>100指標污染物
逐月變化圖 2-3
圖2.2-1 高屏地區84~91年月平均PM10濃度變化 2-6
圖2.2-2 高屏地區84~91年月平均SO2濃度變化 2-6
圖2.2-3 高屏地區84~91年月平均NO2濃度變化 2-7
圖2.2-4 高屏地區84~91年月平均O3濃度變化 2-7
圖2.2-5 高屏地區84~91年月平均CO濃度變化 2-8
圖2.2-6 高雄市各測站PM10逐月濃度變化趨勢 2-9
圖2.2-7 高雄市各測站O3逐月濃度變化趨勢 2-10
圖2.2-8 高雄市各測站NO2逐月濃度變化趨勢 2-11
圖2.2-9 高雄縣各測站污染物濃度變化 2-12
圖2.2-10 大寮測站88~90年PM10、CO、O3、NO2月平均
變化趨勢 2-13
圖2.2-11 仁武測站88~90年PM10、CO、O3、NO2月平均
變化趨勢 2-14
圖2.2-12 林園測站88~90年PM10、CO、O3、NO2月平均
變化趨勢 2-15
圖2.2-13 美濃測站88~90年PM10、CO、O3、NO2月平均
變化趨勢 2-16
圖2.2-14 鳳山測站88~90年PM10、CO、O3、NO2月平均
變化趨勢 2-17
圖2.2-15 橋頭測站88~90年PM10、CO、O3、NO2月平均
變化趨勢 2-18
圖2.2-16 屏東縣各測站PM10逐月濃度變化趨勢 2-19
圖2.2-17 屏東縣各測站O3逐月濃度變化趨勢 2-20
圖2.2-18 屏東縣各測站NO2逐月濃度變化趨勢 2-21
圖2.3-1 高高屏空品測站分佈圖 2-23
圖2.3-2 盒型圖所代表的意義 2-24
圖2.3-3 1996~2001年每日最大臭氧濃度年趨勢變化圖 2-25
圖2.3-4 1994~2001年臭氧、NMHC及NOx濃度年趨勢變化 2-26
圖2.3-5 1996~2001年每日最大臭氧濃度月趨勢變化圖 2-28
圖3.1-1 高雄市模擬區域範圍示意圖 3-7
圖3.1-2 屏東地區模擬區域範圍示意圖 3-7
圖3.1-3 中央氣象局所屬氣象站相關位置分佈圖 3-9
圖3.4-1 不同臭氧濃度邊界條件之模擬值與實測值比較圖 3-19
圖3.5-1 Kv值隨時間與高度變化關係圖 3-23
圖3.5-2 2001年10月21-23日屏東、潮州及恆春三站不同Kv值
模擬比較圖 3-24
圖3.5-3 2000-2001每月臭氧事件日累積日數(a) Kaohsiung City,
(b) Kaohsiung County, (c) Pingtung County and (d) Kao-Ping
Airshed 3-26
圖4.1-1 2000年9月19日(秋季)地面天氣圖 4-2
圖4.1-2 2001年1月19日(冬季)地面天氣圖 4-3
圖4.2-1 2000年9月12日至9月25日臭氧與氣象因子變化圖 4-4
圖4.3-1 乾絕熱遞減率決定大氣混合層高度的方法 4-8
圖4.3-2 1999年至2001年高屏地區最大與最小混合層高度
盒型統計圖 4-9
圖5.1-1 2000.09.18.10:00 臭氧等濃度線(ppb)分佈圖 5-2
圖5.1-2 2000.09.18.14:00 臭氧等濃度線(ppb)分佈圖 5-2
圖5.1-3 2000.09.19.10:00 臭氧等濃度線(ppb)分佈圖 5-3
圖5.1-4 2000.09.19.14:00 臭氧等濃度線(ppb)分佈圖 5-3
圖5.1-5 2000.09.20.10:00 臭氧等濃度線(ppb)分佈圖 5-4
圖5.1-6 2000.09.20.14:00 臭氧等濃度線(ppb)分佈圖 5-4
圖5.1-7 2000年9月18、19、20日(秋季)楠梓站臭氧逐時
濃度圖 5-5
圖5.1-8 2000年9月18、19、20日(秋季)左營站臭氧逐時
濃度圖 5-6
圖5.1-9 2000年9月18、19、20日(秋季)前金站臭氧逐時
濃度圖 5-6
圖5.1-10 2000年9月18、19、20日(秋季)小港站臭氧逐時
濃度圖 5-7
圖5.1-11 2000年9月18、19、20日模擬值與實測值比較 5-7
圖5.2-1 2001.01.18.10:00 臭氧等濃度線(ppbv)分佈圖 5-10
圖5.2-2 2001.01.18.14:00 臭氧等濃度線(ppbv)分佈圖 5-10
圖5.2-3 2001.01.19.10:00 臭氧等濃度線(ppbv)分佈圖 5-11
圖5.2-4 2001.01.19.14:00 臭氧等濃度線(ppbv)分佈圖 5-11
圖5.2-5 2001.01.20.13:00 臭氧等濃度線(ppbv)分佈圖 5-12
圖5.2-6 2001.01.20.14:00 臭氧等濃度線(ppbv)分佈圖 5-12
圖5.2-7 2001年1月18、19、20日(冬季)楠梓站臭氧逐時
濃度圖 5-13
圖5.2-8 2001年1月18、19、20日(冬季)左營站臭氧逐時
濃度圖 5-14
圖5.2-9 2001年1月18、19、20日(冬季)前金站臭氧逐時
濃度圖 5-14
圖5.2-10 2001年1月18、19、20日(冬季)小港站臭氧逐時
濃度圖 5-15
圖5.2-11 2001年1月18、19、20日模擬值與實測值比較 5-16
圖5.3-1 秋季左營監測站臭氧、NMHC及NOx逐時濃度變化圖 5-18
圖5.3-2 冬季左營監測站臭氧、NMHC及NOx逐時濃度變化圖 5-19
圖5.3-3 高雄市2000年秋季案例之臭氧濃度減量曲線圖 5-21
圖5.3-4 高雄市2001年冬季案例之臭氧濃度減量曲線圖 5-22
圖5.3-5 高雄市2001年1月20日下午2:00之60小時逆軌跡圖 5-24
圖6.1-1 2001.10.21.10:00 臭氧等濃度線(ppbv)分佈圖 6-2
圖6.1-2 2001.10.21.14:00 臭氧等濃度線(ppbv)分佈圖 6-2
圖6.1-3 2001.10.22.10:00 臭氧等濃度線(ppbv)分佈圖 6-3
圖6.1-4 2001.10.22.14:00 臭氧等濃度線(ppbv)分佈圖 6-3
圖6.1-5 2001.10.23.10:00 臭氧等濃度線(ppbv)分佈圖 6-4
圖6.1-6 2001.10.23.14:00 臭氧等濃度線(ppbv)分佈圖 6-4
圖6.1-7 2001年10月21、22、23日(秋季)屏東站臭氧逐時
濃度圖 6-5
圖6.1-8 2001年10月21、22、23日(秋季)潮州站臭氧逐時
濃度圖 6-5
圖6.1-9 2001年10月21、22、23日(秋季)恆春站臭氧逐時
濃度圖 6-6
圖6.1-10 2001年10月21、22、23日模擬值與實測值比較 6-7
圖6.2-1 2001.02.21.10:00 臭氧等濃度線(ppbv)分佈圖 6-9
圖6.2-2 2001.02.21.14:00 臭氧等濃度線(ppbv)分佈圖 6-9
圖6.2-3 2001.02.22.10:00 臭氧等濃度線(ppbv)分佈圖 6-10
圖6.2-4 2001.02.22.14:00 臭氧等濃度線(ppbv)分佈圖 6-10
圖6.2-5 2001.02.23.10:00 臭氧等濃度線(ppb)分佈圖 6-11
圖6.2-6 2001.02.23.14:00 臭氧等濃度線(ppb)分佈圖 6-11
圖6.2-7 2001年2月21、22、23日(冬季)屏東站臭氧逐時
濃度圖 6-12
圖6.2-8 2001年2月21、22、23日(冬季)潮州站臭氧逐時
濃度圖 6-12
圖6.2-9 2001年2月21、22、23日(冬季)屏東站臭氧逐時
濃度圖 6-13
圖6.2-10 模擬值與實測值相關性比較圖 6-14
圖6.3-1 秋季屏東監測站臭氧、NMHC及NOx逐時濃度變化圖 6-16
圖6.3-2 冬季屏東監測站臭氧、NMHC及NOx逐時濃度變化圖 6-17
圖6.3-3 屏東市2001年秋季案例之臭氧濃度減量曲線圖 6-18
圖6.3-4 恆春站2001年秋季案例之臭氧濃度減量曲線圖 6-19
圖6.3-5 屏東市2001年冬季案例之臭氧濃度減量曲線圖 6-20
圖6.3-6 屏東地區春季(2001/5/13) OSAT結果 6-23
圖6.3-7 屏東地區夏季(2001/8/12) OSAT結果 6-24
圖6.3-8 屏東地區秋季(2001/10/22) OSAT結果 6-25
圖6.3-9 屏東地區冬季(2001/2/22) OSAT結果 6-26
圖6.3-10 屏東站、潮州站及恆春站2001年四季之逆軌跡圖 6-28
參考文獻 References
Ahrens, C.D., 1994. Meteorological Today, 5th ed.; West Publishing Company, St. Paul, Minnesota, USA, 60p.
AP-42, 1995. Compilation of Air Pollutant Emission Factors, AP-42, 5th ed., U.S. Environmental Protection Agency, Research Triangle Park, NC. (http://www.epa.gov/ttn/chief/ap42/).
Aysen, M., Mustafa O., Levent O., 2001,”Volatile Organic Compounds in the air of Izmir, Turkey”, Atmospheric Environment 35, pp:753-760.
Blanchard, C.L., 2000. Ozone process insights from field experiments – Part III: extent of reaction and ozone formation. Atmospheric Environment 34, 2035-2043.
Bower, J.S.; Stevenson, K.J.; Broughton, G.F.J.; Lampert, J.E.; Sweeney, B.P.; Wilken, 1994. J. Assessing Recent Surface Ozone Concentrations in the U.K.; Atmos. Environ., 28, 115-128.
Duffy, B. L., Nelson, P. F., Ye, Y., Weeks, I. A. and Galbally, I. E. 1997,” Emissons of Benzene, Toluene, Xylene and 1,3-Butadiene from a Representative of the Australian Car Fleet”, Atmospheric Environment, Vol. 32, No.14/15, pp 2693-2704.
Duffy, B. L., Nelson, P. F., Ye, Y., Weeks, I. A. 1999, “Speciated Hydrocarbon Profile and Calculated Reactivities of Exhaust and Evaporative Emissions from 82 in-use Light-duty Australian Vehicles”, Atmospheric Environment, 33, pp 291-307.
Calabrese, E.J., Kenyon, E.M., 1991. Air Toxics and Risk Assessment. Lewis Publishers, Chelsea, Michigan, U. S. A. p.662.
Carter, W.P., 1990. A Detailed Mechanism for the gas-Phase Atmospheric Reactions of Organic Compounds. Atmospheric Environment 24A, 481-518.
Carter, W.P.L., 1996. Condensed atmospheric photooxidation mechanisms for isoprene. Atmospheric Environment 30, 4275-4290.
Chameides, W.L., Lindsay, R.W., Richardson, J. and Kiang, C.S. 1998. The Role of Biogenetic Hydrocarbons in Urban Photochemical Smog. Atlanta as a Case Study, Science, 241,1473-1475.
Chang, M.E, Cardelino, C., 2000. Application of the urban airshed model to forecasting next-day peak ozone concentrations in Atlanta, Georgia. Journal of Air and Waste Management Association 50, 2010-2024.
Chatfield, R.; Harrison, H., 1977. Tropospheric Ozone, 2. Variations along a Meridional Band. Journal of Geophysical Research 82, 5969-5976.
Chen, K.S.; Ho, Y.T.; Lai, C.H.; Chou, Y.M., 2003. Photochemical Modeling and Analysis of Meteorological Parameters during Ozone Episodes in Kaohsiung, Taiwan; Atmospheric Environment, 37, 1811-1823.
Cheng, W.L., 2001. Synoptic weather patterns and their relationship to high ozone concentrations in the Taichung Basin. Atmospheric Environment 35, 4971-4994.
Christine, W., Strange, I.W., Mark, E., Greg, Y. and David, T.A., 2000. Biogenic Hydrocarbon Emission Estimates for North Central Texas. Atmospheric Environment 34, 3419-3435.
Hsieh, C.C., Chang, K.H., Kao, Y.S., 1999. Estimating the ozone formation potential of volatile aromatic compounds in vehicle tunnel. Chemosphere, 39, No. 9, 1433- 1444.
Coursimault, A., Donati, J., Viellard, H., 1995. La Pollution Atmospheriqe par Les Hidrocarbures Aromatiques Monocyclic a paris , Proceeding of the 10th world clean Air Congress, Emission & Controls, paper NO. 257, Helsinki, Finland.
Chan, C.C., Nien, C.K., Tsai, C.Y., and Her, G.R., 1995. Comparison of tail-pipe emissions from motorcycles and passenger cars. J. Air and Waste Mgmt. Assn., 45, 116-124.
Demore, W.B., Sander, S.P., Molina, M.J., Golder, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., Ravishankara, A.R., 1990. Chemical Kinetics and Photochemical Rates for Use in Stratospheric Modeling; Evaluation No. 9, NASA, JPL/CIT, JPL Publication 90-1; Pasadena, CA.
Derwent, R.G., Jenkin, M.E., 1991. Hydrocarbons and the Long-Range Transport of Ozone and PAN across Europe. Atmospheric Environment, 25A, 1661-1678.
Devore, J.L., 1991. Probability and Statistics for Engineers and the Sciences; 3rd ed.; Brooks/Cole Publishing Company, Pacific Grove, California. 283-320.
Doll, R., Peto, R., 1981. The Cases of Cancer: Quantitative Estimates of Avoidable Risks of Cancer in the United States today. Journal of National Cancer Institute.
Revitt, D.M., Muncaster G.M., and Hamilton, R.S., 1999. Trends in Hydrocarbon Fleet Emission at Four UK Highway Sites. The Science of Total Environment, 235, 91-99.
Ehhalt, D., Prather, M., Dentener, F., Derwent, R., Dlugokencky, E., Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., Matson, P., Midgley, P., Wang, M., Atmospheric Chemistry and Greenhouse Gases. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., and Johnson, C.A., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2001.
ENVIRON, 1998. User’s Guide for Comprehensive Air Quality Model with Extensions (CAMx), Version 2.00, ENVIRON International Corporation, Novato, California.
EPA, 1990. User’s Guide for the Urban Airshed Model-Volume I; User’s Manual for UAM (CB-IV). EPA-450/4-90-007A, U.S. Environmental Protection Agency, Research Triangle Park, NC.
EPA., 1998. CMB8 Application and Validation Protocol for PM2.5 and VOC; Office of Air Quality Planning and Standards, United States Environmental Protection Agency, Research Triangle Park, NC.
Evans, G., Finkelstein, P., Martin, B., Possiel, N., Graves, M., 1983. Ozone Measurements from a Network of Remote Sites. J. Air Pollut. Contr. Assoc., 33, 291-296.
Fabian, P., Pruchniewicz, P.G., 1977. Meridional Distribution of Ozone in the Troposphere and Its Seasonal Variations; J. Geophys. Res., 82, 2063-2073.
Fuentes, J.D., Dann, T.F., 1994. Ground-Level Ozone in Eastern Canada: Seasonal Variations, Trends, and Occurrences of High Concentrations. J. Air and Waste Manage. Assoc., 44, 1019-1026.
Georg K., Monika B., and Hans P., 1995, Relative Contribution of Oxygenated Hydrocarbons to the Total Biogenic VOC Emission of Selected Mid-European Agricultural and Natural Plant Species. Atmospheric Environment, Vol. 29, No.8, 861-874.
Gery, M.W., Whitten, G.Z., Killus, J.P., Dodge, M.C., 1989. A photochemical kinetics mechanism for urban and regional scale computer modeling. Journal of Geophysical Research 94, 12925-12956.
Ghim, Y.S., Oh, H.S., Chang, Y.S., 2001. Meteorological Effects on the Evolution of High Ozone Episodes in the Greater Seoul Area; J. Air and Waste Mange. Assoc., 51, 185-202.
Graedel, T.E., Farrow, L.A. and Killus, J.P.,1998. Development an Testing of CBM-IV for Urban and Regional Modeling. Systems Applications Inc., San Rafael, California (SYSAPP-88/002).
Drewitt, G.B., K. Curren, D.G., Steyn, T.J., Gillespie and Niki, H., 1998. Measurement of Biogenic Hydrocarbon Emission from Vegetation in the Lower Fraser Valley, British Columbia, Atmospheric Environment, Vol. 32, No.20, 3457-3466.
Fujita, E.M., and Lu, Z., 1998. Analysis of Data from the 1995 NARSTO-Northeast Study. Volume III: Chemical mass balance receptor modeling. Draft final report. Prepared for Coordinating Research Council. Atlanta, GA, Desert Research Institute, Reno, NV.
Hanna, S.R., Chang, J.C., 1995. Relations between Meteorology and Ozone in the Lake Michigan Region. J. Appl. Meteorol., 34, 670-678.
Hartmann, R., Voght, U., Baumbach, G., Seyfioglu, R., Muezzinoglu, A., 1997. Ressults of emission and Ambient air measurements of VOC in Izmir. Environmental Reasearch Forum 7-9, 107-112.
Hecht, T. A., Seinfeld J. H., and Dodee M. C., 1974. Further Development of a Generalized Kinetic Mechanism for Photochemical Smog. ES&T, Vol. 8, NO.4, p327.
Heinsohn, J.R., Kabel, R.L., 1999. Sources and Control of Air Pollution; Prentice Hall:New Jersey.
Hidy, G.M., 2000. Ozone process insights from field experiments Part I: Overview. Atmospheric Environment 34, 2001-2022.
Hogg, R.V., Ledolter, J., 1992. Applied Statistics for Engineers and Physical Scientists; 2nd ed. Macmillan Publishing Company, New York, NY, 222-231.
Hubbard, M.C., Cobourn, W.G., 1998. Development of a regression model to forecast ground-level ozone concentration in Louisville, KY. Atmospheric Environment 32, 2637-2647.
Hubbard, M.C., Cobourn, W.G., 1999. An enhanced ozone forecasting model using air mass trajectory analysis. Atmospheric Environment 33, 4663-4674.
Kohno, H., Tamura, M., Honda, S., Shibuya, A., Yamamoto, T., A. Berezin, A., and Chang, J.S., 1997. Generation of Aerosol Particles in the Process of Xylene and TCE Decomposition from Air Stream by A Ferroelectric Packed-Bed Barrier Discharge Reactor, J. Aerosol Sci., Vol. 28, Suppl. 1, S413-S414.
IMSL, 1999. IMSL Math/Library, Volume 1, Visual Numerics, Inc., Taipei, Taiwan.
IPCC, Climate Change 2001: The Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., and Johnson, C.A., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2001.
Hung, I.F. et al., 1996. Organic Aerosols in a Semiconductor Manufacturing Facility. Jounal of Aerosol Science, Vol. 27, Issue:4, p 657.
Anilovich, I., and Hakkert, A.S., 1996. Survey of Vehicle Emissions in Israel Related to Vehicle Age and Periodic Inspection. The Science of Total Environment 189/190, 197-203.
Toll, I., and Baldasano, J.M., 2000. Modelling of photochemical air pollution in the Barcelona area with highly disaggregated anthropogenic and biogenic emission. Atmospheric Environment, 34, 3069-3084.
Suschka, J., Mrowiec B. and Kuszmider, G., 1996. Volatile Organic Compounds (VOC) at Some Sewage Treatment Plants in Poland. Wat. Sci. Tech., Vol. 33, No. 12, 273-276.
Roumegoux, J.P., 1995. Calcul Des Emission Unitaires De Polluants Des Vehicules Utilitaires. The Science of Total Environment, 169, 05-211.
Wang, J.L., Ding, W.H. and Chen, T.Y. 2000. Source Determination of Light Non-methane Hydrocarbons by Simultaneous Multi-site Sampling in a Metropolitan Area. Chemosphere-Global Change Science, 2, 11-22.
Jo, W.K., Nam, C.W., 1999. Characteristics of Urban Ground-Level Ozone in Korea; J. Air and Waste Manage. Assoc., 49, 1425-1433.
Tsai,J.H., Liang, C.P., Lee, D.Z., Sheu, Y.C., and Lin, S.J., 1997. Characteristics of airborne volatile aromatics in Tainan, Taiwan, ASCE, Journal of Environment Engineering 123, 406-409.
Greenberg, J.P., Guenther, A., Zimmerman, P., Baugh, W., Geron, C., Davis, K., Helmig, D., and Klinger, L.F., 1999. Tethered Balloon Measurements of Biogenic VOCs in the Atmospheric Boundary Layer. Atmospheric Environment 33, 855-867.
Penuelas, J., Llusia, J., and Gimeno, B.S., 1999. Effect of Ozone Concentration on Biogenic Volatile Organic Compounds Emission in the Mediterranean Region. Environmental Pollution, 105, 17-23.
Kao, A.S., 1994, Formation and Removal Reactions of Hazardous Air Pollutions. J. Air. & Waste Manage. Assoc. 44, 683-696.
Kim, Y.P., Kim, J.Y., Ghim, Y.S., Na, K.,1997. Ambient Cocentrations of Volatile Organic Compounds in Seoul. Environmental Research Forum 7-8, 265-269.
Kitada, T., Carmichael, G.R., and Peters, L.K., 1984. Numerical simulation of the transport of chemically reactive species under land and sea-Breeze Circulations. J. Climate Appl. Meteor., 23, 1153-1172.
Kleinman, L.I., 2000. Ozone process insights from field experiments – Part II: Observation-based analysis for ozone production. Atmospheric Environment 34, 2023-2033.
Lahre, T.,1988. Cancer Risks from Air Toxic in Urban Areas. 81st annual Metting of APCA, Dallas, Texas, June, 19-24.
Levaggi, D.A., Sis, W., 1991. Gaseous Toxics Monitoring in the San Francisco Bay Area: a Review and Assessment of Four Years of Data. 84th Annual Meeting of A&WMA, Vancouver, B. C., Columbia.
Logan, J.A., 1985. Tropospheric Ozone: Seasonal Behavior, Trends, and Anthropogenic Influence; J. Geophys. Res., 90, 10,463-10,482.
Ludwig, F.L.; Jiang, J.Y.; Chen, J., 1995. Classification of Ozone and Weather Patterns Associated with High Ozone Concentrations in the San Francisco and Monterey Bay Areas; Atmos. Environ., 29, 2915-2928.
Diaz, L., Schifter, I., Salinas, E. L., Gamas, E., Rodriguez, R., and Avalos, S., 2000. Optimizing Automotive LPG Blend for Mexico City. Fuel, 79, 79-88.
Kalivoda, M.T., and Feller,R., 1995. ATEMIS A Tool for Calculating Air Traffic Exhaust Emission and Its Application. The Science of Total Environment, 169, 241-247.
Milford, J.B., Russell, A.G., McRae, G.J., 1989. A new approach to photochemical pollution control: Implications of spatial patterns in pollutant responses to reductions in nitrogen oxides and reactive organic gas emissions. Environmental Science and Technology 23, 1290-1301.
Milford, J.B., Gao, D., Sillman, S., Blossey, P., Russell, A.G., 1994. Total reactive nitrogen (NOy) as an indicator for the sensitivity of ozone to reductions in hydrocarbons and NOx emissions. Journal of Geophysical Research 99, 3533-3542.
MOBILE5, 1994. User’s Guide to MOBILE5. EPA-AA-TEB-94-01, U.S. Environmental Protection Agency, Michigan.
Moschonas, N. and Glavas, S.,1996. C3-C10 hydrocarbons in the atmosphere of Athens, Greece. Atmos. Environ. 30, 2769-2772.
National Research Council (NRC). , 1991. Rethinking the Ozone Problem in Urban and Regional Air Pollution; National Academy Press: Washington, DC.
Nelson, P.F., and Qulgley, S.M., 1982. Non-methane Hydrocarbon in the Atmosphere of Sydney, Australia. Environ. Sci. Technol., 16, 650-655.
NRC (National Research Council), 1991. Rethinking the ozone problem in urban and regional air pollution. National Academy Press, Washington, D.C.
Pen-Chi, C., Yu-Chun C., Chu-Fang, W.,1995,” Air emissions from vehicles in the Hsin-Hai Tunnel at Taipei City “, Proceedings of the 10 th world Clean Air Congress, Emission & Controls, Paper No. 004, Helsinki, Finland.
Pratt, G.C., Hendrickson, R.C., Chevone, B.I., Christopherson, D.A., O’Brien, M.V., Krupa, S.V., 1983. Ozone and Oxides of Nitrogen in the Rural Upper Midwestern U.S.A.; Atmos. Environ., 17, 2013-2023.
Rao, S.T., Zalewsky, E., Zurbenko, I.G., 1995. Determining Temporal and Spatial Variations in Ozone Air Quality; J. Air and Waste Manage. Assoc. 45, 57-61.
Roselle, S.J., Schere, K., 1995. Modeled response of photochemical oxidants to systematic reductions in anthropogenic volatile organic compounds and NOx emissions. Journal of Geophysical Research 100, 22,929-22,941.
Russell, A. et al., 1995. Urban Ozone Control and Atomospheric Reactivity of Organic Gases. Science, 269, 491-495.
Russell, A., Dennis, R., 2000. NARSTO critical review of photochemical models and modeling. Atmospheric Environment 34, 2283-2324.
Ryan, W.F., Dickerson, R., Doddridge, B., Morales, R., Piety, C., 1998. Transport and meteorological regimes during high ozone episodes in the mid-Atlantic region: observations and regional modeling. Presented at the tenth Joint Conference on the Applications of Air Pollution Meteorology. American Meteorological Society and Air and Waste Management Association, Phoenix, Arizona.
Sather, M.E., Kemp, M.G., 1998. Initial Detailed Trends and Ozone Episode Analyses ofPhotochemical Assessment Monitoring Stations (PAMS) Data from Baton Rouge, Louisana. Presented at the AWMA’s International Symposium on the Measurement of Toxic and Related Air Pollutants, September 1-3, Cary, NC, USA.
Seinfeld, J.H., 1986. Atmospheric Chemistry and Physics of Air Pollution. Wiley, New York, USA.
Seinfeld, J.H., 1988. Ozone Air Quality Models:A Critical Review, Journal of Air Pollution Control Association 38, 616-641.
Seinfeld, J.H., 1989. Urban air pollution: state of the science. Science 243, 745-752.
Seinfeld, J.H.; Pandis, S.N., 1998. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wily & Sons, Inc.: New York, NY.
Sexton, K., Westberg, H., 1983. Photochemical ozone formation from petroleum refinery emissions. Atmospheric Environment 17, 467-475.
Sillman, S., Logan, J.A. and Wofsy, S.C., 1990. The Sensitivity of Ozone to Nitrogen Oxides and Hydrocarbons in Reginoal Ozone Episodes. J. Geophys. Res., 95, 1837-1851.
Sillman, S., 1995. The use of NOy, H2O2 and HNO3 as indicators for ozone-NOx-hydrocarbons sensitivity in urban locations. Journal of Geophysical Research 100, 14175-14188.
Sillman, S., 1999. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment 33, 1821-1845.
Smith, B.E.; Adamski, W.J., 1998. Eight-Hour Ozone Trends at Sites in Lake Michigan Ozone Nonattainment Areas; J. Air and Waste Manage. Assoc., 48, 1204-1206.
Solomon, P. A.,1995. Reginoal photochemical Measurement and Modeling Studies: a Summary of the A & WMA international specialty conference. J. Air & Waste Manage Assoc. 45, 255-286.
SPECIATE-3.1, 1999. U.S. Environmental Protection Agency, released in October 1999 (http://www.epa.gov/un/chief/software/speciate/index.html).
System Application International, 1996, User’s Guid to the Variable-Grid Urban Airshed Model (UAM-V), SYSAPP-96-95/27r, San Rafael, CA.
John, St.J.C., Chameides, W.L., 1997.Climatology of Ozone Exceedences in the Atlanta Metropolitan Area: 1-Hour vs 8-Hour Standard and the Role of Plume Recirculation Air Pollution Episodes; Environ. Sci. Technol., 31, 2797-2801.
Poulopoulos, S., and Philippopoulos, C., 2000. Influence of MTBE Addition into Gasoline onAutomotive Exhaust Emission. Atmospheric Environment 34, 4781-4786.
Fukunaga, T., Yamamoto, H., Tanegashima, A., Yamamoto Y., and Nishi, K., 1996. Liquefied Petroleum Gas (LPG) Poisoning: Report of Two Cases and Review of the Literature. Forensic Science International, 82, 193-200.
TEDS-4.2, 1997. Taiwan Emission Data System version 4.2. Environmental Protection Administration, Taipei, Taiwan, ROC.
The Management of Air Quality in Kaohsiung City; First Mid-Term Report by Sinotech Eng. Consultants Ltd.; Department of Environmental Protection, Kaohsiung Municipal Government: Kaohsiung, Taiwan. December 2002.
Thijsse, T.R., Roeland F. van Oss and Lenschow, P., 1999. Determination of source contributions to ambient volatile orange compound concentrations in Berlin. J. Air & Waste Mange. Assoc. 49, 1394-1404.
Trainer, M., Parrish, D.D., Goldan, P.D., Roberts, J., Fehsenfeld, F.C., 2000. Review of observation-based analysis of the regional factors influencing ozone concentrations. Atmospheric Environment 34, 2045-2061.
Tsai, Y.A., 2002. Investigations of the relationships between the meteorological factors and ozone episodes in the Kao-Ping area. M.S. thesis, Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC.
Viney, P.A.; Arya, S.P.; Li, Y.; Murray, G.C.; Manuszak, T.L., 2000. Climatology of Diurnal Trends and Vertical Distribution of Ozone in the Atmosphere Boundary Layer in Urban North Carolina; J. Air and Waste Manage. Assoc., 50, 54-64.
Wanta, R.C.; Lowry, W., 1976. The Meteorological Setting for Disposal of Air Pollutants; in Air Pollution, 3rd ed., Vol. I: Air pollutants, Their Transformation and Transport, edited by A.C. Stern, Academic Press: New York.
Whitten, G. Z., Hogo, G. and Killers J. P., 1980, “The Carbon-Bond Mechanism: a condensed mechanism for photochemical smog, ES&T, Vol. 4, pp. 690-700.
Willian P.L. Carter,1994, “Development of Ozone Reacitivity Scales for Volatile Oranic Compounds”, J. Air & Waste Manage. Assoc. 44:881-899.
Willmott, C.J.; Some Comments on the Evaluation of Model Performance; Bull. Amer. Meteorol. Soc. 1982, 63, 1309-1313.
Willmott, C.J., Ackleson, S.G., Davis, R.E., Feddema, J.J., Klink, K.M., Legates, D.R., O’Donnell, J., Rowe, C.M., 1985. Statistics for the evaluation and comparisons of models. Journal of Geophysical Research 90, 8995-9005.
World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 1998 Executive Summary, WMO Global Ozone Research and Monitoring Project, Report No. 44, Geneva, Switzerland, released in April 1999 (http://al.noaa.gov).
Yamada, T., and Mellor, G. L., 1975. A Simulation of the Wangara Atmospheric Boundary Layer Data. J. Atmos. Sci., 32, 2309-2329.
Yang, J.; Miller, D.R., 2002. Trends and Variability of Ground-Level O3 in Connecticut over the Period 1981-1987. J. Air and Waste Manage. Assoc., 52, 1354-1361.
Deng Y., and Zuo, Y., 1999, Factors Affecting the Levels of Hydrogen Peroxide in Rainwater. Atmospheric Environment 33, 1469-1478.
Kuang, Y.C., and Chang, F.T., 2000. The Application and Sensitivity Analysis of 3D AQM over Taiwan Island. Kaohsiung 2000 International Conference on Air Quality Management. 27-38.
中鼎工程公司,「研訂高雄縣空氣品質管理發展計畫」,高雄縣環境保護局,中華民國89年6月。
中鼎工程公司,「空氣品質中長期改善策略規劃研究」,高雄市環境保護局,中華民國87年6月。
中興工程顧問股份有限公司,” 90年度高雄市空氣品質管理計畫第一次期中報告”,高雄市政府環境保護局,民國90年。
中興工程顧問公司,「高雄市空氣品質管理計畫」,高雄市政府環境保護局,中華民國89年3月。
白玨玲「中部地區臭氧濃度特徵與天氣型態相關探討」,東海大學環境科學系,碩士論文,1998。
台加工程公司與工研院公安衛中心,「高屏及雲嘉南地區污染減量改善及總量管制執行專案計畫」,行政院環境保護署,中華民國89年7月。
何俊和,「台灣北部高臭氧來源分析初探」,淡江大學水資源環境工程學系,碩士論文,中華民國88年。
何俊杰,「石化工業局周界中揮性有機物特性分析」,第16屆空氣污染控制技術研討會,國立成功大學環境工程系,中華民國88年11月26、27日。
李丁讚,1995,「大氣中之苯環揮發性有機物排放來源特性與影響研究」,國立成功大學環境工程研究所,碩士論文。
林志仁、吳明泰、蔡俊鴻、張能復,「高屏地區大氣揮發性有機物成分特徵與臭氧生成潛勢關連性研究」,第15屆空氣污染控制技術研討會,國立中央大學環境工程系,中華民國87年11月21、22日。
林清和等,「高雄縣臭氧管制策略研究計畫」,高雄縣環境保護局,中華民國88年12月。
周明顯、樓基中、袁中新、賴嘉祥、何宜達、蔡詠安、吳立言, 2001, "高雄市臭氧生成前驅物控制及減量策略研擬",高雄市政府環境保護局研究報告。
翁閎政,1998,「機車排氣之揮發性有機物特徵及光化反應性研究」,國立成功大學環境工程研究所,碩士論文。
陳康興、何宜達、賴嘉祥、蔡詠安, 2001, "光化學臭氧模式(CAMx)之發展與應用, " 2001年空氣品質模式技術研討會論文集, 2001年11月23-24日, 高雄市。
陳康興、周明顯、何宜達、賴嘉祥、蔡詠安, 2001, "高雄地區臭氧事件日之模式模擬及分析, " 第十八屆空氣污染防制技術研討會論文集, p. 2-36, 民國90年12月14-15日, 國立高雄第一科技大學。
陳康興、何宜達、蔡詠安、賴嘉祥, 2002, "氣象條件與臭氧事件日相關性之探討, " 第十九屆空氣污染防制技術研討會論文集, 民國91年11月29-30日, 國立台灣大學。
陳康興、謝連德、賴嘉祥、何宜達、彭彥彬, 2003, "屏東地區揮發性有機物空氣污染調查檢測計畫", 屏東縣環保局研究報告。
陳瑞仁、陳康興、袁中新、林傑, 2002, "屏東地區空氣品質劣化原因探究及改善策略研擬", 屏東縣環保局研究報告。
康城工程顧問公司,「88年下半年及89年度固定污染源許可及稽查管制計畫」,高雄市環境保護局,中華民國89年12月。
張艮輝,” 南高屏地區空氣污染總量管制規劃-台灣空氣品質模式(TAQM)空氣污染事件之應用與特徵解析”,行政院環保署,民國88年。
張育銜、望熙榮,「以都市氣源區模式(UAM)探討NOx對臭氧濃度之影響」,第15屆空氣污染控制技術研討會,國立中央大學環境工程系,中華民國87年11月21、22日。
張能復、曹宏志,「以光化學反應性軌跡模式探討MIR指標應用於台灣臭氧前驅物減量效果」,第15屆空氣污染控制技術研討會,國立中央大學環境工程系,中華民國87年11月21、22日。
張能復、余泰毅、梁佳修,「以主成分分析法分類南高屏地區臭氧污染事件日」,第15屆空氣污染控制技術研討會,國立中央大學環境工程系,中華民國87年11月21、22日。
謝祝欽、王麗婷、洪世皇、黃仍鈺,「南台灣地區國有林地異戊二烯與單帖類排放量推估「與最大臭氧生成潛勢之研究」,第15屆空氣污染控制技術研討會,國立中央大學環境工程系,中華民國87年11月21、22日。
曠永銓、陳怡伶,「Ozone Simulation over Southern Taiwan Area」,第15屆空氣污染控制技術研討會,國立中央大學環境工程系,中華民國87年11月21、22日。
鄭景智、蔡俊鴻、李奇峰與鍾敏慧,「石化製程設備元件揮發性有機物逸散排放推估」,第15屆空氣污染控制技術研討會,國立中央大學環境工程系,中華民國87年11月21、22日。
羅卓卿,「油品儲運站鄰近空氣中揮發性有機污染物之特性研究」,碩士論文,國立中山大學環境工程研究所,中華民國90年7月。
樓基中,仲崇毅,「高雄市隧道及地下道空氣污染物擴散模擬及改善策略研擬」,高雄市環境保護局,民國89年11月。
蔡俊鴻,翁閔政,許逸群”汽機車污染排放係數推估”,台灣省移動污染源排氣檢測與控制研討會(1998)。
楊宏宇,「台灣地區空氣品質與天氣型態分類相關性研究」,文化大學地學研究所博士論文,1993。
慧群環境科技公司,「八十八年下半年及八十九年度石化業揮發性有機物稽查管制計畫」,高雄市環保局,民國89年10月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.237.31.131
論文開放下載的時間是 校外不公開

Your IP address is 3.237.31.131
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code