Responsive image
博碩士論文 etd-0521113-113657 詳細資訊
Title page for etd-0521113-113657
論文名稱
Title
COX-1, CYP2C9, CYP2C19 和 UGT1A6 基因易感性在非固醇類抗發炎藥物相關消化性潰瘍之關係
Genetic susceptibilities for COX-1, CYP2C9, CYP2C19 and UGT1A6 on NSAIDs-related peptic ulcer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
163
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-05-27
繳交日期
Date of Submission
2013-07-16
關鍵字
Keywords
基因多型性、消化性潰瘍、COX-1、UGT1A6、阿斯匹靈、CYP2C19、CYP2C9
COX-1, polymorphism, CYP2C9, UGT1A6, CYP2C19, peptic ulcer, aspirin
統計
Statistics
本論文已被瀏覽 5698 次,被下載 0
The thesis/dissertation has been browsed 5698 times, has been downloaded 0 times.
中文摘要
消化性潰瘍的成因包括胃幽門螺旋桿菌的感染以及長期使用阿斯匹靈 (aspirin) 和非固醇類抗發炎藥物 (NSAIDs)。阿斯匹靈因抑制環氧化酶 (COX) 的作用,可造成胃部黏液 (mucus) 及重碳酸鹽 (bicarbonate, HCO3-) 分泌量減少,因而降低黏膜對胃酸刺激的保護。有一些研究指出基因多型性可能是阿斯匹靈造成胃部傷害的危險因子之一。環氧化酶基因 COX-1 啟動子上 T-1676C 位置功能性的變異可能是非固醇類抗發炎藥物造成胃與十二指腸傷害的危險因子之一。細胞色素 CYP2C9 與尿核苷酸葡萄糖醛酸轉移酶 UGT1A6 為阿斯匹靈的主要代謝酵素,有造成氨基酸改變而降低酵素活性的基因多型性。而與非固醇類抗發炎藥物的代謝有關的細胞色素 CYP2C19,也有降低酵素活性的基因多型性 (CYP2C19*2 and CYP2C19*3)。因此本研究針對 COX-1、CYP2C9、UGT1A6 和 CYP2C19等基因之多型性加以探討,以期瞭解它們在阿斯匹靈使用者與其所產生的消化性潰瘍之相關性。本研究以阿斯匹靈使用者產生的輕微胃炎患者為控制組,消化性潰瘍患者為實驗組做比較,分析上述基因多型性與潰瘍的相關性。研究結果顯示各個基因多型性與消化性潰瘍並無明顯的統計差異;但是 COX-1 (-1676)、CYP2C19*2、UGT1A6 (19、105、315、552) 的基因變異,對於罹患消化性潰瘍的危險對比值有增加的趨勢。我們亦檢測胃中 COX-1 蛋白的表現;發現大部份潰瘍病患 COX-1 蛋白的表現量屬於低度的表現量。此外我們也發現 COX-1 低量蛋白的表現與位置的變異有相關性。除此之外我們也偵測了胃部黏膜損傷的標的蛋白胃泌素- 17 在血清中的分泌量;但胃炎與潰瘍兩組血清中胃泌素- 17 之量並無明顯的統計差異。目前的研究結果顯示 COX-1 T-1676C 位置的變異可能是引發阿斯匹靈腸胃潰瘍之相關風險因子。
Abstract
Most cases of peptic ulcer disease result from gastric infection with Helicobacter pylori or from chronic use of aspirin or nonsteroidal antiinflammatory drugs (NSAIDs). Aspirin are able to reduce mucus and bicarbonate secretion through inhibiting the function of COX proteins, therefore decreasing the mucosal protection against gastric acid. Several studies indicated that genetic polymorphisms associated with the risks of aspirin-induced ulcer or its complications. Functional polymorphisms (T-1676C) in the Cyclooxygenases-1 (COX-1) gene promoter have been reported as one of risk factors of NSAIDs-related gastroduodenal injury. The major enzymes involved in the metabolism of aspirin, cytochrome p450 2C9 (CYP2C9) and UDP glucuronosyltransferase (UGT1A6), are known to be polymorphic. It has been known that variant alleles for UGT1A6 and CYP2C9 result in a change in amino acids and reduced enzyme activity. Moreover, several NSAIDs are metabolized by the cytochrome P450 2C19 (CYP2C19). Two major polymorphisms of CYP2C19, CYP2C19*2 and CYP2C19*3, are known to decrease enzyme activity. The gene polymorphisms of COX-1, CYP2C9, CYP2C19 and UGT1A6 on the risks of peptic ulcer development in aspirin users were evaluated in this study. None statistical differences were found in SNPs of COX-1, CYP2C9, CYP2C19 and UGT1A6, and in the levels of gastrin-17 in serum between patients with ulcer and gastritis. However, the risks of ulcer were increased in patients with SNPs of COX-1, CYP2C19*2 and UGT1A6 (19, 105, 315 and 552). The lower expressions of COX-1 were found to be associated with SNP of COX-1 (-1676) in patients with peptic ulcer. It is therefore concluded that SNP of COX-1 could be a risk factor of aspirin-related peptic ulcer.
目次 Table of Contents
論文審定書…………………………………………………………………… i
中文摘要……………………………………………………………………… ii
英文摘要……………………………………………………………………… iii
縮寫表………………………………………………………………………… ix
壹 緒論……………………………………………………………………… 1
1 消化性潰瘍 (Peptic ulcer)……………………………………………….1
1-1 消化性潰瘍之成因……………………………………………………… 1
1-2 消化性潰瘍之病程與症狀……………………………………………… 7
1-3 消化性潰瘍之評估及治療……………………………………………… 8
2 非固醇類抗發炎藥物 (Non-steroidal anti-inflammatory drugs, NSAIDs) 9
2-1 NSAIDs 的使用與胃黏膜防禦機制的損害…………..…..……………. 9
2-2 阿斯匹靈 (aspirin) 之作用機轉………………………………………... 11
3 阿斯匹靈相關的基因多型性 (polymophism)…………………………...15
3-1 Cyclooxygenase-1 (COX-1)………………………………………………15
3-2 NSAIDs 的代謝酵素……………………………………………………. 17
3-2-1 Cytochrome P450 2C9 (CYP2C9)………………………………..…18
3-2-2 UDP-Glucuronosyltransferase 1A6 (UGT1A6)…………………..…19
3-2-3 Cytochrome P450 2C19 (CYP2C19)……………………………..…23
貳 研究目的…………………………………………………………………. 26
參 材料與方法………………………………………………………………. 27
1 實驗樣本…………….………………………………..…………….…….27
1-1 病患檢體來源……………………………………………………….…… 27
2 PCR 反應………………………….…………………………………..….28
2-1 實驗材料…….…………………………………….…….…………..……28
2-2 實驗方法…….…………………………………….…….………..………29
2-2-1 試劑配製……………………………………………………….…… 29
2-2-2 操作步驟…………………………………………………….……… 29
2-2-3 序列比對分析……………………………………………….……… 36
3 組織免疫染色……………………….…………………………………… 48
3-1 實驗材料…….…………………………………….…….…………..……48
3-2 實驗方法…….…………………………………….…….………..………48
3-2-1 試劑配製…………………………………………………….………48
3-2-2 操作步驟……………………………………………………….……49
3-3 染色分級…………………………………………………….…………… 49
4 Gastrin-17 ELISA測定…………….……………………………………. 52
4-1 實驗材料…….…………………………………….…….…..……………52
4-2 實驗方法…….…………………………………….…….…….…….……52
4-2-1 試劑配製……………………………………………………….……52
4-2-2 操作步驟……………………………………………………….……52
5 統計分析……………………….…………………………….……..…….54
肆 結果……………………….…………………………….……..…….……55
1 阿斯匹靈相關的消化性潰瘍與胃炎控制組基礎資料之比較及其COX-1, CYP2C9, CYP2C19 和 UGT1A6基因多型性相關性分析…………….55
1-1 消化性潰瘍與胃炎控制組之基礎資料的比較…………………….…… 55
1-2 整體基因之多型性相關性分布…………………………………….…… 56
2 阿斯匹靈相關性潰瘍的與COX-1, CYP2C9, CYP2C19 和UGT1A6基因多型性相關性分析…………………………………………………….… 59
2-1 胃幽門螺旋桿菌感染對阿斯匹靈相關消化性潰瘍的關係………….… 59
2-2 未感染胃幽門螺旋桿菌的阿斯匹靈相關消化性潰瘍和 COX-1, CYP2C9, CYP2C19 和 UGT1A6 基因多型性之相關性…………………………60
2-2-1 COX-1 基因多型性相關性…………………………………………60
2-2-2 CYP2C9 基因多型性相關性分析………………………….………60
2-2-3 CYP2C19 基因多型性相關性分析………………………...………60
2-2-4 UGT1A6 基因多型性相關性分析…………………………………62
3 COX-1 在胃組織中的表現和阿斯匹靈相關消化性潰瘍之關係及其和COX-1基因多型性相關性分析…………………………………………. 65
4 胃泌素- 17分泌量和阿斯匹靈相關消化性潰瘍之關係及其和 COX-1, CYP2C9, CYP2C19 和UGT1A6基因多型性相關性分析……………..68
4-1 胃泌素- 17 分泌量和幽門螺旋桿菌感染之相關性……………..………68
4-2 胃泌素- 17 之分泌量和 COX-1, CYP2C9, CYP2C19 和 UGT1A6 基因多型性之相關性……………………………………………….…………69
4-2-1 COX-1 基因多型性相關性分析……………………………………69
4-2-2 CYP2C9 基因多型性相關性分析…………………….……………70
4-2-3 CYP2C19 基因多型性相關性分析……………………………...…70
4-2-4 UGT1A6 基因多型性相關性分析………………………….………76
伍 討論……………………………………………………….……………… 81
陸 參考文獻………………………………………………………….……… 94
附錄一 胃炎及正常控制組和消化性潰瘍檢體基因型資料……………….105
附錄二 正常控制組及胃炎和消化性潰瘍胃泌素-17 分泌資料…………..128
附錄三 胃炎、消化性潰瘍 COX-1 組織染色分級資料…………………..133
參考文獻 References
Allen, A.and Flemstrom, G. (2005). Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. American journal of physiology Cell physiology 288: C1-19.

Andersson, T., Regardh, C.G., Lou, Y.C., Zhang, Y., Dahl, M.L.and Bertilsson, L. (1992). Polymorphic hydroxylation of S-mephenytoin and omeprazole metabolism in Caucasian and Chinese subjects. Pharmacogenetics 2: 25-31.

Arisawa, T., Tahara, T., Shibata, T., Nagasaka, M., Nakamura, M., Kamiya, Y., Fujita, H., Yoshioka, D., Arima, Y., Okubo, M., Hirata, I.and Nakano, H. (2007). Association between genetic polymorphisms in the cyclooxygenase-1 gene promoter and peptic ulcers in Japan. International journal of molecular medicine 20: 373-378.

Baron, J.A., Cole, B.F., Sandler, R.S., Haile, R.W., Ahnen, D., Bresalier, R., McKeown-Eyssen, G., Summers, R.W., Rothstein, R., Burke, C.A., Snover, D.C., Church, T.R., Allen, J.I., Beach, M., Beck, G.J., Bond, J.H., Byers, T., Greenberg, E.R., Mandel, J.S., Marcon, N., Mott, L.A., Pearson, L., Saibil, F.and van Stolk, R.U. (2003). A randomized trial of aspirin to prevent colorectal adenomas. The New England journal of medicine 348: 891-899.

Benamouzig, R., Deyra, J., Martin, A., Girard, B., Jullian, E., Piednoir, B., Couturier, D., Coste, T., Little, J.and Chaussade, S. (2003). Daily soluble aspirin and prevention of colorectal adenoma recurrence: one-year results of the APACC trial. Gastroenterology 125: 328-336.

Bennett, A., Stamford, I.F.and Unger, W.G. (1973). Prostaglandin E2 and gastric acid secretion in man. The Journal of physiology 229: 349-360.

Bigler, J., Whitton, J., Lampe, J.W., Fosdick, L., Bostick, R.M.and Potter, J.D. (2001). CYP2C9 and UGT1A6 genotypes modulate the protective effect of aspirin on colon adenoma risk. Cancer research 61: 3566-3569.

Blazquez, A., Mas, S., Plana, M.T., Lafuente, A.and Lazaro, L. (2012). Fluoxetine pharmacogenetics in child and adult populations. European child & adolescent psychiatry 21: 599-610.

Bock, K.W., Forster, A., Gschaidmeier, H., Bruck, M., Munzel, P., Schareck, W., Fournel-Gigleux, S.and Burchell, B. (1993). Paracetamol glucuronidation by recombinant rat and human phenol UDP-glucuronosyltransferases. Biochemical pharmacology 45: 1809-1814.

Chang C.W., Chang W. H., Lin S. C., Wang H. Y., Chu C. H., Wang T. E., Lin I. T., and Shih S. C., (2009) Non-Steroidal Anti-Inflammatory Drugs-Related Peptic Ulcer. 內科學誌 20:203-208

Chen, T.J., Liu, J.Y.and Hwang, S.J. (2002). Non-steroidal anti-inflammatory drug and antacid co-prescription in Taiwan: analysis of national insurance claims. Zhonghua yi xue za zhi = Chinese medical journal; Free China ed 65: 588-593.

Chen, Y., Kuehl, G.E., Bigler, J., Rimorin, C.F., Schwarz, Y., Shen, D.D.and Lampe, J.W. (2007). UGT1A6 polymorphism and salicylic acid glucuronidation following aspirin. Pharmacogenetics and genomics 17: 571-579.

Ciotti, M., Marrone, A., Potter, C.and Owens, I.S. (1997a). Genetic polymorphism in the human UGT1A6 (planar phenol) UDP-glucuronosyltransferase: pharmacological implications. Pharmacogenetics 7: 485-495.

Ciotti, M., Obaray, R., Martin, M.G.and Owens, I.S. (1997b). Genetic defects at the UGT1 locus associated with Crigler-Najjar type I disease, including a prenatal diagnosis. American journal of medical genetics 68: 173-178.

Court, M.H., Duan, S.X., von Moltke, L.L., Greenblatt, D.J., Patten, C.J., Miners, J.O.and Mackenzie, P.I. (2001). Interindividual variability in acetaminophen glucuronidation by human liver microsomes: identification of relevant acetaminophen UDP-glucuronosyltransferase isoforms. The Journal of pharmacology and experimental therapeutics 299: 998-1006.

Derakhshan, M.H., El-Omar, E., Oien, K., Gillen, D., Fyfe, V., Crabtree, J.E.and McColl, K.E. (2006). Gastric histology, serological markers and age as predictors of gastric acid secretion in patients infected with Helicobacter pylori. Journal of clinical pathology 59: 1293-1299.

Desta, Z., Zhao, X., Shin, J.G.and Flockhart, D.A. (2002). Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clinical pharmacokinetics 41: 913-958.

Di Mario, F., Ingegnoli, A., Altavilla, N., Cavallaro, L.G., Bertolini, S., Merli, R., Cavestro, G.M., Iori, V., Maino, M., Leandro, G.and Franze, A. (2005). Influence of antisecretory treatment with proton pump inhibitors on serum pepsinogen I levels. Fundamental & clinical pharmacology 19: 497-501.

Dockray G. J., Gastrointestinal Hormones: Gastrin, Cholecystokinin, Somatostatin, and Ghrelin, In: Johnson L.R. et al. (2006) Physiology of the Gastrointestinal Tract, 91-120.

Drogemoller, B.I., Wright, G.E., Niehaus, D.J., Koen, L., Malan, S., Da Silva, D.M., Hillermann-Rebello, R., La Grange, A.M., Venter, M.and Warnich, L. (2010). Characterization of the genetic profile of CYP2C19 in two South African populations. Pharmacogenomics 11: 1095-1103.

Ethell, B.T., Anderson, G.D.and Burchell, B. (2003). The effect of valproic acid on drug and steroid glucuronidation by expressed human UDP-glucuronosyltransferases. Biochemical pharmacology 65: 1441-1449.



Furuya, H., Fernandez-Salguero, P., Gregory, W., Taber, H., Steward, A., Gonzalez, F.J.and Idle, J.R. (1995). Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenetics 5: 389-392.

Goldstein, J.A.and de Morais, S.M. (1994). Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 4: 285-299.

Goldstein, J.A., Ishizaki, T., Chiba, K., de Morais, S.M., Bell, D., Krahn, P.M.and Evans, D.A. (1997). Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics 7: 59-64.

Goldstein, J.A. (2001). Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. British journal of clinical pharmacology 52: 349-355.

Gong, Q.H., Cho, J.W., Huang, T., Potter, C., Gholami, N., Basu, N.K., Kubota, S., Carvalho, S., Pennington, M.W., Owens, I.S.and Popescu, N.C. (2001). Thirteen UDPglucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics 11: 357-368.

Guillemette, C. (2003). Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. The pharmacogenomics journal 3: 136-158.

Haining, R.L., Hunter, A.P., Veronese, M.E., Trager, W.F.and Rettie, A.E. (1996). Allelic variants of human cytochrome P450 2C9: baculovirus-mediated expression, purification, structural characterization, substrate stereoselectivity, and prochiral selectivity of the wild-type and I359L mutant forms. Archives of biochemistry and biophysics 333: 447-458.

Halushka, M.K., Walker, L.P.and Halushka, P.V. (2003). Genetic variation in cyclooxygenase 1: effects on response to aspirin. Clinical pharmacology and therapeutics 73: 122-130.

Harmsze, A.M., van Werkum, J.W., Ten Berg, J.M., Zwart, B., Bouman, H.J., Breet, N.J., van 't Hof, A.W., Ruven, H.J., Hackeng, C.M., Klungel, O.H., de Boer, A.and Deneer, V.H. (2010). CYP2C19*2 and CYP2C9*3 alleles are associated with stent thrombosis: a case-control study. European heart journal 31: 3046-3053.

He, S.M., Zhou, Z.W., Li, X.T.and Zhou, S.F. (2011). Clinical drugs undergoing polymorphic metabolism by human cytochrome P450 2C9 and the implication in drug development. Current medicinal chemistry 18: 667-713.

Hernandez-Diaz, S.and Garcia Rodriguez, L.A. (2006). Cardioprotective aspirin users and their excess risk of upper gastrointestinal complications. BMC medicine 4: 22.

Higashi, M.K., Veenstra, D.L., Kondo, L.M., Wittkowsky, A.K., Srinouanprachanh, S.L., Farin, F.M.and Rettie, A.E. (2002). Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA : the journal of the American Medical Association 287: 1690-1698.

Holton, J., Peptic Ulcer Disease, In: Geoffrey S. et al. (2010) Essentials of Genomic and Personalized Medicine, 627-642.

Huang, J.Q., Sridhar, S.and Hunt, R.H. (2002). Role of Helicobacter pylori infection and non-steroidal anti-inflammatory drugs in peptic-ulcer disease: a meta-analysis. Lancet 359: 14-22.

Hubner, R.A., Muir, K.R., Liu, J.F., Logan, R.F., Grainge, M., Armitage, N., Shepherd, V., Popat, S.and Houlston, R.S. (2006). Genetic variants of UGT1A6 influence risk of colorectal adenoma recurrence. Clinical cancer research : an official journal of the American Association for Cancer Research 12: 6585-6589.

Hung, C.C., Lin, C.J., Chen, C.C., Chang, C.J.and Liou, H.H. (2004). Dosage recommendation of phenytoin for patients with epilepsy with different CYP2C9/CYP2C19 polymorphisms. Therapeutic drug monitoring 26: 534-540.

Jannetto, P.J., Laleli-Sahin, E.and Wong, S.H. (2004). Pharmacogenomic genotyping methodologies. Clinical chemistry and laboratory medicine : CCLM / FESCC 42: 1256-1264.

Jones, R. (2001). Nonsteroidal anti-inflammatory drug prescribing: past, present, and future. The American journal of medicine 110: 4S-7S.

Kohyama, K., Abe, S., Kodaira, K., Yukawa, T., Hozawa, S., Morioka, J., Inamura, H., Ota, M., Sagara, H.and Kurosawa, M. (2011). Polymorphisms of the CYP2C19 gene in Japanese patients with aspirin-exacerbated respiratory disease. The Journal of allergy and clinical immunology 128: 1117-1120.

Krishnaswamy, S., Duan, S.X., Von Moltke, L.L., Greenblatt, D.J., Sudmeier, J.L., Bachovchin, W.W.and Court, M.H. (2003). Serotonin (5-hydroxytryptamine) glucuronidation in vitro: assay development, human liver microsome activities and species differences. Xenobiotica 33: 169-180.

Krishnaswamy, S., Hao, Q., Von Moltke, L.L., Greenblatt, D.J.and Court, M.H. (2004). Evaluation of 5-hydroxytryptophol and other endogenous serotonin (5-hydroxytryptamine) analogs as substrates for UDP-glucuronosyltransferase 1A6. Drug metabolism and disposition: the biological fate of chemicals 32: 862-869.

Krishnaswamy, S., Hao, Q., Al-Rohaimi, A., Hesse, L.M., von Moltke, L.L., Greenblatt, D.J.and Court, M.H. (2005). UDP glucuronosyltransferase (UGT) 1A6 pharmacogenetics: II. Functional impact of the three most common nonsynonymous UGT1A6 polymorphisms (S7A, T181A, and R184S). The Journal of pharmacology and experimental therapeutics 313: 1340-1346.

Kuehl, G.E., Bigler, J., Potter, J.D.and Lampe, J.W. (2006). Glucuronidation of the aspirin metabolite salicylic acid by expressed UDP-glucuronosyltransferases and human liver microsomes. Drug metabolism and disposition: the biological fate of chemicals 34: 199-202.

Lanas, A., Fuentes, J., Benito, R., Serrano, P., Bajador, E.and Sainz, R. (2002). Helicobacter pylori increases the risk of upper gastrointestinal bleeding in patients taking low-dose aspirin. Alimentary pharmacology & therapeutics 16: 779-786.

Lanas, A.and Scheiman, J. (2007). Low-dose aspirin and upper gastrointestinal damage: epidemiology, prevention and treatment. Current medical research and opinion 23: 163-173.

Liou, Y.H., Lin, C.T., Wu, Y.J.and Wu, L.S. (2006). The high prevalence of the poor and ultrarapid metabolite alleles of CYP2D6, CYP2C9, CYP2C19, CYP3A4, and CYP3A5 in Taiwanese population. Journal of human genetics 51: 857-863.

Ma, T.K., Lam, Y.Y., Tan, V.P., Kiernan, T.J.and Yan, B.P. (2010). Impact of genetic and acquired alteration in cytochrome P450 system on pharmacologic and clinical response to clopidogrel. Pharmacology & therapeutics 125: 249-259.

Mackenzie, P.I., Owens, I.S., Burchell, B., Bock, K.W., Bairoch, A., Belanger, A., Fournel-Gigleux, S., Green, M., Hum, D.W., Iyanagi, T., Lancet, D., Louisot, P., Magdalou, J., Chowdhury, J.R., Ritter, J.K., Schachter, H., Tephly, T.R., Tipton, K.F.and Nebert, D.W. (1997). The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7: 255-269.

Malfertheiner, P., Chan, F.K.and McColl, K.E. (2009). Peptic ulcer disease. Lancet 374: 1449-1461.

Martinez, C., Blanco, G., Ladero, J.M., Garcia-Martin, E., Taxonera, C., Gamito, F.G., Diaz-Rubio, M.and Agundez, J.A. (2004). Genetic predisposition to acute gastrointestinal bleeding after NSAIDs use. British journal of pharmacology 141: 205-208.

Maruo, Y., Iwai, M., Mori, A., Sato, H.and Takeuchi, Y. (2005). Polymorphism of UDP-glucuronosyltransferase and drug metabolism. Current drug metabolism 6: 91-99.

McQuaid, K.R.and Laine, L. (2006). Systematic review and meta-analysis of adverse events of low-dose aspirin and clopidogrel in randomized controlled trials. The American journal of medicine 119: 624-638.

Monostory, K.and Dvorak, Z. (2011). Steroid regulation of drug-metabolizing cytochromes P450. Current drug metabolism 12: 154-172.

Nagar, S., Zalatoris, J.J.and Blanchard, R.L. (2004). Human UGT1A6 pharmacogenetics: identification of a novel SNP, characterization of allele frequencies and functional analysis of recombinant allozymes in human liver tissue and in cultured cells. Pharmacogenetics 14: 487-499.

Ouzzine, M., Magdalou, J., Burchell, B.and Fournel-Gigleux, S. (1999). An internal signal sequence mediates the targeting and retention of the human UDP-glucuronosyltransferase 1A6 to the endoplasmic reticulum. The Journal of biological chemistry 274: 31401-31409.

Pilotto, A., Seripa, D., Franceschi, M., Scarcelli, C., Colaizzo, D., Grandone, E., Niro, V., Andriulli, A., Leandro, G., Di Mario, F.and Dallapiccola, B. (2007). Genetic susceptibility to nonsteroidal anti-inflammatory drug-related gastroduodenal bleeding: role of cytochrome P450 2C9 polymorphisms. Gastroenterology 133: 465-471.

Radominska-Pandya, A., Czernik, P.J., Little, J.M., Battaglia, E.and Mackenzie, P.I. (1999). Structural and functional studies of UDP-glucuronosyltransferases. Drug metabolism reviews 31: 817-899.

Rocca, B.and Petrucci, G. (2012). Variability in the responsiveness to low-dose aspirin: pharmacological and disease-related mechanisms. Thrombosis 2012: 376721.

Rowbotham, D.J. et al., Gut motility and secretions, In: Hemmings H.C. Jr. et al. (2006) Foundations of Anesthesia, 2nd 739-751.

Rozengurt, E.and Walsh, J.H. (2001). Gastrin, CCK, signaling, and cancer. Annual review of physiology 63: 49-76.

Saeki, M., Saito, Y., Jinno, H., Sai, K., Kaniwa, N., Ozawa, S., Komamura, K., Kotake, T., Morishita, H., Kamakura, S., Kitakaze, M., Tomoike, H., Shirao, K., Minami, H., Ohtsu, A., Yoshida, T., Saijo, N., Kamatani, N.and Sawada, J. (2005). Genetic polymorphisms of UGT1A6 in a Japanese population. Drug metabolism and pharmacokinetics 20: 85-90.

Saffouri, B., Weir, G.C., Bitar, K.N.and Makhlouf, G.M. (1980). Gastrin and somatostatin secretion by perfused rat stomach: functional linkage of antral peptides. The American journal of physiology 238: G495-501.

Saitoh, T., Otsuka, H., Kawasaki, T., Endo, H., Iga, D., Tomimatsu, M., Fukushima, Y., Katsube, T., Ogawa, K.and Otsuka, K. (2009). Influences of CYP2C19 polymorphism on recurrence of reflux esophagitis during proton pump inhibitor maintenance therapy. Hepato-gastroenterology 56: 703-706.

Sandler, R.S., Halabi, S., Baron, J.A., Budinger, S., Paskett, E., Keresztes, R., Petrelli, N., Pipas, J.M., Karp, D.D., Loprinzi, C.L., Steinbach, G.and Schilsky, R. (2003). A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. The New England journal of medicine 348: 883-890.

Scheiman, J.M. (1996). NSAIDs, gastrointestinal injury, and cytoprotection. Gastroenterology clinics of North America 25: 279-298.

Schoen, R.T.and Vender, R.J. (1989). Mechanisms of nonsteroidal anti-inflammatory drug-induced gastric damage. The American journal of medicine 86: 449-458.

Seng K. C., Gin G. G., J Vijaya Sangkar, and Maude Elvira Phipps., (2003) Frequency of Cytochrome P450 2C9 (CYP2C9) Alleles in Three Ethnic Groups in Malaysia. Asia Pacific Journal of Molecular Biology and Biotechnology 11(2): 83-91

Shi, J., Misso, N.L., Duffy, D.L., Bradley, B., Beard, R., Thompson, P.J.and Kedda, M.A. (2005). Cyclooxygenase-1 gene polymorphisms in patients with different asthma phenotypes and atopy. The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology 26: 249-256.

Shiotani, A., Sakakibara, T., Yamanaka, Y., Nishi, R., Imamura, H., Fujita, M., Tarumi, K., Kamada, T., Hata, J.and Haruma, K. (2009). The preventive factors for aspirin-induced peptic ulcer: aspirin ulcer and corpus atrophy. Journal of gastroenterology 44: 717-725.

Shiotani, A., Sakakibara, T., Nomura, M., Yamanaka, Y., Nishi, R., Imamura, H., Tarumi, K., Kamada, T., Hata, J.and Haruma, K. (2010). Aspirin-induced peptic ulcer and genetic polymorphisms. Journal of gastroenterology and hepatology 25 Suppl 1: S31-34.

Sipponen, P., Valle, J., Varis, K., Kekki, M., Ihamaki, T.and Siurala, M. (1990). Fasting levels of serum gastrin in different functional and morphologic states of the antrofundal mucosa. An analysis of 860 subjects. Scandinavian journal of gastroenterology 25: 513-519.

Skjelbo, E., Brosen, K., Hallas, J.and Gram, L.F. (1991). The mephenytoin oxidation polymorphism is partially responsible for the N-demethylation of imipramine. Clinical pharmacology and therapeutics 49: 18-23.

Sostres, C., Gargallo, C.J., Arroyo, M.T.and Lanas, A. (2010). Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best practice & research Clinical gastroenterology 24: 121-132.

Sostres, C.and Lanas, A. (2011). Gastrointestinal effects of aspirin. Nature reviews Gastroenterology & hepatology 8: 385-394.

Steward, D.J., Haining, R.L., Henne, K.R., Davis, G., Rushmore, T.H., Trager, W.F.and Rettie, A.E. (1997). Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 7: 361-367.

Stubbins, M.J., Harries, L.W., Smith, G., Tarbit, M.H.and Wolf, C.R. (1996). Genetic analysis of the human cytochrome P450 CYP2C9 locus. Pharmacogenetics 6: 429-439.

Sullivan-Klose, T.H., Ghanayem, B.I., Bell, D.A., Zhang, Z.Y., Kaminsky, L.S., Shenfield, G.M., Miners, J.O., Birkett, D.J.and Goldstein, J.A. (1996). The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6: 341-349.

Tajima, A., Koizumi, K., Suzuki, K., Higashi, N., Takahashi, M., Shimada, T., Terano, A., Hiraishi, H.and Kuwayama, H. (2008). Proton pump inhibitors and recurrent bleeding in peptic ulcer disease. Journal of gastroenterology and hepatology 23 Suppl 2: S237-241.

Takanashi, K., Tainaka, H., Kobayashi, K., Yasumori, T., Hosakawa, M.and Chiba, K. (2000). CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates. Pharmacogenetics 10: 95-104.

To, K.F., Chan, F.K., Cheng, A.S., Lee, T.L., Ng, Y.P.and Sung, J.J. (2001). Up-regulation of cyclooxygenase-1 and -2 in human gastric ulcer. Alimentary pharmacology & therapeutics 15: 25-34.

van der Weide, J., Steijns, L.S., van Weelden, M.J.and de Haan, K. (2001). The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. Pharmacogenetics 11: 287-291.

van Oijen, M.G., Huybers, S., Peters, W.H., Drenth, J.P., Laheij, R.J., Verheugt, F.W.and Jansen, J.B. (2005). Polymorphisms in genes encoding acetylsalicylic acid metabolizing enzymes are unrelated to upper gastrointestinal health in cardiovascular patients on acetylsalicylic acid. British journal of clinical pharmacology 60: 623-628.

Vane, J.R. (1971). Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature: New biology 231: 232-235.

Vonkeman, H.E., van de Laar, M.A., van der Palen, J., Brouwers, J.R.and Vermes, I. (2006). Allele variants of the cytochrome P450 2C9 genotype in white subjects from The Netherlands with serious gastroduodenal ulcers attributable to the use of NSAIDs. Clinical therapeutics 28: 1670-1676.

Wallace, J.L. (1997). Nonsteroidal anti-inflammatory drugs and gastroenteropathy: the second hundred years. Gastroenterology 112: 1000-1016.

Xie, H.G., Prasad, H.C., Kim, R.B.and Stein, C.M. (2002). CYP2C9 allelic variants: ethnic distribution and functional significance. Advanced drug delivery reviews 54: 1257-1270.

Yamazaki, H., Inoue, K., Chiba, K., Ozawa, N., Kawai, T., Suzuki, Y., Goldstein, J.A., Guengerich, F.P.and Shimada, T. (1998). Comparative studies on the catalytic roles of cytochrome P450 2C9 and its Cys- and Leu-variants in the oxidation of warfarin, flurbiprofen, and diclofenac by human liver microsomes. Biochemical pharmacology 56: 243-251.

Yeomans, N.D., Lanas, A.I., Talley, N.J., Thomson, A.B., Daneshjoo, R., Eriksson, B., Appelman-Eszczuk, S., Langstrom, G., Naesdal, J., Serrano, P., Singh, M., Skelly, M.M.and Hawkey, C.J. (2005). Prevalence and incidence of gastroduodenal ulcers during treatment with vascular protective doses of aspirin. Alimentary pharmacology & therapeutics 22: 795-801.

Yeomans, N.D.and Naesdal, J. (2008). Systematic review: ulcer definition in NSAID ulcer prevention trials. Alimentary pharmacology & therapeutics 27: 465-472.

Zhang, Z., Sun, L., Gong, Y.H., Wang, X.G., Zhang, M.and Yuan, Y. (2007). Factors affecting the serum gastrin 17 level: an evidence-based analysis of 3906 serum samples among Chinese. Journal of digestive diseases 8: 72-76.

Zhou, Q., Yu, X.M., Lin, H.B., Wang, L., Yun, Q.Z., Hu, S.N.and Wang, D.M. (2009). Genetic polymorphism, linkage disequilibrium, haplotype structure and novel allele analysis of CYP2C19 and CYP2D6 in Han Chinese. The pharmacogenomics journal 9: 380-394.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.226.251.68
論文開放下載的時間是 校外不公開

Your IP address is 18.226.251.68
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code