Responsive image
博碩士論文 etd-0521113-113828 詳細資訊
Title page for etd-0521113-113828
論文名稱
Title
p38 MAPK和SUMOs在三氧化二砷誘發之細胞凋亡中的角色
The Roles of p38 MAPK and SUMOs in Arsenic Trioxide-induced Apoptosis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
145
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-05-27
繳交日期
Date of Submission
2013-08-21
關鍵字
Keywords
p38 蛋白、三氧化二砷、相撲蛋白、細胞凋亡、胃幽門螺旋桿菌
ATO, Arsenic trioxide, Helicobacter pylori (Hp), Apoptosis, SUMO, p38
統計
Statistics
本論文已被瀏覽 5673 次,被下載 0
The thesis/dissertation has been browsed 5673 times, has been downloaded 0 times.
中文摘要
三氧化二砷 (Arsenic trioxide, ATO) 是一種天然毒性化合物,可作為急性前骨髓性白血病的治療藥物,許多研究都證實三氧化二砷誘發多種腫瘤細胞的細胞凋亡。三氧化二砷可透過活化 ROS、p38 以及其他許多途徑誘導細胞凋亡的發生。我們先前的研究證實胃幽門螺旋桿菌 (Helicobacter pylori, Hp) 感染以及 SUMO-1 的大量表現均可活化 p38,並且可在細胞核中發現 SUMO-1 和 p-p38 共同形成核點。因此我們將於本研究中探討 p38 蛋白及相撲蛋白在三氧化二砷誘發 AGS 細胞凋亡的角色。我們發現三氧化二砷會活化 SUMO-1、SUMO-2 和 p38 的基因及蛋白表現。此外三氧化二砷可透過 ROS、p38/p53/BAX 以及 caspase 8/tBID 途徑誘發細胞凋亡。而外源性的相撲蛋白可加成性地增加三氧化二砷、胃幽門螺旋桿菌以及 diamide 所誘導的細胞凋亡,此外相撲蛋白參與細胞凋亡的機制與 p38 所調控的途徑有所關聯。
Abstract
Arsenic trioxide (ATO), an anti-cancer drug for acute promyelocytic leukemia (APL), was able to induce apoptosis in several cancer cell lines including solid tumors, myeloma and lymphoma. Previous researches showed that ATO triggered apoptosis via p38 MAPK pathway, and p38 was activated by environmental stress such as ROS. Our previous studies have established that phosphorylation of p38 was elevated in AGS cells during Helicobacter pylori (Hp) infection and overexpression of SUMO-1. Moreover, SUMO-1 was co-localized with p-p38 in nucleus during overexpression of SUMO-1. In this study, we evaluated the mechanisms and the association of SUMOs and p38 of ATO-induced apoptosis. Present results exhibited that ATO induced apoptosis, and elevated p38 and SUMOs in transcript and protein levels. In addition, up-regulation of p-p38, p53, BAX, cleaved caspase 8 and t-BID were also observed during exposure of ATO. Moreover, inhibitors of p38 and caspase 8 and ROS scavenger, N-acetyl-cysteine (NAC), protected AGS from ATO-induced apoptosis. These results suggested that ATO triggered apoptosis via ROS-, p38- and caspase 8-mediated pathway. Furthermore, our data established that SUMOs enhanced p38-mediated apoptosis.
目次 Table of Contents
Verification from thesis oral defense committee …………………i
Abstract in Chinese ……………………………………………ii
Abstract in English ………………………………………iii
Contents ………………………………………………iv
List of figures ……………………………………………………ix
Abbreviations ………………………………………………x
I. Introduction ………………………………………………1
1. Apoptosis …………………………………………………1
1.1 Extrinsic and intrinsic pathways ……………………………1
2. Arsenic trioxide ……………………………………5
2.1 Tumorigenesis of arsrnic trioxide ………………………5
2.2 Clinical application and apoptotic mechanisms of arsenic trioxide …6
3. p38 mitogen-activated protein kinase (p38 MAPK) ………10
3.1 Regulation of p38 ……………………………………11
3.2 p38-mediated apoptosis ……………………………………12
4. Small ubiquitin-related modifiers (SUMOs) ……………14
4.1 SUMOylation ………………………………14
4.2 Localization of SUMOs ………………………………17
4.3 Functions of SUMOs in cellular processes …………………20
4.3.1 Regulation of nuclear bodies formation ……………21
4.3.2 Regulation of proteins activity and stabilization …………………22
4.3.3 SUMOs-related apoptosis ……………………………………23
5. p53 regulation and apoptosis ………………………………25
5.1 Stabilization and activation of p53 …………………25
5.2 p53-mediated apoptosis ………………………………27
II. Objectives ……………………………………………………29
III. Materials and methods ………………………………………30
1. Cell culture ……………………………………………30
1.1 Materials …………………………………………………30
1.2 Methods …………………………………………………31
2. Transfection ……………………………………………33
2.1 Materials …………………………………………33
2.2 Methods ……………………………………………………33
3. MTT cell viability assay ………………………………35
3.1 Materials ………………………………………………35
3.2 Machine ………………………………………………36
3.3 Methods ……………………………………………………36
3.3.1 Preparation of ATO solution ………………………………36
3.3.2 ATO-induced cell death …………………………………36
3.3.3 Inhibition of cell death by inhibitors of caspase 8 and MAPK ………37
3.3.4 Contribution of SUMO-1, SUMO-2 and p38 in ATO-, diamide- or Hp 43504-induced apoptosis …………………………38
3.3.5 Contribution of triptolide in ATO-, diamide- or Hp 43504-induced apoptosis ……………………………………………39
4. Reverse Transcription-PCR (RT-PCR) …………………41
4.1 Materials …………………………………………41
4.2 Methods ………………………………………………………42
4.2.1 Treatment of ATO …………………………………………42
4.2.2 RNAs extraction ……………………………………………43
4.2.3 cDNA synthesis (Reverse transcription, RT) ……………44
4.2.4 Polymerase Chain Reaction (PCR) ………………………45
5. Apoptosis assay ………………………………………47
5.1 Materials ……………………………………………46
5.2 Machine ……………………………………………47
5.3 Software …………………………………………………47
5.4 Methods …………………………………………48
5.4.1 Cell cycle analysis ……………………………………48
6. Western blotting …………………………………………50
6.1 Materials ……………………………………………50
6.2 Primary antibodies ………………………………………51
6.3 Secondary antibodies …………………………………52
6.4 Methods ………………………………………53
6.5 SDS-PAGE …………………………………………53
6.5.1 Materials ……………………………………53
6.5.2 Machine ………………………………………54
7. Statistical analysis …………………………………55
IV. Results ……………………………………………56
1. ATO induced cell death in a dose- and time-dependent manner ……56
2. ATO enhanced the gene expression of SUMO-1, SUMO-2 and p38 …59
3. p38 and caspase 8 pathways were activated by ATO ………65
4. ATO induced apoptosis in AGS cells …………………………………68
5. ATO induced apoptosis via ROS-, p38- and caspase 8-mediated pathway ……………………………………………………71
6. ATO-induced apoptosis was elevated in p38, SUMO-1 or SUMO-2 overexpressing AGS cells ……………………………76
7. Triptolide enhanced p38-mediated apoptosis ……………………84
V. Discussion …………………………………………………87
VI. Future works ……………………………………………………92
VII. References …………………………………………………93
VIII. Supplements …………………………………………………111
參考文獻 References
Adams, J.M. and Cory, S. (2007). The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26: 1324-1337.

Ajizian, S.J., English, B.K. and Meals, E.A. (1999). Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-gamma. The Journal of infectious diseases 179: 939-944.

Alarifi, S., Ali, D., Alkahtani, S., Siddiqui, M.A. and Ali, B.A. (2013). Arsenic trioxide-mediated oxidative stress and genotoxicity in human hepatocellular carcinoma cells. OncoTargets and therapy 6: 75-84.

Algeciras-Schimnich, A., Shen, L., Barnhart, B.C., Murmann, A.E., Burkhardt, J.K. and Peter, M.E. (2002). Molecular ordering of the initial signaling events of CD95. Molecular and cellular biology 22: 207-220.

Alkhalaf, M. and Jaffal, S. (2006). Potent antiproliferative effects of resveratrol on human osteosarcoma SJSA1 cells: Novel cellular mechanisms involving the ERKs/p53 cascade. Free radical biology & medicine 41: 318-325.

Ashkenazi, A. and Dixit, V.M. (1999). Apoptosis control by death and decoy receptors. Current opinion in cell biology 11: 255-260.

Ayaydin, F. and Dasso, M. (2004). Distinct in vivo dynamics of vertebrate SUMO paralogues. Molecular biology of the cell 15: 5208-5218.

Baj, G., Arnulfo, A., Deaglio, S., Mallone, R., Vigone, A., De Cesaris, M.G., Surico, N., Malavasi, F. and Ferrero, E. (2002). Arsenic trioxide and breast cancer: analysis of the apoptotic, differentiative and immunomodulatory effects. Breast cancer research and treatment 73: 61-73.

Banin, S., Moyal, L., Shieh, S., Taya, Y., Anderson, C.W., Chessa, L., Smorodinsky, N.I., Prives, C., Reiss, Y., Shiloh, Y. and Ziv, Y. (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281: 1674-1677.

Bao, L. and Shi, H. (2010). Arsenite induces endothelial cell permeability increase through a reactive oxygen species-vascular endothelial growth factor pathway. Chemical research in toxicology 23: 1726-1734.

Barger, P.M., Browning, A.C., Garner, A.N. and Kelly, D.P. (2001). p38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor alpha: a potential role in the cardiac metabolic stress response. The Journal of biological chemistry 276: 44495-44501.

Benbrahim-Tallaa, L., Webber, M.M. and Waalkes, M.P. (2007). Mechanisms of acquired androgen independence during arsenic-induced malignant transformation of human prostate epithelial cells. Environmental health perspectives 115: 243-247.

Berg, D., Lehne, M., Muller, N., Siegmund, D., Munkel, S., Sebald, W., Pfizenmaier, K. and Wajant, H. (2007). Enforced covalent trimerization increases the activity of the TNF ligand family members TRAIL and CD95L. Cell death and differentiation 14: 2021-2034.

Bernardi, R. and Pandolfi, P.P. (2007). Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nature reviews Molecular cell biology 8: 1006-1016.

Boddy, M.N., Howe, K., Etkin, L.D., Solomon, E. and Freemont, P.S. (1996). PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13: 971-982.

Borden, K.L. (2002). Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Molecular and cellular biology 22: 5259-5269.

Bossis, G. and Melchior, F. (2006). SUMO: regulating the regulator. Cell division 1: 13.

Bourdonnay, E., Morzadec, C., Fardel, O. and Vernhet, L. (2011). Arsenic increases lipopolysaccharide-dependent expression of interleukin-8 gene by stimulating a redox-sensitive pathway that strengthens p38-kinase activation. Molecular immunology 48: 2069-2078.

Bulavin, D.V., Saito, S., Hollander, M.C., Sakaguchi, K., Anderson, C.W., Appella, E. and Fornace, A.J., Jr. (1999). Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. The EMBO journal 18: 6845-6854.

Calvino Fernandez, M. and Parra Cid, T. (2010). H. pylori and mitochondrial changes in epithelial cells. The role of oxidative stress. Revista espanola de enfermedades digestivas : organo oficial de la Sociedad Espanola de Patologia Digestiva 102: 41-50.

Cartron, P.F., Gallenne, T., Bougras, G., Gautier, F., Manero, F., Vusio, P., Meflah, K., Vallette, F.M. and Juin, P. (2004). The first alpha helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Molecular cell 16: 807-818.

Chae, H.J., Kim, S.C., Han, K.S., Chae, S.W., An, N.H., Kim, H.M., Kim, H.H., Lee, Z.H. and Kim, H.R. (2001). Hypoxia induces apoptosis by caspase activation accompanying cytochrome C release from mitochondria in MC3T3E1 osteoblasts. p38 MAPK is related in hypoxia-induced apoptosis. Immunopharmacology and immunotoxicology 23: 133-152.

Chen, A., Cao, E.H., Zhang, T.C. and Qin, J.F. (2002). Arsenite-induced reactive oxygen species and the repression of alpha-tocopherol in the MGC-803 cells. European journal of pharmacology 448: 11-18.

Chen, H., Liu, J., Zhao, C.Q., Diwan, B.A., Merrick, B.A. and Waalkes, M.P. (2001). Association of c-myc overexpression and hyperproliferation with arsenite-induced malignant transformation. Toxicology and applied pharmacology 175: 260-268.

Chen, Y.R., Wang, X., Templeton, D., Davis, R.J. and Tan, T.H. (1996). The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. The Journal of biological chemistry 271: 31929-31936.

Chiu, H.W., Ho, Y.S. and Wang, Y.J. (2011). Arsenic trioxide induces autophagy and apoptosis in human glioma cells in vitro and in vivo through downregulation of survivin. J Mol Med (Berl) 89: 927-941.

Chouinard, N., Valerie, K., Rouabhia, M. and Huot, J. (2002). UVB-mediated activation of p38 mitogen-activated protein kinase enhances resistance of normal human keratinocytes to apoptosis by stabilizing cytoplasmic p53. The Biochemical journal 365: 133-145.

Circu, M.L. and Aw, T.Y. (2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free radical biology & medicine 48: 749-762.

Cory, S., Huang, D.C. and Adams, J.M. (2003). The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22: 8590-8607.

Cuadrado, A. and Nebreda, A.R. (2010). Mechanisms and functions of p38 MAPK signalling. The Biochemical journal 429: 403-417.

Curtin, J.F. and Cotter, T.G. (2003). Live and let die: regulatory mechanisms in Fas-mediated apoptosis. Cellular signalling 15: 983-992.

Dean, J.L., Brook, M., Clark, A.R. and Saklatvala, J. (1999). p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes. The Journal of biological chemistry 274: 264-269.

Desterro, J.M., Rodriguez, M.S. and Hay, R.T. (1998). SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Molecular cell 2: 233-239.

Du, C.S., Yang, R.F., Song, S.W., Wang, Y.P., Kang, J.H., Zhang, R., Su, D.F. and Xie, X. (2010). Magnesium Lithospermate B Protects Cardiomyocytes from Ischemic Injury Via Inhibition of TAB1-p38 Apoptosis Signaling. Frontiers in pharmacology 1: 111.

Duprez, E., Saurin, A.J., Desterro, J.M., Lallemand-Breitenbach, V., Howe, K., Boddy, M.N., Solomon, E., de The, H., Hay, R.T. and Freemont, P.S. (1999). SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. Journal of cell science 112 ( Pt 3): 381-393.

Eguchi, R., Fujimori, Y., Takeda, H., Tabata, C., Ohta, T., Kuribayashi, K., Fukuoka, K. and Nakano, T. (2011). Arsenic trioxide induces apoptosis through JNK and ERK in human mesothelioma cells. Journal of cellular physiology 226: 762-768.

Evdokimov, E., Sharma, P., Lockett, S.J., Lualdi, M. and Kuehn, M.R. (2008). Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3. Journal of cell science 121: 4106-4113.

Fu, C., Ahmed, K., Ding, H., Ding, X., Lan, J., Yang, Z., Miao, Y., Zhu, Y., Shi, Y., Zhu, J., Huang, H. and Yao, X. (2005). Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3. Oncogene 24: 5401-5413.

Geoffroy, M.C., Jaffray, E.G., Walker, K.J. and Hay, R.T. (2010). Arsenic-induced SUMO-dependent recruitment of RNF4 into PML nuclear bodies. Molecular biology of the cell 21: 4227-4239.

Gill, G. (2004). SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes & development 18: 2046-2059.

Gong, X., Ming, X., Deng, P. and Jiang, Y. (2010). Mechanisms regulating the nuclear translocation of p38 MAP kinase. Journal of cellular biochemistry 110: 1420-1429.

Gostissa, M., Hengstermann, A., Fogal, V., Sandy, P., Schwarz, S.E., Scheffner, M. and Del Sal, G. (1999). Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. The EMBO journal 18: 6462-6471.

Gresko, E., Moller, A., Roscic, A. and Schmitz, M.L. (2005). Covalent modification of human homeodomain interacting protein kinase 2 by SUMO-1 at lysine 25 affects its stability. Biochemical and biophysical research communications 329: 1293-1299.

Gu, B. and Zhu, W.G. (2012). Surf the post-translational modification network of p53 regulation. International journal of biological sciences 8: 672-684.

Guo, D., Li, M., Zhang, Y., Yang, P., Eckenrode, S., Hopkins, D., Zheng, W., Purohit, S., Podolsky, R.H., Muir, A., Wang, J., Dong, Z., Brusko, T., Atkinson, M., Pozzilli, P., Zeidler, A., Raffel, L.J., Jacob, C.O., Park, Y., Serrano-Rios, M., Larrad, M.T., Zhang, Z., Garchon, H.J., Bach, J.F., Rotter, J.I., She, J.X. and Wang, C.Y. (2004). A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nature genetics 36: 837-841.

Han, J., Jiang, Y., Li, Z., Kravchenko, V.V. and Ulevitch, R.J. (1997). Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386: 296-299.

Han, Y.H., Moon, H.J., You, B.R., Kim, S.Z., Kim, S.H. and Park, W.H. (2010). Effects of arsenic trioxide on cell death, reactive oxygen species and glutathione levels in different cell types. International journal of molecular medicine 25: 121-128.

Hangen, E., Blomgren, K., Benit, P., Kroemer, G. and Modjtahedi, N. (2010). Life with or without AIF. Trends in biochemical sciences 35: 278-287.

Hannich, J.T., Lewis, A., Kroetz, M.B., Li, S.J., Heide, H., Emili, A. and Hochstrasser, M. (2005). Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. The Journal of biological chemistry 280: 4102-4110.

Hayashi, T., Seki, M., Maeda, D., Wang, W., Kawabe, Y., Seki, T., Saitoh, H., Fukagawa, T., Yagi, H. and Enomoto, T. (2002). Ubc9 is essential for viability of higher eukaryotic cells. Experimental cell research 280: 212-221.

Hecker, C.M., Rabiller, M., Haglund, K., Bayer, P. and Dikic, I. (2006). Specification of SUMO1- and SUMO2-interacting motifs. The Journal of biological chemistry 281: 16117-16127.

Ho, S.Y., Wu, W.J., Chiu, H.W., Chen, Y.A., Ho, Y.S., Guo, H.R. and Wang, Y.J. (2011). Arsenic trioxide and radiation enhance apoptotic effects in HL-60 cells through increased ROS generation and regulation of JNK and p38 MAPK signaling pathways. Chemico-biological interactions 193: 162-171.

Hofmann, T.G. and Will, H. (2003). Body language: the function of PML nuclear bodies in apoptosis regulation. Cell death and differentiation 10: 1290-1299.

Huang, C., Ma, W.Y., Maxiner, A., Sun, Y. and Dong, Z. (1999). p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. The Journal of biological chemistry 274: 12229-12235.

Huang, W., He, T., Chai, C., Yang, Y., Zheng, Y., Zhou, P., Qiao, X., Zhang, B., Liu, Z., Wang, J., Shi, C., Lei, L., Gao, K., Li, H., Zhong, S., Yao, L., Huang, M.E. and Lei, M. (2012). Triptolide inhibits the proliferation of prostate cancer cells and down-regulates SUMO-specific protease 1 expression. PloS one 7: e37693.

Huff, J., Chan, P. and Nyska, A. (2000). Is the human carcinogen arsenic carcinogenic to laboratory animals? Toxicological sciences : an official journal of the Society of Toxicology 55: 17-23.

Ishov, A.M., Sotnikov, A.G., Negorev, D., Vladimirova, O.V., Neff, N., Kamitani, T., Yeh, E.T., Strauss, J.F., 3rd and Maul, G.G. (1999). PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. The Journal of cell biology 147: 221-234.

Jensen, K., Shiels, C. and Freemont, P.S. (2001). PML protein isoforms and the RBCC/TRIM motif. Oncogene 20: 7223-7233.

Jiang, X.H., Wong, B.C., Yuen, S.T., Jiang, S.H., Cho, C.H., Lai, K.C., Lin, M.C., Kung, H.F. and Lam, S.K. (2001). Arsenic trioxide induces apoptosis in human gastric cancer cells through up-regulation of p53 and activation of caspase-3. International journal of cancer Journal international du cancer 91: 173-179.

Johnson, E.S. (2004). Protein modification by SUMO. Annual review of biochemistry 73: 355-382.

Johnson, N.L., Gardner, A.M., Diener, K.M., Lange-Carter, C.A., Gleavy, J., Jarpe, M.B., Minden, A., Karin, M., Zon, L.I. and Johnson, G.L. (1996). Signal transduction pathways regulated by mitogen-activated/extracellular response kinase kinase kinase induce cell death. The Journal of biological chemistry 271: 3229-3237.

Kamitani, T., Kito, K., Nguyen, H.P., Wada, H., Fukuda-Kamitani, T. and Yeh, E.T. (1998a). Identification of three major sentrinization sites in PML. The Journal of biological chemistry 273: 26675-26682.

Kamitani, T., Nguyen, H.P., Kito, K., Fukuda-Kamitani, T. and Yeh, E.T. (1998b). Covalent modification of PML by the sentrin family of ubiquitin-like proteins. The Journal of biological chemistry 273: 3117-3120.

Kang, Y.H., Yi, M.J., Kim, M.J., Park, M.T., Bae, S., Kang, C.M., Cho, C.K., Park, I.C., Park, M.J., Rhee, C.H., Hong, S.I., Chung, H.Y., Lee, Y.S. and Lee, S.J. (2004). Caspase-independent cell death by arsenic trioxide in human cervical cancer cells: reactive oxygen species-mediated poly(ADP-ribose) polymerase-1 activation signals apoptosis-inducing factor release from mitochondria. Cancer research 64: 8960-8967.

Kang, Y.H. and Lee, S.J. (2008a). Role of p38 MAPK and JNK in enhanced cervical cancer cell killing by the combination of arsenic trioxide and ionizing radiation. Oncology reports 20: 637-643.

Kang, Y.H. and Lee, S.J. (2008b). The role of p38 MAPK and JNK in Arsenic trioxide-induced mitochondrial cell death in human cervical cancer cells. Journal of cellular physiology 217: 23-33.

Kanzawa, T., Kondo, Y., Ito, H., Kondo, S. and Germano, I. (2003). Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer research 63: 2103-2108.

Ki, M.R., Lee, H.R., Goo, M.J., Hong, I.H., Do, S.H., Jeong, D.H., Yang, H.J., Yuan, D.W., Park, J.K. and Jeong, K.S. (2008). Differential regulation of ERK1/2 and p38 MAP kinases in VacA-induced apoptosis of gastric epithelial cells. American journal of physiology Gastrointestinal and liver physiology 294: G635-647.

Kim, S.J., Ju, J.W., Oh, C.D., Yoon, Y.M., Song, W.K., Kim, J.H., Yoo, Y.J., Bang, O.S., Kang, S.S. and Chun, J.S. (2002). ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. The Journal of biological chemistry 277: 1332-1339.

Ko, L.J. and Prives, C. (1996). p53: puzzle and paradigm. Genes & development 10: 1054-1072.

Krammer, P.H., Arnold, R. and Lavrik, I.N. (2007). Life and death in peripheral T cells. Nature reviews Immunology 7: 532-542.

Kroetz, M.B. (2005). SUMO: a ubiquitin-like protein modifier. The Yale journal of biology and medicine 78: 197-201.

Lallemand-Breitenbach, V., Zhu, J., Puvion, F., Koken, M., Honore, N., Doubeikovsky, A., Duprez, E., Pandolfi, P.P., Puvion, E., Freemont, P. and de The, H. (2001). Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. The Journal of experimental medicine 193: 1361-1371.

Lallemand-Breitenbach, V., Jeanne, M., Benhenda, S., Nasr, R., Lei, M., Peres, L., Zhou, J., Zhu, J., Raught, B. and de The, H. (2008). Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nature cell biology 10: 547-555.

Lau, A.T., Li, M., Xie, R., He, Q.Y. and Chiu, J.F. (2004). Opposed arsenite-induced signaling pathways promote cell proliferation or apoptosis in cultured lung cells. Carcinogenesis 25: 21-28.

Letai, A., Bassik, M.C., Walensky, L.D., Sorcinelli, M.D., Weiler, S. and Korsmeyer, S.J. (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer cell 2: 183-192.

Li, H., Zhu, H., Xu, C.J. and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491-501.

Li, M., Luo, J., Brooks, C.L. and Gu, W. (2002). Acetylation of p53 inhibits its ubiquitination by Mdm2. The Journal of biological chemistry 277: 50607-50611.

Li, Y., Qu, X., Qu, J., Zhang, Y., Liu, J., Teng, Y., Hu, X., Hou, K. and Liu, Y. (2009). Arsenic trioxide induces apoptosis and G2/M phase arrest by inducing Cbl to inhibit PI3K/Akt signaling and thereby regulate p53 activation. Cancer letters 284: 208-215.

Liang, C., Liao, J., Deng, Z., Song, C., Zhang, J., Zabeau, L., Tavernier, J., Zhang, K., Xue, H. and Yan, G. (2013). Leptin attenuates lipopolysaccharide-induced apoptosis of thymocytes partially via down-regulation of cPLA2 and p38 MAPK activation. International immunopharmacology.

Lima, C.D. and Reverter, D. (2008). Structure of the human SENP7 catalytic domain and poly-SUMO deconjugation activities for SENP6 and SENP7. The Journal of biological chemistry 283: 32045-32055.

Liou, M.L. and Liou, H.C. (1999). The ubiquitin-homology protein, DAP-1, associates with tumor necrosis factor receptor (p60) death domain and induces apoptosis. The Journal of biological chemistry 274: 10145-10153.

Liu, Y., Hock, J.M., Sullivan, C., Fang, G., Cox, A.J., Davis, K.T., Davis, B.H. and Li, X. (2010). Activation of the p38 MAPK/Akt/ERK1/2 signal pathways is required for the protein stabilization of CDC6 and cyclin D1 in low-dose arsenite-induced cell proliferation. Journal of cellular biochemistry 111: 1546-1555.

Liu, Y., Zhang, W., Zhang, X., Qi, Y., Huang, D. and Zhang, Y. (2011). Arsenic trioxide inhibits invasion/migration in SGC-7901 cells by activating the reactive oxygen species-dependent cyclooxygenase-2/matrix metalloproteinase-2 pathway. Exp Biol Med (Maywood) 236: 592-597.

Lunghi, P., Giuliani, N., Mazzera, L., Lombardi, G., Ricca, M., Corradi, A., Cantoni, A.M., Salvatore, L., Riccioni, R., Costanzo, A., Testa, U., Levrero, M., Rizzoli, V. and Bonati, A. (2008). Targeting MEK/MAPK signal transduction module potentiates ATO-induced apoptosis in multiple myeloma cells through multiple signaling pathways. Blood 112: 2450-2462.

Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481-490.

MacFarlane, M., Cohen, G.M. and Dickens, M. (2000). JNK (c-Jun N-terminal kinase) and p38 activation in receptor-mediated and chemically-induced apoptosis of T-cells: differential requirements for caspase activation. The Biochemical journal 348 Pt 1: 93-101.

Maeda, H., Hori, S., Nishitoh, H., Ichijo, H., Ogawa, O., Kakehi, Y. and Kakizuka, A. (2001). Tumor growth inhibition by arsenic trioxide (As2O3) in the orthotopic metastasis model of androgen-independent prostate cancer. Cancer research 61: 5432-5440.

Mahajan, R., Delphin, C., Guan, T., Gerace, L. and Melchior, F. (1997). A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88: 97-107.

Maltzman, W. and Czyzyk, L. (1984). UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Molecular and cellular biology 4: 1689-1694.

Matunis, M.J., Coutavas, E. and Blobel, G. (1996). A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. The Journal of cell biology 135: 1457-1470.

Mbalaviele, G., Anderson, G., Jones, A., De Ciechi, P., Settle, S., Mnich, S., Thiede, M., Abu-Amer, Y., Portanova, J. and Monahan, J. (2006). Inhibition of p38 mitogen-activated protein kinase prevents inflammatory bone destruction. The Journal of pharmacology and experimental therapeutics 317: 1044-1053.

Melchior, F. (2000). SUMO--nonclassical ubiquitin. Annual review of cell and developmental biology 16: 591-626.

Melchior, F., Schergaut, M. and Pichler, A. (2003). SUMO: ligases, isopeptidases and nuclear pores. Trends in biochemical sciences 28: 612-618.

Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P. and Moll, U.M. (2003). p53 has a direct apoptogenic role at the mitochondria. Molecular cell 11: 577-590.

Miyashita, T. and Reed, J.C. (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293-299.

Morales, A.A., Gutman, D., Lee, K.P. and Boise, L.H. (2008). BH3-only proteins Noxa, Bmf, and Bim are necessary for arsenic trioxide-induced cell death in myeloma. Blood 111: 5152-5162.

Morales, A.A., Gutman, D., Cejas, P.J., Lee, K.P. and Boise, L.H. (2009). Reactive oxygen species are not required for an arsenic trioxide-induced antioxidant response or apoptosis. The Journal of biological chemistry 284: 12886-12895.

Mukhopadhyay, D., Ayaydin, F., Kolli, N., Tan, S.H., Anan, T., Kametaka, A., Azuma, Y., Wilkinson, K.D. and Dasso, M. (2006). SUSP1 antagonizes formation of highly SUMO2/3-conjugated species. The Journal of cell biology 174: 939-949.

Muller, S., Matunis, M.J. and Dejean, A. (1998). Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. The EMBO journal 17: 61-70.

Muller, S., Hoege, C., Pyrowolakis, G. and Jentsch, S. (2001). SUMO, ubiquitin's mysterious cousin. Nature reviews Molecular cell biology 2: 202-210.

Muratani, M., Gerlich, D., Janicki, S.M., Gebhard, M., Eils, R. and Spector, D.L. (2002). Metabolic-energy-dependent movement of PML bodies within the mammalian cell nucleus. Nature cell biology 4: 106-110.

Muzio, M., Chinnaiyan, A.M., Kischkel, F.C., O'Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J.D., Zhang, M., Gentz, R., Mann, M., Krammer, P.H., Peter, M.E. and Dixit, V.M. (1996). FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex. Cell 85: 817-827.

Nakano, K. and Vousden, K.H. (2001). PUMA, a novel proapoptotic gene, is induced by p53. Molecular cell 7: 683-694.

Negorev, D. and Maul, G.G. (2001). Cellular proteins localized at and interacting within ND10/PML nuclear bodies/PODs suggest functions of a nuclear depot. Oncogene 20: 7234-7242.

Noguchi, T., Ishii, K., Fukutomi, H., Naguro, I., Matsuzawa, A., Takeda, K. and Ichijo, H. (2008). Requirement of reactive oxygen species-dependent activation of ASK1-p38 MAPK pathway for extracellular ATP-induced apoptosis in macrophage. The Journal of biological chemistry 283: 7657-7665.

Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T. and Tanaka, N. (2000). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288: 1053-1058.

Oh, K.J., Barbuto, S., Pitter, K., Morash, J., Walensky, L.D. and Korsmeyer, S.J. (2006). A membrane-targeted BID BCL-2 homology 3 peptide is sufficient for high potency activation of BAX in vitro. The Journal of biological chemistry 281: 36999-37008.

Okura, T., Gong, L., Kamitani, T., Wada, T., Okura, I., Wei, C.F., Chang, H.M. and Yeh, E.T. (1996). Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol 157: 4277-4281.

Perfettini, J.L., Castedo, M., Nardacci, R., Ciccosanti, F., Boya, P., Roumier, T., Larochette, N., Piacentini, M. and Kroemer, G. (2005). Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope. The Journal of experimental medicine 201: 279-289.

Piccirillo, S., Filomeni, G., Brune, B., Rotilio, G. and Ciriolo, M.R. (2009). Redox mechanisms involved in the selective activation of Nrf2-mediated resistance versus p53-dependent apoptosis in adenocarcinoma cells. The Journal of biological chemistry 284: 27721-27733.

Platanias, L.C. (2009). Biological responses to arsenic compounds. The Journal of biological chemistry 284: 18583-18587.

Pradelli, L.A., Beneteau, M. and Ricci, J.E. (2010). Mitochondrial control of caspase-dependent and -independent cell death. Cellular and molecular life sciences : CMLS 67: 1589-1597.

Ramos, A.M., Fernandez, C., Amran, D., Esteban, D., de Blas, E., Palacios, M.A. and Aller, P. (2006). Pharmacologic inhibitors of extracellular signal-regulated kinase (ERKs) and c-Jun NH(2)-terminal kinase (JNK) decrease glutathione content and sensitize human promonocytic leukemia cells to arsenic trioxide-induced apoptosis. Journal of cellular physiology 209: 1006-1015.

Reineke, E.L. and Kao, H.Y. (2009). Targeting promyelocytic leukemia protein: a means to regulating PML nuclear bodies. International journal of biological sciences 5: 366-376.

Ridley, S.H., Sarsfield, S.J., Lee, J.C., Bigg, H.F., Cawston, T.E., Taylor, D.J., DeWitt, D.L. and Saklatvala, J. (1997). Actions of IL-1 are selectively controlled by p38 mitogen-activated protein kinase: regulation of prostaglandin H synthase-2, metalloproteinases, and IL-6 at different levels. J Immunol 158: 3165-3173.

Rodriguez, M.S., Desterro, J.M., Lain, S., Midgley, C.A., Lane, D.P. and Hay, R.T. (1999). SUMO-1 modification activates the transcriptional response of p53. The EMBO journal 18: 6455-6461.

Rohwer, N., Dame, C., Haugstetter, A., Wiedenmann, B., Detjen, K., Schmitt, C.A. and Cramer, T. (2010). Hypoxia-inducible factor 1alpha determines gastric cancer chemosensitivity via modulation of p53 and NF-kappaB. PloS one 5: e12038.

Saito, S., Yamaguchi, H., Higashimoto, Y., Chao, C., Xu, Y., Fornace, A.J., Jr., Appella, E. and Anderson, C.W. (2003). Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. The Journal of biological chemistry 278: 37536-37544.

Salomoni, P. and Pandolfi, P.P. (2002). The role of PML in tumor suppression. Cell 108: 165-170.

Sax, J.K., Fei, P., Murphy, M.E., Bernhard, E., Korsmeyer, S.J. and El-Deiry, W.S. (2002). BID regulation by p53 contributes to chemosensitivity. Nature cell biology 4: 842-849.

Schindler, J.F., Godbey, A., Hood, W.F., Bolten, S.L., Broadus, R.M., Kasten, T.P., Cassely, A.J., Hirsch, J.L., Merwood, M.A., Nagy, M.A., Fok, K.F., Saabye, M.J., Morgan, H.M., Compton, R.P., Mourey, R.J., Wittwer, A.J. and Monahan, J.B. (2002). Examination of the kinetic mechanism of mitogen-activated protein kinase activated protein kinase-2. Biochimica et biophysica acta 1598: 88-97.

Schindler, J.F., Monahan, J.B. and Smith, W.G. (2007). p38 pathway kinases as anti-inflammatory drug targets. Journal of dental research 86: 800-811.

Schoen, A., Beck, B., Sharma, R. and Dube, E. (2004). Arsenic toxicity at low doses: epidemiological and mode of action considerations. Toxicology and applied pharmacology 198: 253-267.

Schuler, M. and Green, D.R. (2005). Transcription, apoptosis and p53: catch-22. Trends in genetics : TIG 21: 182-187.

Seeler, J.S. and Dejean, A. (2003). Nuclear and unclear functions of SUMO. Nature reviews Molecular cell biology 4: 690-699.

Shen, T.H., Lin, H.K., Scaglioni, P.P., Yung, T.M. and Pandolfi, P.P. (2006). The mechanisms of PML-nuclear body formation. Molecular cell 24: 331-339.

Shen, Z.Y., Shen, J., Cai, W.J., Hong, C. and Zheng, M.H. (2000). The alteration of mitochondria is an early event of arsenic trioxide induced apoptosis in esophageal carcinoma cells. International journal of molecular medicine 5: 155-158.

Shieh, S.Y., Ikeda, M., Taya, Y. and Prives, C. (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91: 325-334.

Smith, A.H., Hopenhayn-Rich, C., Bates, M.N., Goeden, H.M., Hertz-Picciotto, I., Duggan, H.M., Wood, R., Kosnett, M.J. and Smith, M.T. (1992). Cancer risks from arsenic in drinking water. Environmental health perspectives 97: 259-267.

Song, J., Durrin, L.K., Wilkinson, T.A., Krontiris, T.G. and Chen, Y. (2004). Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proceedings of the National Academy of Sciences of the United States of America 101: 14373-14378.

Song, J., Zhang, Z., Hu, W. and Chen, Y. (2005). Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. The Journal of biological chemistry 280: 40122-40129.

Soussi, T. and Wiman, K.G. (2007). Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer cell 12: 303-312.

Sprick, M.R., Rieser, E., Stahl, H., Grosse-Wilde, A., Weigand, M.A. and Walczak, H. (2002). Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. The EMBO journal 21: 4520-4530.

Stehmeier, P. and Muller, S. (2009). Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Molecular cell 33: 400-409.

Sternsdorf, T., Jensen, K. and Will, H. (1997). Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. The Journal of cell biology 139: 1621-1634.

Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D.R., Aebersold, R., Siderovski, D.P., Penninger, J.M. and Kroemer, G. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441-446.

Tibbetts, R.S., Brumbaugh, K.M., Williams, J.M., Sarkaria, J.N., Cliby, W.A., Shieh, S.Y., Taya, Y., Prives, C. and Abraham, R.T. (1999). A role for ATR in the DNA damage-induced phosphorylation of p53. Genes & development 13: 152-157.

Tourian, L., Jr., Zhao, H. and Srikant, C.B. (2004). p38alpha, but not p38beta, inhibits the phosphorylation and presence of c-FLIPS in DISC to potentiate Fas-mediated caspase-8 activation and type I apoptotic signaling. Journal of cell science 117: 6459-6471.

Ulrich, H.D. (2009). The SUMO system: an overview. Methods Mol Biol 497: 3-16.

Underwood, D.C., Osborn, R.R., Bochnowicz, S., Webb, E.F., Rieman, D.J., Lee, J.C., Romanic, A.M., Adams, J.L., Hay, D.W. and Griswold, D.E. (2000). SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. American journal of physiology Lung cellular and molecular physiology 279: L895-902.

Uslu, R., Sanli, U.A., Sezgin, C., Karabulut, B., Terzioglu, E., Omay, S.B. and Goker, E. (2000). Arsenic trioxide-mediated cytotoxicity and apoptosis in prostate and ovarian carcinoma cell lines. Clinical cancer research : an official journal of the American Association for Cancer Research 6: 4957-4964.

Verger, A., Perdomo, J. and Crossley, M. (2003). Modification with SUMO. A role in transcriptional regulation. EMBO reports 4: 137-142.

Vogelstein, B., Lane, D. and Levine, A.J. (2000). Surfing the p53 network. Nature 408: 307-310.

Vousden, K.H. and Prives, C. (2009). Blinded by the Light: The Growing Complexity of p53. Cell 137: 413-431.

Walensky, L.D., Pitter, K., Morash, J., Oh, K.J., Barbuto, S., Fisher, J., Smith, E., Verdine, G.L. and Korsmeyer, S.J. (2006). A stapled BID BH3 helix directly binds and activates BAX. Molecular cell 24: 199-210.

Wang, K., Yin, X.M., Chao, D.T., Milliman, C.L. and Korsmeyer, S.J. (1996a). BID: a novel BH3 domain-only death agonist. Genes & development 10: 2859-2869.

Wang, X.Z. and Ron, D. (1996b). Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science 272: 1347-1349.

Wang, Z.Y. and Chen, Z. (2008). Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111: 2505-2515.

Wen, J., Cheng, H.Y., Feng, Y., Rice, L., Liu, S., Mo, A., Huang, J., Zu, Y., Ballon, D.J. and Chang, C.C. (2008). P38 MAPK inhibition enhancing ATO-induced cytotoxicity against multiple myeloma cells. British journal of haematology 140: 169-180.

Wiesmeijer, K., Molenaar, C., Bekeer, I.M., Tanke, H.J. and Dirks, R.W. (2002). Mobile foci of Sp100 do not contain PML: PML bodies are immobile but PML and Sp100 proteins are not. Journal of structural biology 140: 180-188.

Wilkinson, K.A. and Henley, J.M. (2010). Mechanisms, regulation and consequences of protein SUMOylation. The Biochemical journal 428: 133-145.

Willis, S.N. and Adams, J.M. (2005). Life in the balance: how BH3-only proteins induce apoptosis. Current opinion in cell biology 17: 617-625.

Woo, C.H. and Abe, J. (2010). SUMO--a post-translational modification with therapeutic potential? Current opinion in pharmacology 10: 146-155.

Wu, X., Shi, J., Wu, Y., Tao, Y., Hou, J., Meng, X., Hu, X., Han, Y., Jiang, W., Tang, S., Zangari, M., Tricot, G. and Zhan, F. (2010). Arsenic trioxide-mediated growth inhibition of myeloma cells is associated with an extrinsic or intrinsic signaling pathway through activation of TRAIL or TRAIL receptor 2. Cancer biology & therapy 10: 1201-1214.

Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J. and Greenberg, M.E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326-1331.

Xu, L., Pathak, P.S. and Fukumura, D. (2004). Hypoxia-induced activation of p38 mitogen-activated protein kinase and phosphatidylinositol 3'-kinase signaling pathways contributes to expression of interleukin 8 in human ovarian carcinoma cells. Clinical cancer research : an official journal of the American Association for Cancer Research 10: 701-707.

Yang, M., Hsu, C.T., Ting, C.Y., Liu, L.F. and Hwang, J. (2006). Assembly of a polymeric chain of SUMO1 on human topoisomerase I in vitro. The Journal of biological chemistry 281: 8264-8274.

Yang, Y.P., Liang, Z.Q., Gao, B., Jia, Y.L. and Qin, Z.H. (2008). Dynamic effects of autophagy on arsenic trioxide-induced death of human leukemia cell line HL60 cells. Acta pharmacologica Sinica 29: 123-134.

Youle, R.J. and Strasser, A. (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nature reviews Molecular cell biology 9: 47-59.

Zhang, F.P., Mikkonen, L., Toppari, J., Palvimo, J.J., Thesleff, I. and Janne, O.A. (2008). Sumo-1 function is dispensable in normal mouse development. Molecular and cellular biology 28: 5381-5390.

Zheng, Y., Zhou, M., Ye, A., Li, Q., Bai, Y. and Zhang, Q. (2010). The conformation change of Bcl-2 is involved in arsenic trioxide-induced apoptosis and inhibition of proliferation in SGC7901 human gastric cancer cells. World journal of surgical oncology 8: 31.

Zhong, S., Muller, S., Ronchetti, S., Freemont, P.S., Dejean, A. and Pandolfi, P.P. (2000). Role of SUMO-1-modified PML in nuclear body formation. Blood 95: 2748-2752.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.108.168
論文開放下載的時間是 校外不公開

Your IP address is 18.191.108.168
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code