Responsive image
博碩士論文 etd-0521113-202205 詳細資訊
Title page for etd-0521113-202205
論文名稱
Title
以蒽為主幹之螢光基團的群聚增強發光
Anthracene-Based Luminogen with Aggregation-Enhanced Emission
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-20
繳交日期
Date of Submission
2013-06-25
關鍵字
Keywords
赫克偶聯反應、物理交聯、熒光、氫鍵、限制分子轉動、群聚誘導發光
hydrogen-bond, Aggregation-Induced Emission, restricted molecular rotation, fluorescence, Heck coupling, physical crosslinked
統計
Statistics
本論文已被瀏覽 5695 次,被下載 90
The thesis/dissertation has been browsed 5695 times, has been downloaded 90 times.
中文摘要
為了瞭解氫鍵作用力在於限制分子內轉動的影響,我們利用赫克偶聯反應來進一步設計一系列具有群聚誘導發光性質的分子進而使用氫鍵來限制分子內轉動而有發光增強的趨勢。而我們設計了兩個分子來進行其實驗,其中第一個分子具有兩個吡啶基團的氫鍵接受者而另一個分子則具有兩個苯酚基團的氫鍵提供者。在第二章的實驗中,發光分子的吡啶基團扮演了氫鍵接受者將會和Bisphenol A以及Polyvinylphenol有氫鍵作用力而形成直線狀的非共價鍵以及物理交聯進而探討其群聚發光增強的現象。而在第三章中,Poly(vinylpyrrolidone)可以和具有兩個苯酚基團的發光基團形成強氫鍵作用力進而形成物理交聯並有發光增強的現象。兩組實驗皆可以用不同的儀器分析來探討其物理性質以及群聚發光性質的研究。
Abstract
In regards to the role of H-bond interaction as restriction forces on molecular rotation, we thereby explore further possibilities of using this facile strategy to generate AEE-active fluorescence systems with enhanced emissions. We used typical Heck coupling reaction to synthesis two different systems based on the facile H-bond interaction between H-bond donating hydroxyl and H-bond accepting pyridine functions are illustrated in this research. In chapter 2, an AEE-active dipyridine fluorophore was used to H-bond to monomeric diphenol (bisphenol A, BPA) and poly(vinyl phenol) (PVPh) to generate pseudo-linear and crosslinked systems, respectively, with beneficial AEE-active strong fluorescence. Instead of diphenol fluorophore, AEE-active diphenol compound was used in Chapter 3 as the fluorescent component to react with poly(vinylpyrrolidone) to generate peudo-crosslinked network with strong fluorescence. Both systems described in Chapter 2 and 3 are all subjected to different instrumentation analyses to identify the restricted molecular rations and the related enhanced emissions.
目次 Table of Contents
Table of Contents…………….....……………………………………………….i
List of Figure…………………………………...……………………………….iv
List of Table…………………………………………………………….……....vii
Abstract (In Chinese)…………………………………..…...…...…………….viii
Abstract (In English)……..……….…………………………..……….…..…….ix
Experiment section………………...………………………….………....……...x
Chapter 1 Background of aggregation-induced-emission (AIE) and restrict of molecular rotation by hydrogen-bonding interaction……………..…...…...1
1-1 Formation mechanism of aggregation caused quenching (ACQ).....…..1
1-2 Aggregation-Induced Emission (AIE)………………………...…...……....4
1-3 Hydrogen Bonds to enhance aggregation emission……………..……...6
1-4 Mutual Hydrogen-Bond Interactions to restrict molecular rotation….…...9
Chapter 2 Enhanced emission of a pyridine-based luminogen by hydrogen-bonding to organic and polymeric phenols.....................................................12
2-1 Introduction and motivation…………………………...…………..………17
2-2 Synthesis………………………………………………………………......17
2-2-a Synthesis of 9,10-Dibromoanthracene(An2Br)………………………17
2-2-b Synthesis of 9,10-bis((E)-2-(pyridin-4-yl)vinyl)anthracene (An2Py)…19
2-3 Discussion………………………………………...………….………...…19
2-3-a AIEE property of An2Py…………….....……………………..……...…19
2-3-b Blending of An2Py to small-mass bisphenol-A (BPA)…………...…..22
2-3-c An2Py to poly(vinyl phenol) (PVPh)………………...…....…………….32
2-3-d Qualitative comparisons on the An2Py/BPA, An2Py/PVPh and previous PFN/PVP systems……………………….……….…….…………..39
2-4 Conclusion…………………………………..…………………...………..42
Chapter 3 Enhanced Emission and Restrict Molecular Rotation in a Phenol-Based Luminogen by Hydrogen-Bond Interaction to Poly(vinylpyrrolidone.43
3-1 Introduction and motivation…………………………………….…...….…43
3-2 Synthesis…………………………………………………………..………45
3-2-a Synthesis of 4-(hexyloxy)benzaldehyde (HBA)……………..…..…….45
3-2-b Synthesis of 1-(hexyloxy)-4-vinylbenzene (HVB)………..………..…..45
3-2-c Synthesis of 9,10-bis(4-(hexyloxy)styryl)anthracene (An2OC6)…..…46
3-2-d Synthesis of 9,10-bis(4-hydroxystyryl)anthracene (An2OH)……....…47
3-3 Discussion………………………………………………….……..…...….49
3-3-a AIEE property of An2OH……………………..……………….....……..49
3-3-b An2Py to poly(vinylpyrrolidone) (PVP)………………………......…….52
3-4 Conclusion…………………………………….…………………..………56
References……………………………………..………….……….....….…....60
Supporting information…………...….………………………………………..66

Figure 1-1 Chematic diagrams for the sandwich-shaped excimers of pyrene....................................................................................................................3
Figure 1-2 Excimer formation with the corresponding monomer and excimer emissions………………………………………………………………..………3
Figure 1-3 Chematic diagrams for aggregate formation between fluorophore segments of inter- chain and intra chain………………….......….3
Figure 1-4 Planar luminogens such as pyrene tend to ACQ characteristic. Whereas nonplanar luminogens such as HPS behavior AIE phenomenon...5
Figure 1-5 HPS in the acetonitrile/water mixtures containing different volume fractions of water; photographs taken under UV illuminatio…….......5
Figure 1-6 Fluorescent emission spectra of (A) FN and (B) PFN films at different temperatures (excited at 350 nm)………………………....………...7
Figure 1-7 Hydroxyl-OH stretching bands of (A) FN and (B) PFN films at different temperatures…………………………………………..……………...7
Figure 1-8 Fluorescent emission spectra and hydroxyl stretching bands (insets) of (A) the FN and (B) the PFN films prepared from different preparative solution states (excited at 350 nm)……………………….......….8
Figure 1-9 (A) Chemical structure of PFN and (B) the hydrogen-bond interactions between PFN and PVR…………………..………………...…...10
Figure 1-10 1H NMR spectra of PFN (10-3M in CDCl3) solution in the presence of different amounts of PVP…………….………..……..………...11
Figure 2-1 (A) Structure of PFN and (B) synthesis of An2Py and its mixing with BPA and PVPh to form An2Py/BPA(x/y) and An2Py/PVPh(x/y)blends, respectively.....................................................................................................…16
Figure 2-2 (A) The PL emission spectra and (B) the hydrodynamic diameters of An2Py (10-6M) in CH3CN/H2O solvent mixtures of different volumetric (v/v) ratios.........................................................................................21
Figure 2-3 The emission spectra of (A) solution (with [An2Py] = 10-5 M) and (B) solid An2Py/BPA(x/y) of different compositions (excited at 400 nm)....29
Figure 2-4 Solution 1H NMR spectra of (A) An2Py (= 10-5 M), (B) BPA (= 10-5 M) and (C) An2Py/BPA(1/1) mixture (THF-d8)………..................……30
Figure 2-5 Wide-angle X-ray diffraction spectra of BPA, An2Py and An2Py/BPA(x/y) solids of different compositions…………..………..……...30
Figure 2-6 Infrared spectra of solid An2Py/BPA(x/y) blends on (A) the hydroxyl OH and (B) the pyridine absorptions…………….…………..……..31
Figure 2-7 The emission spectra of (A) solution An2Py/PVPh(x/y) ([An2Py] = 10-5 M) and (b) solid An2Py/PVPh(x/y) of different compositions (excited at 400 nm)….................................................................................................…..36
Figure 2-8 Wide-angle X-ray diffraction spectra of An2Py, PVPh and An2Py/PVPh(x/y) blends of different composition………………...……...…38
Figure 2-9 Solid infrared spectra of An2Py/PVPh(x/y) blends on (A) the hydroxyl OH and (B) the pyridine absorptions………………………...……..38
Figure 3-1 Synthesis of 9,10-bis(4-hydroxystyryl)anthracene (An2OH) and its blend with PVP……….…………………......……………….....…………..44
Figure 3-2 (A) The PL emission spectra (excited at 400 nm) and (B) the hydrodynamic diameters of An2OH (10-4M) in CH3CN/H2O solvent mixtures of different volumetric (v/v) ratios……….………………...………..51
Figure 3-3 The emission spectra of solid An2OH/PVP(x/y) of different compositions (excited at 400 nm)……………………….……..…………….57
Figure 3-4 Solid infrared spectra of An2OH/PVP(x/y) blends on (A) the hydroxyl OH and (B) the carbonyl absorptions……………….……….……..57
Figure 3-5 Wide-angle X-ray diffraction spectra of An2OH, PVP and An2OH/PVP(x/y) solids of different compositions……………..………...….58

Table 1-1 Quantum yields (ΦF) of the solid An2Py/BPA and An2Py/PVPh blends.............................................................................................................….41
Table 2-1 Quantum yields (ΦF) of the solid An2OH/PVP blends……...…..59
Table 2-2 Curve-Fitting of blend with different PVP………………….…..…59
參考文獻 References
(1) Th. Förster and K. Kasper, Z. Phys. Chem. (Munich), 1954, 1, 275.
(2) J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London, 1970.
(3) J. Malkin, Photophysical and Photochemical Properties of Aromatic Compounds, CRC, Boca Raton, 1992.
(4) J. D. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem. Commun., 2001, 1740.
(5) B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu and D. Zhu, J. Mater. Chem, 2001, 11, 2974.
(6) R. H. Chien, C. T. Lai and J. L. Hong, J. Phys. Chem. C, 2011, 115, 12358.
(7) R. H. Chien, C. T. Lai and J. L. Hong, J. Phys. Chem. C, 2011, 115, 20732.
(8) J. He, B. Xu, F. Chen, H. Xia, K. Li, L. Ye and W. J. Tian, J. Phys. Chem. C, 2009, 113, 9892.
(9) J. D. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, , C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem. Commun., 2001, 1740.
(10) B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu and D. Zhu, J. Mater. Chem. 2001, 11, 2974.
(11) J. Wu, W. Liu, J. Ge, H. Zhang and P. Wang, Chem. Soc. Rev., 2011, 40, 3483.
(12) Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Commun.,2009, 4332.
(13) J. Liu, J. W. Y. Lam and B. Z. Tang, J. Inorg. Organomet. Polym., 2009, 19, 249.
(14) A. Qin, J. W. Y. Lam and B. Z. Tang, Progress in Polymer Science, 2012, 37, 182.
(15) C. J. Bhongale and C. S. Hsu, Angew. Chem Int. Ed., 2006, 45, 1404.
(16) S. Dong, Z. Li and J. Qin, J. Phys. Chem. B, 2009, 113, 434.
(17) B. K. An, S. K. Kwon, S. D. Jung and S. Y. Park, J. Am. Chem. Soc., 2002, 124, 14410.
(18) Z. Wang, H. Shao, J. Ye, L. Tang and P. Lu, J. Phys. Chem. B, 2005, 109, 19627.
(19) C. X. Yuan, X. T. Tao, L. Wang, J. X. Yang and M. H. Jiang, J. Phys. Chem. C, 2009, 113, 6809.
(20) Z. Yang, Z. Chi, T. Yu, X. Zhang, M. Chen, B. Xu, S. Liu, Y. Zhang and J. Xu, J. Mater. Chem., 2009, 19, 5541.
(21) W. Z. Yuan, P. Lu, S. Chen, J. W. Y. Lam, Z. Wang, Y. Liu, H. S. Kwok, Y. Ma and B. Z. Tang, Adv. Mater., 2010, 22, 2159.
(22) B. Xu, Z. Chi, Z. Yang, J. Chen, S. Deng, H. Li, X. Li, Y. Zhang, N. Xu and J. Xu, J. Mater. Chem., 2010, 20, 4135.
(23) Z. Zhao, S. Chen, J. W. Y. Lam, C. K. W. Jim, C. Y. K. Chan, Z. Wang, P. Lu, C. Deng, H. S. Kwok, Y. Ma and B. Z. Tang, J. Phys.Chem. C, 2010, 114, 7963.
(24) W. Wang, T. Lin, M. Wang, T. X. Liu, L. Ren, D. Chen and S. Huang, J. Phys. Chem. B, 2010, 114, 5983.
(25) K. Kokado and Y. Chujo, Macromolecules, 2009, 42, 1418.
(26) A. Pucci, R. Rausa and F. Ciardelli, Macromol.Chem.Phys., 2008, 209, 900.
(27) J. Liu, Y. Zhong, J. W. Y. Lam, P. Lu, Y. Hong, Y. Yu, Y. Yue, M. Faisal, H. H. Y. Sung, I. D. Williams, K. S. Wong and B. Z. Tang, Macromolecules, 2010, 43, 4921.
(28) C. T. Lai and J. L. Hong, J. Phys. Chem. B, 2010, 114, 10302.
(29) C. A. Chou, R. H. Chien, C. T. Lai and J. L. Hong, Chem. Phys. Lett., 2010, 501, 80.
(30) T. Liu, X. Tao, F. Wang, X. Dang, D. Zou, Y. Ren and M. Jiang, J. Phys. Chem. C, 2008, 112, 3975.
(31) P. Chen, R. Lu, P. Xue, T. Xu, G. Chen and Y. Zhao, Langmuir, 2009, 25, 8395.
(32) F. Camerel, L. Bonardi, M. Schmutz and R. Ziessel, J. Am. Chem. Soc., 2006, 128, 4548.
(33) P. Zhang, H. Wang, H. Liu and M. Li, Langmuir, 2010, 26, 10183.
(34) H. H. Fang, Q. D. Chen, J. Yang, H. Xia, B. R. Gao, J. Feng, Y. G. Ma and H. B. Sun, J. Phys. Chem. C, 2010, 114, 11958.
(35) Z. Yang, Z. Chi, B. Xu, H. Li, X. Zhang, X. Li, S. Liu, Y. Zhang and J. Xu, J. Mater. Chem., 2010, 20, 7352.
(36) C. T. Lai and J. L. Hong, J. Mater. Chem., 2012, 22, 9546.
(37) H. Li, Z. Chi, B. Xu, X. Zhang, Z. Yang, X. Li, S. Liu, Y. Zhang and J. Xu, J. Mater. Chem., 2010, 20, 6103.
(38) S. Dong, Z. Li and J. Qin, J. Phys. Chem. B, 2009, 113, 434.
(39) Q. Zeng, Z. Li, Y. Dong, C. Di, A. Qin, Y. Hong, L. Ji, Z. Zhu and C. Jim, G. Yu, Chem. Commun., 2007, 70.
(40) J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Chem. Mater., 2003, 15, 1535.
(41) Z. Li, Y. Dong, B. Mi, Y. Tang, M. Haüssler, H. Tong, Y. Dong, J. W. Y. Lam, Y. Ren, H. H. Y. Sung, K. S. Wong, P. Gao, I. D. Williams, H. S. Kwok and B. Z. Tang., J. Phys. Chem. B, 2005, 109, 10061.
(42) Y. Liu, X. Tao, F. Wang, J. Shi, J. Sun, W. Yu, Y. Ren, D. Zou and M. Jiang, J. Phys. Chem. C, 2007, 111, 6544.
(43) P. Chen, R. Lu, P. Xue, T. Xu, G. Chen, and Y. Zhao, Langmuir, 2009, 25, 8395.
(44) P. Zhang, H. Wang, H. Liu and M. Li, Langmuir, 2010, 26, 10183.
(45) T. H. Kim, M. S. Choi, B. H. Sohn and S.Y. Park, W. S. Lyoo and T. S. Lee, Chem.Commun., 2008, 2364.
(46) J. H. Wan, L. Y. Mao, Y. B. Li, Z. F. Li, H. Y. Qiu, C. Wang, and G. Q. Lai, Soft Matter, 2010, 6, 3195.
(47) M. K. J. Nayak, Photochem. Photobio A: Chem., 2011, 217, 40.
(48) D. Stern, N. Finkelmeier and D. Stalke, Chem. Commun. 2011, 47, 2113.
(49) J. He, B. Xu, F. Chen, H. Xia, K. Li, L. Ye and W. J. Tian, J. Phys. Chem. C, 2009, 113, 9892.
(50) J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Chem. Mater., 2003, 15, 1535.
(51) C. T. Lai and J. L. Hong, J. Mater. Chem., 2012, 22, 9546.
(52) B. Fei, C. Chen, S. Peng, X. Zhao, X. Wang and L. Dong, Polym. Int., 2004, 53, 2092.
(53) W. C. Chen, S. W. Kuo, U. S. Jeng and F. C. Chang, Macromolecules, 2008, 41, 1401.
(54) C. H. Lu, S. W. Kuo, W. T. Chang and F. C. Chang, Macromol. RapidCommun., 2009, 30, 2121.
(55) W. C. Chen, S. W. Kuo, U. S. Jeng and F. C. Chang, Macromolecules, 2009, 42, 3580.
(56) H. G. Lu, B. Xu, Y. J. Dong, F. P. Chen, Y. W. Li, Z. F. Li, J. T. He, H. Li and W.J. Tian, Langmuir, 2010, 26, 6838.
(57) A. Mangalum, R. J. Gilliard, Jr., J. M. Hanley, A. M. Parker and R. C. Smith, Org. Biomol. Chem., 2010, 8, 5620.
(58) N. B. McKeown, S. Badriya, M. Helliwellb and M. Shkunovc, J. Mater. Chem., 2007, 17, 2088.
(59) S. W. Kuo, S. C. Chan and F. C. Chang, Polymer, 2002, 43, 3653.
(60) S. W. Kuo, J. Polym. Res., 2008, 15, 459.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code