Responsive image
博碩士論文 etd-0521118-004448 詳細資訊
Title page for etd-0521118-004448
論文名稱
Title
利用數值模型探討固體之溶解現象
The study of solid dissolution phenomenon by using numerical model
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-09
繳交日期
Date of Submission
2018-06-21
關鍵字
Keywords
回流區、碳溶解、形狀演變、數值模擬
recirculation zone, carbon dissolution, shape evolution, numerical simulation
統計
Statistics
本論文已被瀏覽 5635 次,被下載 0
The thesis/dissertation has been browsed 5635 times, has been downloaded 0 times.
中文摘要
本研究以二維軸對稱方式模擬碳粒在鐵水中的溶解現象,模型中使用層流模型搭配多孔介質模型,其碳的溶解率是由質量擴散速率控制,並比較文獻中球體的溶解現象,發現在低Re具有一致性的趨勢。
為了瞭解不同幾何對於溶解之影響,以特定流場下之不同幾何碳粒模擬其溶解過程中的形狀演變及原因。從模擬結果中發現,在高Re下碳溶解速率會受到回流區的影響;在低Re數下溶解速率則取決於碳粒與鐵水接觸表面積。此外,為了瞭解距離對於碳溶解之影響,故建立雙顆球體碳粒模型,探討球體在不同遠近時對於溶解過程之影響。依模擬結果顯示,在低Re及球體距離較近時,回流區處於高碳濃度,阻礙了下游球體的溶解速率,且呈現橢圓體型態,在距離較遠時,下游球體受到上游流場碳濃度影響較小,且球體發展成類似子彈型態。在高Re時,皆發展成錐體型態,此現象與碳濃度及回流區的影響有關。
更進一步探討球體粒徑大小對於溶解之影響,研究中將球體間距及流場固定下,分析其溶解趨勢發現在低Re,固定下游球體粒徑,將上游球體粒徑持續加大時,距離較近時皆需要耗費更長的時間進行溶解,且上游球體總是最先溶解完成,在高Re時,亦可觀察出相同情形。然而,當固定上游球體粒徑,改變下游球體粒徑,存在同時溶解完成的粒徑大小,當粒徑超過該值後,下游球體溶解所需時間將會大於上游球體的溶解時間。
Abstract
In this study, the dissolution of carbon particle in liquid iron was simulated in the two-dimensional model with axisymmetric assumption. The laminar model and the single-phase-porous-media model were used to simulate the dissolution, and the carbon dissolution rate was dictated by the mass diffusion rate. Comparisons of the results with related references have found similar trend at low Re number.
In order to understand the effects of various geometries on dissolution, the particle-shape evolution under the specific flow fields was observed. From the simulation results, the rate of carbon dissolution at high Re number was affected by the recirculation zone, and at low Re number the dissolution rate was depended on the magnitude of contact area between carbon particles and liquid iron. In addition, the dual-sphere carbon model was established to investigate the effect of sphere distance. It is found that the carbon concentration in the recirculation zone hinders the dissolution rate of the downstream sphere at low Re and in neighboring place, and it gradually developed into an ellipsoidal shape. At farther place, the upstream field has relatively little effect on downstream spheres. The sphere developed into a bullet type. At both of neighboring place and farther place at high Re, the sphere developed into a cone shape, and the reasons are related to the generation of recirculation zone and the carbon concentration.
This study further investigated the effect of sphere size on dissolution. The sphere space and flow field were fixed in this study, and the dissolution trend was analyzed. At low Re, the particle size of the downstream sphere was fixed and the particle size of the upstream sphere continued to increase, and it needed more time to dissolve not only at neighboring place but also at farther place. The upstream sphere completed the dissolution first, and the same situation can be observed at high Re. However, when the particle size of the upstream sphere was fixed and the diameter of the downstream sphere was changed, the specific particle size can dissolve in the same time. If the downstream particle size further increases, it has to spend more time to dissolve.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
符號說明 x
第一章 序論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.3.1轉爐發展與技術 3
1.3.2碳溶解機制 4
1.3.3其他物質縮減機制 6
1.4 研究背景與目的 8
1.5 本文架構 9
第二章 數學模型與求解方法 10
2.1數學模型 11
2.2模型假設與統御方程式 12
2.2.1模型假設 12
2.2.2統御方程式 13
2.3邊界條件 15
2.4數值方法 15
2.5格點測試 15
第三章 結果與討論 17
3.1滲透性倒數(1/C1)分析 18
3.2球體簡易關係式與暫態模型比較 21
3.3不同Re下各幾何所需之溶解時間 22
3.3.1 Re=6.19之碳溶解行為 24
3.3.2 Re=30.93之碳溶解行為 28
3.3.3 Re=61.86之碳溶解行為 32
3.3.4 Re=185.58之碳溶解行為 36
3.4間距對雙球體溶解行為之影響 40
3.4.1雙球體在Re=6.19流場下之溶解 40
3.4.2雙球體在Re=185.58流場下之溶解 41
3.5不同球體顆粒深度對溶解之影響 45
3.5.1雙球體在Re=6.19流場下之溶解 45
3.5.2雙球體在Re=185.58流場下之溶解 51
第四章 結論與未來展望 57
第五章 參考文獻 59
附錄 61
參考文獻 References
[1] 賴昂志,鐵水中之碳溶解模式,碩士論文,國立中山大學機械與機電研究所,高雄,2014。
[2] 黃敬堯,廢輪胎導入鋼液溶化製程之模型建立與數值模擬,碩士論文,國立中山大學機械與機電研究所,高雄,2015。
[3] 侯正豪, 碳氫氣體在底吹氧氣煉鋼製程中的作用,碩士論文,國立中山大學機械與機電研究所,高雄,2016。
[4] 雷亞,煉鋼學,治金工業出版社,2010。
[5] 野崎努,底吹轉爐法引進·攪拌效果·頂底複合吹煉,治金工業出版社,2008。
[6] H. Sun, K. Mori, V. Sahajwalla and R. D. Pehlke, Carbon Solution in Liquid Iron and Iron Alloys, High Temperature Materials and Processes, Vol. 17, pp. 257-270, 1998.
[7] G. Olsson, V. Koump and T. F. Perzak, Transactions of the Metallurgical Society of AIME, Vol. 236, pp. 426-429, 1966.
[8] H. W. Gudenau, J. P. Mulanza and D. G. R.Sharma, Carburization of Hot Metal by Industrial and Special Cokes, Steel Research Vol. 61, pp. 97-107, 1990.
[9] S. Orsten and F. Oeters, Behaveiour of coal particals blown into liquid iron. Presented at W.O. Philbrook Memorial Symposium Conference Proceedings, Proceeding, Iron and Steel Society, Toronto, Ontario Canada, pp. 27-38, 1988.
[10] H. Sun, Analysis of reaction rate between solid carbon and molten iron by mathematical models, ISIJ International, Vol. 45, pp. 1482-1488, 2005.
[11] M. Inoue and K. Mori, Handbook of Physical Properties of Molten iron and Molten Slag, ISIJ International, Tokyo, pp. 86-106, 1971.
[12] C. Wu, and V. Sahajwalla, Dissolution rates of coals and graphite in Fe-C-S melts in direct ironmaking: Influence of melt carbon and sulfur on carbon dissolution, Metallurgical and Materials Transactions, Vol. 31, pp. 243-251, 2000.
[13] V. Sahajwalla, F. McCarthy, S.T. Cham, J. Hart, R. Sakurovs, N. Saha-Chaudhury, , Influence of Carbonaceous Materials on Carburisation of Liquid Iron, International Blast Furnace Lower zone Symposium AusIMM, Wollongong, Australia, pp. 12.11-12.14, 2002.
[14] 劉永章,孫海平,林繼正,鐵水中噴吹碳粉種類對溶解速率的影響研究,燃燒季刊Vol. 25, 2016.
[15] 許聖彥,賴昂志,陳金豐,蔡建雄,劉永章,數值模擬碳在鐵水中溶解情形, 第20屆計算流體力學研討會,南投,2014.
[16] 許聖彥,賴昂志,黃敬堯,蔡建雄,劉永章,王峻聲,以數值模擬研究碳在鐵水中的溶解現象,中國機械工程學會第三十一屆全國學術研討會,逢甲大學,2014。
[17] 賴昂志,許聖彥,黃敬堯,蔡建雄,劉永章,王峻聲,以數值模擬研究碳在鐵水中的溶解現象,燃燒季刊Vol. 25,2016。
[18] Y.L Hao and Y.X Tao, Heat transfer characteristics of melting ice spheres under forced and mixed convection, Journal of Heat Transfer, Vol. 124, No.5, pp. 891-903, 2002.
[19] L. Ristroph, M. N. J. Moore, S. Childress, M. J. Shelley and J. Zhang, Sculpting of an erodible body by flowing water, Proceedings of the National Academy of Sciences of the United States of America, Vol. 109, No.48, pp. 19606-19609, 2012.
[20] M.N.J. Moore, L. Ristroph, S. Childress, J.Zhang and M.J. Shelley, Self-similar evolution of a body eroding in a fluid flow. Physics of Fluids, Vol. 25, No.11 , pp. 116602-1-11602-25, 2013.
[21] J.M. Huang, M.N.J. Moore, L. Ristroph, Shape dynamics and scaling laws for a body dissolving in fluid flow, Journal of Fluid Mechanics, Vol. 765, 2015.
[22] M.N.J Moore, Riemann–Hilbert problems for the shapes formed by bodies dissolving melting and eroding in fluid flows. Communications on Pure and Applied Mathematics, Vol. 70, pp. 1810-1831, 2017.
[23] ANSYS FLUENT 16.Theory Guide.
[24] J.R Post, T. Peeters, Y. Yang, M.A Reuter, Hot metal flow in the blast furnace hearth: thermal and carbon dissolution effects on buoyancy flow and refractory wear, Third International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, pp. 433-440, 2003.
[25] S. Taneda, Experimental investigation of the wake behind a sphere at low Reynolds numbers, Journal of the Physical Society of Japan, Vol. 11, No. 10, pp. 1104-1108, 1956.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.148.105
論文開放下載的時間是 校外不公開

Your IP address is 18.117.148.105
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code