Responsive image
博碩士論文 etd-0521118-091514 詳細資訊
Title page for etd-0521118-091514
論文名稱
Title
鎂鋅釔合金中18R長程有序結構之變形機制與尺寸效應
Deformation mechanisms and sample size effects of Mg-Zn-Y 18R LPSO
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
197
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-10
繳交日期
Date of Submission
2018-06-21
關鍵字
Keywords
試片尺寸效應、鎂鋅釔合金、奈米壓痕、微米柱壓縮、18R長程有序結構、變形機制
Mg-Zn-Y alloys, 18R LPSO, micro-compression, sample size effect, deformation mechanism, nanoindentation
統計
Statistics
本論文已被瀏覽 5734 次,被下載 53
The thesis/dissertation has been browsed 5734 times, has been downloaded 53 times.
中文摘要
近年來,一種新的鎂鋅釔合金被開發了出來。由於含有長程有序結構的第二相,此種鎂鋅釔合金擁有極佳的機械性質,因此對於此長程有序結構的變形特性需要有更深入的了解。但至目前為止,幾乎所有研究都在分析長程有序的結構以及在毫米(mm)尺度下沿成長方向的變形機制,因為長程有序結構的晶粒大小僅約為幾百微米(m),所以必須將試片縮小至微米等級才能做長程有序結構單晶的分析。另外,除了成長方向之外,其他方向的機械性質以及變形機制仍未被研究。因此本研究擬將探討長程有序結構兩個方向,(11"2" ̅0)以及(0001),的降伏強度以及變形機制。微米尺度的測試會利用壓縮微米柱的方式來進行,基本機械性質則會利用奈米壓痕實驗來進行。

當壓縮沿[11"2" ̅0],不同的樣品尺寸之間已經觀察到不同的變形行為。在較小的微柱中觀察到棱柱面滑移,而在較大的微柱中觀察到變形扭結。變形扭結的起源已經被發現是棱柱面差排滑移。根據法蘭克理論,稜柱面差排之間的交互作用可以形成樓梯桿差排來當作扭結介面,並進一步去產生基礎面差排滑動,最後形成變形扭結。這表明Mg-Zn-Y-18R LPSO單晶在[11"2" ̅0]壓縮過程中,不論微柱尺寸大小,其降伏機制皆是相同的由稜柱面差排滑移開始。在較大的微柱中,因為尺寸效應的關係,產生樓梯桿差排的機率會提升,因此較容易形成變形扭結。

至於沿[0001]方向的壓縮,由於沿[0001]方向的變形研究很少,我們試圖找出整個變形機制。已經發現基底差排首先激活引起微柱的彎曲,彎曲情況導致形成相對於[0001]施力方向成45度的滑動帶的棱柱螺旋差排的形成。我們認為彎曲的狀況會產生[0001]方向的剪應力,進一步去產生沿45度分布的稜柱螺旋差排形成滑動帶。這個滑動帶引起應力應變曲線中顯示的第一個位移。從我們的結果來看,不同樣品尺寸下的變形行為是相同的。此外,還使用ln-lnd曲線檢查了第一個位移應力的樣本尺寸效應。有趣的是,3.8微米微柱中的第一個位移之應力上升到了與2.7微米的微柱大約相同的大小。這是因為原始差排影響基底差排的滑移,導致滑移帶形成的延遲。

兩個面向的實驗數據皆顯示出較小微柱試片尺寸的微柱有較大的滑移應力,這與試片尺寸效應有所關聯。另外,把兩個方向的ln-lnd斜率(或轉成Weibull 模數)去和文獻的數據進行比較,發現數值是差不多的,這代表皆是由稜柱面滑移產生的變形,與我們的穿透式電子顯微觀察分析是一致的。
Abstract
With the long-period stacking ordered (LPSO) second phase, a novel Mg-Zn-Y based alloys with excellent mechanical properties have been developed. Because the LPSO phase plays an important role in strengthening, it is urgent to clarify the deformation mechanisms within the LPSO phase. Until now, there have been many research works done on the LPSO structure examination and the deformation mechanism along its growth direction, which is [11"2" ̅0], but all in the mini-meter scales. However, because the grain size of the LPSO is typically in 30 to 150 m, it is essential to shrink the testing sample sizes in order to achieve a clear examination on LPSO single crystals. Moreover, the mechanical properties and the deformation mechanisms on different crystal orientations have not been clarified.

In this study, the yield strength as well as the deformation mechanisms of the Mg-Zn-Y 18R LPSO structure with two different orientations, namely, (11"2" ̅0) and (0001), will be systematically examined and analyzed in the micro-meter scale by micropillar compression, and the basic mechanical properties by nanoindentation. As for compressing along [11"2" ̅0], different deformation behavior have been observed between different sample sizes. The prism slip has been observed in smaller micro-pillars while the deformation kink has been observed in larger micro-pillars. The origin of deformation kink has been found out to be the prismatic dislocation slip. According to the Frank’s rule, the interaction between prismatic dislocations would cause the stair-rod dislocations, which would form the kink boundaries and nucleate the basal dislocations to induce the deformation kinks. It indicates that the yield mechanisms in Mg-Zn-Y 18R LPSO single crystal during compressing along [11"2" ̅0] are the same which is proved by using both TEM analysis and ln-lnd curves fitting. The different deformation behaviors are caused by the sample size effect. With larger sample sizes, the probability of forming stair rod dislocations becomes higher, resulting in higher probability of forming deformation kinks. Moreover, these results will be compared with those in the literature on the mini-meter scale.

As for compressing along [0001], since there are few studies with deformation along [0001], we attempt to figure out the whole deformation mechanism. It has been found that the basal dislocations activate first causing the bending of the micro-pillars. The bending situation results in the formation of prism screw dislocations forming the slip band with 45 degrees with respect to the [0001] loading direction. It is considered that the bending can cause the shear stress along [0001] and would induce the nucleation of prism dislocations along 45 degrees with respect to the [0001] loading direction to form the slip band. This slip band causes the first pop-in shown in the stress strain curves. From our results, the deformation behavior are the same with different sample sizes. Moreover, the sample size effect of the first pop-in stress has also been examined using the ln-lnd curves fitting. Interestingly, the first pop-in stress in the 3.8 m micro-pillar rises to the level of 2.7 m micro-pillar. The reason is because the original dislocations influence the slip of basal dislocations, resulting in the delay of slip band forming.

Both experimental results show the trend of higher flow stresses with smaller sample sizes because of the sample size effect. In comparison with the slope of the ln-lnd curves (or in transferring into the Weibull modulus) with the data in literatures, it can be extracted that both the yielding under compression along [11"2" ̅0] and the first pop-in under compression along [0001] are caused by the prismatic slip, consistent with our transmission electron microscopy analysis.
目次 Table of Contents
Content

論文審定書 i
致謝 ii
摘要 v
Abstract vii
Content x
List of Figures xv
List of Tables xxv
Chapter 1. Introduction 1
1-1 Magnesium alloys 1
1-2 The Mg-Zn-Y system 2
1-3 Motivation 2
Chapter 2 Background and literature review 4
2-1 Mg-Zn-Y alloy 4
2-1.1 Manufacture process and mechanical properties of RS P/M Mg97Zn1Y2 4
2-1.2 Strengthening mechanisms in RS P/M Mg97Zn1Y2 alloys 5
2-1.3 Microstructures in RS P/M Mg97Zn1Y2 alloys 5
2-1.4 Manufacture process and mechanical properties of cast Mg97Zn1Y2 alloys 6
2-1.5 Strengthening mechanisms of LPSO in Mg-Zn-Y alloy 7
2-1.6 Microstructure of 18R-type LPSO observed in Mg-Zn-Y alloys 8
2-2 Atom arrangements of 18R-type LPSO 10
2-3 Other types of LPSO in the Mg-Zn-Y systems 13
2-3.1 The 14H-type LPSO structure 13
2-3.2 The 10H-type LPSO structure 14
2-3.3 The 24R-type LPSO structure 14
2-4 Formation and transformation of the LPSO structure 15
2-5 Deformation mechanisms of the 18R LPSO structure 16
2-5.1 Deformation kinking in compression of 18R LPSO structure in millimeter sizes 17
2-5.2 Non-basal slip in compression of 18R LPSO structure in mini-meter sizes 18
2-5.3 Deformation mechanisms of compression in 18R LPSO structure analyzed by calculation 19
2-5.4 Deformation mechanisms in tension tests in 18R LPSO single crystal in micro-meter sizes 20
2-6 Anisotropy 21
2-7 Introduction of focused ion beam (FIB) 22
2-7.1 Basic function of FIB 23
2-7.2 Mechanism of FIB processing 23
2-7.3 Ion induced damage 24
2-7.4 FIB applications 26
2-8 Introduction of nanoindentation testing 26
2-8.1 Mechanical properties 26
2-9 Introduction of micro-compression testing 28
2-9.1 Micro-pillar preparation 28
2-9.2 Force loading and measurement 30
2-9.3 Parameters of micro-compression tests 31
2-10 Micro-scale characterization of mechanical properties and the concept of sample size effect 34
Chapter 3 Experimental procedures 37
3-1 Sample preparation 37
3-1.1 Experimental material 37
3-1.2 Mechanical polishing and cross-section polishing for EBSD analysis 38
3-2 Micro-compression testing 39
3-2.1 Micro-compression sample fabrication using FIB 39
3-2.2 Micro-compression testing using the nanoindentation system 40
3-2.3 TEM sample fabrication using FIB 40
3-3 Nanoindentation testing 41
3-4 Property measurements and analyses 42
3-4.1 Scanning electron microscopy (SEM) analysis 42
3-4.2 Transmission electron microscopy (TEM) analysis 42
3-4.3 High-angle annular dark field Scanning transmission electron microscope (HAADF STEM) analysis 44
Chapter 4 Experimental results 45
4-1 EBSD analysis and BEI results 45
4-2 Micro-compression testing along [11"2" ̅0] direction 46
4-2.1 Mechanical properties and deformation behavior of 18R LPSO micro-pillars during uniaxial compression along [11"2" ̅0] direction 46
4-2.2 TEM analysis of smaller micro-pillars with slip 48
4-2.3 TEM analysis of larger micro-pillars with deformation kink 49
4-3 Micro-compression testing along [0001] direction 50
4-3.1 Mechanical properties and deformation behavior of 18R LPSO micro-pillars during uniaxial compression along [0001] direction 50
4-3.2 TEM analysis of first pop-in micro-pillars 52
4-3.3 TEM analysis of fracture micro-pillars 54
4-4 Nanoindentation testing 55
Chapter 5 Discussions 57
5-1 Deformation behavior transition during compression along [11"2" 0] on Mg-Zn-Y 18R LPSO single crystal due to sample size effect 57
5-1.1 Deformation mechanism in smaller micro-pillars 57
5-1.2 Deformation mechanism in larger micro-pillars 58
5-1.3 Sample-size affected deformation behavior and mechanical properties 59
5-2 Deformation behavior during compression along [0001] on Mg-Zn-Y 18R LPSO single crystal 62
5-2.1 Formation of 45 degrees slip trace with respect to the [0001] loading direction 62
5-2.2 Determination the Burgers vector of basal dislocation 64
5-2.3 Sample size affected mechanical properties 65
Chapter 6 Suggestion for future research 70
Chapter 7 Conclusions 72
References 75
Figures 85
Tables 166
參考文獻 References
References

[1] W.F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill, 1981.
[2] M.O. Pekguleryuz, A.A. Kaya, Advanced Engineering Materials, 5 (2003) 866-878.
[3] A. Inoue, M. Matsushita, Y. Kawamura, K. Amiya, K. Hayashi, J. Koike, Mater Trans, 43 (2002) 580-584.
[4] Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto, Mater Trans, 42 (2001) 1172-1176
[5] E. Abe, Y. Kawamura, K. Hayashi, A. Inoue, Acta Materialia, 50 (2002) 3845-3857.
[6] M. Nishida, T. Yamamuro, M. Nagano, Y. Morizono, Y. Kawamura, Materials Science Forum, Trans Tech Publ, 2003, pp. 715-720.
[7] D.H. Ping, K. Hono, Y. Kawamura, A. Inoue, Philosophical magazine letters, 82 (2002) 543-551.
[8] A. Inoue, Y. Kawamura, M. Matsushita, K. Hayashi, J. Koike, Journal of Materials Research, 16 (2001) 1894-1900.
[9] T. Itoi, T. Seimiya, Y. Kawamura, M. Hirohashi, Scripta Materialia, 51 (2004) 107-111.
[10] Z. Nishiyama, Martensitic Transformation, Elsevier Science, 2012.
[11] Z.P. Luo, S.Q. Zhang, Journal of Materials Science Letters, 19 (2000) 813-815.
[12] M. Matsuda, S. Ii, Y. Kawamura, Y. Ikuhara, M. Nishida, Materials Science and Engineering: A, 386 (2004) 447-452.
[13] A. Datta, U. Waghmare, U. Ramamurty, Acta Materialia, 56 (2008) 2531-2539.
[14] M. Matsuda, S. Ando, M. Nishida, Mater Trans, 46 (2005) 361-364.
[15] X.H. Shao, Z.Q. Yang, X.L. Ma, Acta Materialia, 58 (2010) 4760-4771.
[16] S. Yoshimoto, M. Yamasaki, Y. Kawamura, Mater Trans, 47 (2006) 959-965.
[17] K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H. Yasuda, Y. Umakoshi, Acta Materialia, 58 (2010) 6282-6293.
[18] K. Hagihara, N. Yokotani, Y. Umakoshi, Intermetallics, 18 (2010) 267-276.
[19] T. Itoi, T. Suzuki, Y. Kawamura, M. Hirohashi, Mater Trans, 51 (2010) 1536-1542.
[20] M. Matsuda, S. Ii, Y. Kawamura, Y. Ikuhara, M. Nishida, Materials Science and Engineering: A, 393 (2005) 269-274.
[21] M. Tane, Y. Nagai, H. Kimizuka, K. Hagihara, Y. Kawamura, Acta Materialia, 61 (2013) 6338-6351.
[22] D. Egusa, E. Abe, Acta Materialia, 60 (2012) 166-178.
[23] E. Abe, A. Ono, T. Itoi, M. Yamasaki, Y. Kawamura, Philosophical Magazine Letters, 91 (2011) 690-696.
[24] Y.M. Zhu, A.J. Morton, M. Weyland, J.F. Nie, Acta Materialia, 58 (2010) 464-475.
[25] M. Hisa, J.C. Barry, G.L. Dunlop, Philosophical Magazine A, 82 (2002) 497-510.
[26] N. Hort, Y.-d. Huang, K.U. Kainer, Advanced Engineering Materials, 8 (2006) 235-240.
[27] I. Polmear, Materials science and technology, 10 (1994) 1-16.
[28] S. Matsunaga, T. Kiguchi, K. Sato, T.J. Konno, Mater Trans, 56 (2015) 923-927.
[29] Y. Kawamura, M. Yamasaki, Mater Trans, 48 (2007) 2986-2992.
[30] M. Matsuura, K. Konno, M. Yoshida, M. Nishijima, K. Hiraga, Mater Trans, 47 (2006) 1264-1267.
[31] Y.M. Zhu, A.J. Morton, J.F. Nie, Acta Materialia, 60 (2012) 6562-6572.
[32] Y.M. Zhu, A.J. Morton, J.F. Nie, Acta Materialia, 58 (2010) 2936-2947.
[33] J.E. Saal, C. Wolverton, Scripta Materialia, 67 (2012) 798-801.
[34] K. Hagihara, M. Honnami, R. Matsumoto, Y. Fukusumi, H. Izuno, M. Yamasaki, T. Okamoto, T. Nakano, Y. Kawamura, Mater Trans, (2015).
[35] R. Matsumoto, M. Uranagase, N. Miyazaki, Mater Trans, 54 (2013) 686-692.
[36] T. Mayama, T. Ohashi, Y. Tadano, K. Hagihara, Mater Trans, (2015).
[37] J. Hess, C. Barrett, TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS, 185 (1949) 599-606.
[38] D. Egusa, M. Yamasaki, Y. Kawamura, E. Abe, Mater Trans, 54 (2013) 698-702.
[39] K. Hagihara, A. Kinoshita, Y. Fukusumi, M. Yamasaki, Y. Kawamura, Materials Science Forum, Trans Tech Publ, 2012, pp. 1158-1163.
[40] K. Hagihara, Y. Fukusumi, M. Yamasaki, T. Nakano, Y. Kawamura, Mater Trans, 54 (2013) 693-697.
[41] R. Matsumoto, M. Uranagase, Mater Trans, 56 (2015) 957-962.
[42] D. Peirce, R.J. Asaro, A. Needleman, Acta metallurgica, 31 (1983) 1951-1976.
[43] M.F. Ashby, Philosophical Magazine, 21 (1970) 399-424.
[44] N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Acta Metallurgica et Materialia, 42 (1994) 475-487.
[45] T. Ohashi, Philosophical Magazine Letters, 75 (1997) 51-58.
[46] C. Bayley, W. Brekelmans, M. Geers, International Journal of Solids and Structures, 43 (2006) 7268-7286.
[47] M.E. Gurtin, L. Anand, S.P. Lele, Journal of the Mechanics and Physics of Solids, 55 (2007) 1853-1878.
[48] M. Kuroda, V. Tvergaard, Journal of the Mechanics and Physics of Solids, 54 (2006) 1789-1810.
[49] Y. Mine, R. Maezono, H. Oda, M. Yamasaki, Y. Kawamura, K. Takashima, Mater Trans, 56 (2015) 952-956.
[50] S. Lekhnitskii, Of an anisotropic elastic body, San Francisco: Holden-Day, 1963.
[51] G.E. Dieter, McGraw-Hill, New York, 1976.
[52] P. Partridge, Metallurgical reviews, 12 (1967) 169-194.
[53] D. Bacon, V. Vitek, Metallurgical and Materials Transactions A, 33 (2002) 721-733.
[54] T.E. Mitchell, Y.C. Lu, M. Nastasi, H. Kung, Journal of the American Ceramic Society, 80 (1997) 1673-1676.
[55] J.H. Wu, W.Y. Tsai, J.C. Huang, C.H. Hsieh, G.R. Huang, Materials Science and Engineering: A, 662 (2016) 296-302.
[56] S.C. Tsai, H.C. Chen, J.C. Huang, C.M. Chang, M.M.C. Chou, Materials Science and Engineering: A, 667 (2016) 302-306.
[57] T.H. Sung, J.C. Huang, H.C. Chen, Applied Physics Letters, 102 (2013) 241901.
[58] T.H. Sung, J.C. Huang, J.H. Hsu, S.R. Jian, T.G. Nieh, Applied Physics Letters, 100 (2012) 211903.
[59] M. Tane, H. Kimizuka, K. Hagihara, S. Suzuki, T. Mayama, T. Sekino, Y. Nagai, Acta Materialia, 96 (2015) 170-188.
[60] I. Ohno, Journal of Physics of the Earth, 24 (1976) 355-379.
[61] H. Ogi, H. Ledbetter, S. Kim, M. Hirao, The Journal of the Acoustical Society of America, 106 (1999) 660-665.
[62] C.J. Lee, J.C. Huang, T.G. Nieh, Applied Physics Letters, 91 (2007) 161913.
[63] M.D. Uchic, D.M. Dimiduk, Materials Science and Engineering: A, 400 (2005) 268-278.
[64] A.W. Czanderna, T.E. Madey, C.J. Powell, Beam effects, surface topography, and depth profiling in surface analysis, Springer Science & Business Media, 2006.
[65] C.A. Volkert, A.M. Minor, MRS bulletin, 32 (2007) 389-399.
[66] C.S. Kim, S.H. Ahn, D.Y. Jang, Thin Solid Films, 518 (2010) 5177-5182.
[67] C.S. Kim, H.J. Kim, S.H. Ahn, D.Y. Jang, Microelectronic Engineering, 87 (2010) 972-976.
[68] S. Reyntjens, R. Puers, Journal of Micromechanics and Microengineering, 11 (2001) 287-300.
[69] C.S. Kim, S.H. Ahn, D.Y. Jang, Vacuum, 86 (2012) 1014-1035.
[70] I. Utke, P. Hoffmann, J. Melngailis, Journal of Vacuum Science & Technology B, 26 (2008) 1197-1276.
[71] R. Behrisch, W. Eckstein, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 82 (1993) 255-258.
[72] A. Dubner, A. Wagner, J. Melngailis, C. Thompson, Journal of applied physics, 70 (1991) 665-673.
[73] A.A. Tseng, Journal of Micromechanics and Microengineering, 14 (2004) R15-R34.
[74] A.A. Tseng, Small, 1 (2005) 924-939.
[75] S.J. Randolph, J.D. Fowlkes, P.D. Rack, Critical Reviews in Solid State and Materials Sciences, 31 (2006) 55-89.
[76] R. Nipoti, E. Albertazzi, M. Bianconi, R. Lotti, G. Lulli, M. Cervera, A. Carnera, Applied physics letters, 70 (1997) 3425-3427.
[77] P. Prewett, G. Mair, Taunton, Somerset, England, (1991).
[78] T. Tsvetkova, P. Sellin, R. Carius, O. Angelov, D. Dimova-Malinovska, J. Zuk, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267 (2009) 1583-1587.
[79] C. Vieu, J. Gierak, H. Launois, T. Aign, P. Meyer, J. Jamet, J. Ferre, C. Chappert, V. Mathet, H. Bernas, Microelectronic engineering, 53 (2000) 191-194.
[80] D. Reuter, P. Schafmeister, J. Koch, K. Schmidt, A.D. Wieck, Materials Science and Engineering: B, 88 (2002) 230-233.
[81] H. Bei, S. Shim, M.K. Miller, G.M. Pharr, E.P. George, Applied Physics Letters, 91 (2007) 111915.
[82] P.K. Giri, V. Raineri, G. Franzo, E. Rimini, Physical Review B, 65 (2001) 012110.
[83] P.D. Prewett, C.J. Anthony, D. Cheneler, M.C.L. Ward, IET Micro & Nano Letters, 3 (2008) 25-28.
[84] S. Shim, H. Bei, M.K. Miller, G.M. Pharr, E.P. George, Acta Materialia, 57 (2009) 503-510.
[85] L.A. Giannuzzi, F.A. Stevie, Micron, 30 (1999) 197-204.
[86] L. Pastewka, R. Salzer, A. Graff, F. Altmann, M. Moseler, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267 (2009) 3072-3075.
[87] R. Wirth, Chemical Geology, 261 (2009) 217-229.
[88] H. Hosokawa, K. Shimojima, Y. Chino, Y. Yamada, C.E. Wen, M. Mabuchi, Materials Science and Engineering: A, 344 (2003) 365-367.
[89] C.K. Malek, F. Hartley, J. Neogi, Microsystem technologies, 9 (2003) 409-412.
[90] J. Teng, P.D. Prewett, Sensors and Actuators A: Physical, 123 (2005) 608-613.
[91] R. Puers, S. Reyntjens, Sensors and Actuators A: Physical, 92 (2001) 249-256.
[92] S. Reyntjens, R. Puers, Journal of Micromechanics and Microengineering, 10 (2000) 181.
[93] A. Candini, G.C. Gazzadi, A. Di Bona, M. Affronte, D. Ercolani, G. Biasiol, L. Sorba, Journal of Magnetism and Magnetic Materials, 310 (2007) 2752-2754.
[94] R. Puers, S. Reyntjens, D. De Bruyker, Sensors and Actuators A: Physical, 97 (2002) 208-214.
[95] O. Wilhelmi, S. Reyntjens, C. Mitterbauer, L. Roussel, D.J. Stokes, D.H. Hubert, Japanese journal of applied physics, 47 (2008) 5010.
[96] T. Ishitani, T. Ohnishi, Y. Kawanami, Japanese journal of applied physics, 29 (1990) 2283.
[97] M.J. Vasile, D. Grigg, J.E. Griffith, E. Fitzgerald, P.E. Russell, Journal of Vacuum Science & Technology B, 9 (1991) 3569-3572.
[98] W. Jarupoonphol, C. Ochiai, M. Takai, A. Hosono, S. Okuda, Japanese journal of applied physics, 41 (2002) 4311.
[99] M. Takai, T. Kishimoto, M. Yamashita, H. Morimoto, S. Yura, A. Hosono, S. Okuda, S. Lipp, L. Frey, H. Ryssel, Journal of Vacuum Science & Technology B, 14 (1996) 1973-1976.
[100] O. Yavas, C. Ochiai, M. Takai, Y. Park, C. Lehrer, S. Lipp, L. Frey, H. Ryssel, A. Hosono, S. Okuda, Journal of Vacuum Science & Technology B, 18 (2000) 976-979.
[101] Y. Fu, N.K.A. Bryan, Journal of Vacuum Science & Technology B, 19 (2001) 1259-1263.
[102] K. Watanabe, T. Morita, R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Journal of Vacuum Science & Technology B, 22 (2004) 22-26.
[103] S.W. Youn, C. Okuyama, M. Takahashi, R. Maeda, journal of materials processing technology, 201 (2008) 548-553.
[104] H.W. Li, D.J. Kang, M.G. Blamire, W.T.S. Huck, Nanotechnology, 14 (2003) 220.
[105] H.W. Sun, J.Q. Liu, D. Chen, P. Gu, Microelectronic Engineering, 82 (2005) 175-179.
[106] T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ichihashi, J. Fujita, Journal of Vacuum Science & Technology B, 21 (2003) 2737-2741.
[107] T. Morita, K. Nakamatsu, K. Kanda, Y. Haruyama, K. Kondo, T. Hoshino, T. Kaito, J. Fujita, T. Ichihashi, M. Ishida, Journal of Vacuum Science & Technology B, 22 (2004) 3137-3142.
[108] W.C. Oliver, G.M. Pharr, Journal of materials research, 7 (1992) 1564-1583.
[109] W.G. Mao, Y.G. Shen, C. Lu, Journal of the European Ceramic Society, 31 (2011) 1865-1871.
[110] M.D. Uchic, D.M. Dimiduk, J.N. Florando, W.D. Nix, Science, 305 (2004) 986-989.
[111] S. Nakamura, Y. Harada, M. Seno, Applied physics letters, 58 (1991) 2021-2023.
[112] H. Zhang, B.E. Schuster, Q. Wei, K.T. Ramesh, Scripta Materialia, 54 (2006) 181-186.
[113] T. Masaki, K. Kawata, T. Masuzawa, Micro Electro Mechanical Systems, 1990. Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. IEEE, IEEE, 1990, pp. 21-26.
[114] J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Applied Physics A: Materials Science & Processing, 74 (2002) 19-25.
[115] B.H. Kim, S.H. Ryu, D.K. Choi, C.N. Chu, Journal of Micromechanics and Microengineering, 15 (2004) 124.
[116] A.A. Tseng, K. Chen, C.D. Chen, K.J. Ma, IEEE Transactions on Electronics Packaging Manufacturing, 26 (2003) 141-149.
[117] S.H. Huang, F.Y. Huang, B.H. Yan, The International Journal of Advanced Manufacturing Technology, 26 (2005) 68-77.
[118] G.M. Pharr, W.C. Oliver, Mrs Bulletin, 17 (1992) 28-33.
[119] X. Chen, J.J. Vlassak, Journal of Materials Research, 16 (2001) 2974-2982.
[120] X.D. Li, B. Bhushan, Materials characterization, 48 (2002) 11-36.
[121] D.M. Dimiduk, M.D. Uchic, T.A. Parthasarathy, Acta Materialia, 53 (2005) 4065-4077.
[122] J.R. Greer, W.C. Oliver, W.D. Nix, Acta Materialia, 53 (2005) 1821-1830.
[123] C.A. Volkert, E.T. Lilleodden, Philosophical Magazine, 86 (2006) 5567-5579.
[124] M.D. Uchic, D.M. Dimiduk, R. Wheeler, P.A. Shade, H.L. Fraser, Scripta materialia, 54 (2006) 759-764.
[125] B.E. Schuster, Q. Wei, H. Zhang, K.T. Ramesh, Applied physics letters, 88 (2006) 103112.
[126] H. Bei, S. Shim, E.P. George, M.K. Miller, E. Herbert, G.M. Pharr, Scripta Materialia, 57 (2007) 397-400.
[127] T.H. Sung, J.C. Huang, J.H. Hsu, S.R. Jian, Applied Physics Letters, 97 (2010) 171904.
[128] Q. Yu, Z.W. Shan, J. Li, X.x. Huang, L. Xiao, J. Sun, E. Ma, Nature, 463 (2010) 335-338.
[129] R.M. Langford, A.K. Petford-Long, Journal of Vacuum Science & Technology A, 19 (2001) 2186-2193.
[130] D.B. Williams, C.B. Carter, The transmission electron microscope, Transmission electron microscopy, Springer, 1996, pp. 3-17.
[131] J.R. Greer, W.D. Nix, Physical Review B, 73 (2006) 245410.
[132] K. Hagihara, M. Honnami, R. Matsumoto, Y. Fukusumi, H. Izuno, M. Yamasaki, T. Okamoto, T. Nakano, Y. Kawamura, Mater Trans, 56 (2015) 943-951.
[133] F.F. Csikor, C. Motz, D. Weygand, M. Zaiser, S. Zapperi, Science, 318 (2007) 251-254.
[134] K. Hagihara, T. Mayama, M. Honnami, M. Yamasaki, H. Izuno, T. Okamoto, T. Ohashi, T. Nakano, Y. Kawamura, International Journal of Plasticity, 77 (2016) 174-191.
[135] W.Y. Wang, Y. Wang, S.L. Shang, K.A. Darling, H.Y. Kim, B. Tang, H.C. Kou, S.N. Mathaudhu, X.D. Hui, J.S. Li, Z.K. Liu, Materials Research Letters, 5 (2017) 415-425.
[136] D. Hull, D.J. Bacon, Introduction to dislocations, Butterworth-Heinemann, 2001.
[137] W. Weibull, Journal of applied mechanics, 103 (1951) 293-297.
[138] Q.Y. Sun, Q. Guo, X. Yao, L. Xiao, J.R. Greer, J. Sun, Scripta Materialia, 65 (2011) 473-476.
[139] K.S. Ng, A.H.W. Ngan, Philosophical Magazine, 89 (2009) 3013-3026.
[140] X.D. Xu, P. Liu, Z. Tang, A. Hirata, S.X. Song, T.G. Nieh, P.K. Liaw, C.T. Liu, M.W. Chen, Acta Materialia, 144 (2018) 107-115.
[141] B.C. Wonsiewicz, Massachusetts Institute of Technology, 1966.
[142] N.E. Paton, W.A. Backofen, Metallurgical and Materials Transactions B, 1 (1970) 2839-2847.
[143] E. Tenckhoff, Deformation mechanisms, texture, and anisotropy in zirconium and zircaloy, ASTM International, 1988.
[144] J.C. Williams, R.G. Baggerly, N.E. Paton, Metallurgical and Materials Transactions A, 33 (2002) 837-850.
[145] K.Y. Xie, Z. Alam, A. Caffee, K.J. Hemker, Magnesium Technology 2016, Springer, 2016, pp. 209-211.
[146] K.Y. Xie, Z. Alam, A. Caffee, K.J. Hemker, Scripta Materialia, 112 (2016) 75-78.
[147] K. Srivastava, J.A. El-Awady, Acta Materialia, 133 (2017) 282-292.
[148] A.S. Schneider, D. Kaufmann, B.G. Clark, C.P. Frick, P.A. Gruber, R. Mönig, O. Kraft, and E. Arzt, Physical Review Letters, 103 (2009) 105501
[149] J.R. Greer, J.T.M.D. Hosson, Progress in Materials Science 56 (2011) 654-724.
[150] J.Y. Kim, D. Jane, J.R. Greer, Acta Materialia, 58 (2010) 2355-2363.
[151] J.Y. Kim, D. Jane, J.R. Greer, Scripta Materialia 61 (2009) 300-303.
[152] J.Y. Kim, J.R. Greer, Acta Materialia 57 (2009) 5245-5253.
[153] J. Ye, R.K. Mishra, A.K. Sachdev, A.M. Minor, Scripta Materialia 64 (2011) 292-295.
[154] H.J. Neilson, A.S. Petersen, A.M. Cheung, S.J. Poon, G.J. Shiflet, M. Widom, J.J. Lewandowski, Materials Science and Engineering A 634 (2015) 176-182.
[155] J.H. Yao, J.Q. Wang, L. Lu, Y. Li, Applied Physics Letter 92 (2008) 041905.
[156] M. Meyers, Krishan Chawla, Mechanical Behavior of Materials, 2nd ed., Cambridge University Press, New York, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code